Year |
Citation |
Score |
2018 |
Bujalski J, Dwyer G, Kapitula T, Le QN, Malvai H, Rosenthal-Kay J, Ruiter J. Consensus and clustering in opinion formation on networks. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 376. PMID 29507171 DOI: 10.1098/Rsta.2017.0186 |
0.381 |
|
2017 |
Xu H, Kevrekidis PG, Kapitula T. Existence, stability, and dynamics of harmonically trapped one-dimensional multi-component solitary waves: The near-linear limit Journal of Mathematical Physics. 58: 061901. DOI: 10.1063/1.4983999 |
0.547 |
|
2015 |
Kapitula T, Deconinck B. On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations Hamiltonian Partial Differential Equations and Applications. 75: 285-322. DOI: 10.1007/978-1-4939-2950-4_10 |
0.563 |
|
2014 |
Demirkaya A, Kapitula T, Kevrekidis PG, Stanislavova M, Stefanov A. On the Spectral Stability of Kinks in Some PT-Symmetric Variants of the Classical Klein-Gordon Field Theories Studies in Applied Mathematics. 133: 298-317. DOI: 10.1111/Sapm.12053 |
0.419 |
|
2014 |
Kapitula T, Stefanov A. A Hamiltonian-Krein (Instability) index theory for solitary waves to KdV-Like eigenvalue problems Studies in Applied Mathematics. 132: 183-211. DOI: 10.1111/Sapm.12031 |
0.446 |
|
2014 |
Bronski J, Johnson MA, Kapitula T. An Instability Index Theory for Quadratic Pencils and Applications Communications in Mathematical Physics. 327: 521-550. DOI: 10.1007/S00220-014-1949-5 |
0.609 |
|
2014 |
Haragus M, Kapitula T. Spots and stripes in nonlinear Schrödinger-type equations with nearly one-dimensional potentials Mathematical Methods in the Applied Sciences. 37: 75-94. DOI: 10.1002/Mma.2786 |
0.56 |
|
2013 |
Kapitula T, Kevrekidis PG, Yan D. The krein matrix: General theory and concrete applications in atomic bose-einstein condensates Siam Journal On Applied Mathematics. 73: 1368-1395. DOI: 10.1137/120902471 |
0.411 |
|
2013 |
Kapitula T, Hibma E, Kim HP, Timkovich J. Instability indices for matrix polynomials Linear Algebra and Its Applications. 439: 3412-3434. DOI: 10.1016/J.Laa.2013.08.034 |
0.33 |
|
2011 |
Kapitula T, De Jong N, Plaisier K. Wave dynamics in the extended forced Korteweg-de Vries equation Siam Journal On Applied Mathematics. 71: 811-828. DOI: 10.1137/10080381X |
0.498 |
|
2011 |
Bronski JC, Johnson MA, Kapitula T. An index theorem for the stability of periodic travelling waves of Korteweg-de Vries type Proceedings of the Royal Society of Edinburgh Section a: Mathematics. 141: 1141-1173. DOI: 10.1017/S0308210510001216 |
0.568 |
|
2010 |
Kapitula T. The krein signature, krein eigenvalues, and the krein oscillation theorem Indiana University Mathematics Journal. 59: 1245-1275. DOI: 10.1512/Iumj.2010.59.3975 |
0.424 |
|
2010 |
Kapitula T, Law KJH, Kevrekidis PG. Interaction of excited states in two-species Bose-Einstein condensates: A case study Siam Journal On Applied Dynamical Systems. 9: 34-61. DOI: 10.1137/080742002 |
0.338 |
|
2010 |
Deconinck B, Kapitula T. The orbital stability of the cnoidal waves of the Korteweg-de Vries equation Physics Letters, Section a: General, Atomic and Solid State Physics. 374: 4018-4022. DOI: 10.1016/J.Physleta.2010.08.007 |
0.583 |
|
2008 |
Kapitula T, Kevrekidis PG, Frantzeskakis DJ. Disk-shaped Bose-Einstein condensates in the presence of an harmonic trap and an optical lattice. Chaos (Woodbury, N.Y.). 18: 023101. PMID 18601468 DOI: 10.1063/1.2897311 |
0.497 |
|
2008 |
Ha ̌ra ̌guş M, Kapitula T. On the spectra of periodic waves for infinite-dimensional Hamiltonian systems Physica D: Nonlinear Phenomena. 237: 2649-2671. DOI: 10.1016/J.Physd.2008.03.050 |
0.586 |
|
2007 |
Kapitula T. On the stability of N-solitons in integrable systems Nonlinearity. 20: 879-907. DOI: 10.1088/0951-7715/20/4/005 |
0.494 |
|
2007 |
Kapitula T, Kevrekidis PG, Carretero-González R. Rotating matter waves in Bose-Einstein condensates Physica D: Nonlinear Phenomena. 233: 112-137. DOI: 10.1016/J.Physd.2007.06.012 |
0.535 |
|
2006 |
Kapitula T, Kevrekidis PG, Chen Z. Three Is a Crowd: Solitary Waves in Photorefractive Media with Three Potential Wells Siam Journal On Applied Dynamical Systems. 5: 598-633. DOI: 10.1137/05064076X |
0.504 |
|
2005 |
Kapitula T, Kevrekidis PG. Bose-Einstein condensates in the presence of a magnetic trap and optical lattice. Chaos (Woodbury, N.Y.). 15: 37114. PMID 16253009 DOI: 10.1063/1.1993867 |
0.517 |
|
2005 |
Kapitula T, Kevrekidis PG. Bose-Einstein condensates in the presence of a magnetic trap and optical lattice: Two-mode approximation Nonlinearity. 18: 2491-2512. DOI: 10.1088/0951-7715/18/6/005 |
0.506 |
|
2005 |
Kapitula T. Stability Analysis of Pulses via the Evans Function: Dissipative Systems Lecture Notes in Physics. 661: 407-428. DOI: 10.1007/10928028_16 |
0.502 |
|
2004 |
Kapitula T, Sandstede B. Eigenvalues and resonances using the Evans function Discrete and Continuous Dynamical Systems. 10: 857-869. DOI: 10.3934/Dcds.2004.10.857 |
0.456 |
|
2004 |
Kapitula T, Kutz N, Sandstede B. The Evans function for nonlocal equations Indiana University Mathematics Journal. 53: 1095-1126. DOI: 10.1512/Iumj.2004.53.2431 |
0.475 |
|
2004 |
Kapitula T, Kevrekidis PG. Linear stability of perturbed Hamiltonian systems: Theory and a case example Journal of Physics a: Mathematical and General. 37: 7509-7526. DOI: 10.1088/0305-4470/37/30/009 |
0.515 |
|
2004 |
Kapitula T, Kevrekidis PG, Sandstede B. Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems Physica D: Nonlinear Phenomena. 195: 263-282. DOI: 10.1016/J.Physd.2004.03.018 |
0.566 |
|
2004 |
Kapitula T, Sandstede B. Eigenvalues and resonances using the Evans function Discrete and Continuous Dynamical Systems. 10: 857-869. |
0.38 |
|
2002 |
Kapitula T, Kutz JN, Sandstede B. Stability of pulses in the master mode-locking equation Journal of the Optical Society of America B-Optical Physics. 19: 740-746. DOI: 10.1364/Josab.19.000740 |
0.365 |
|
2002 |
Kapitula T, Sandstede B. Edge bifurcations for near integrable systems via evans function techniques Siam Journal On Mathematical Analysis. 33: 1117-1143. DOI: 10.1137/S0036141000372301 |
0.494 |
|
2001 |
Kapitula T, Kevrekidis PG, Jones CKRT. Soliton internal mode bifurcations: Pure power law? Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 63: 366021-366025. DOI: 10.1103/Physreve.63.036602 |
0.461 |
|
2001 |
Kapitula T, Kevrekidis P. Stability of waves in discrete systems Nonlinearity. 14: 533-566. DOI: 10.1088/0951-7715/14/3/306 |
0.617 |
|
2001 |
Kapitula T. Stability of waves in perturbed Hamiltonian systems Physica D: Nonlinear Phenomena. 156: 186-200. DOI: 10.1016/S0167-2789(01)00256-1 |
0.498 |
|
2001 |
Kapitula T, Kevrekidis PG, Malomed BA. Stability of multiple pulses in discrete systems Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 63: 366041-366048. |
0.356 |
|
2000 |
Kapitula T, Rubin J. Existence and stability of standing hole solutions to complex Ginzburg-Landau equations Nonlinearity. 13: 77-112. DOI: 10.1088/0951-7715/13/1/305 |
0.624 |
|
2000 |
Kevrekidis PG, Jones CKRT, Kapitula T. Exponentially small splitting of heteroclinc orbits: From the rapidly forced pendulum to discrete solitons Physics Letters, Section a: General, Atomic and Solid State Physics. 269: 120-129. DOI: 10.1016/S0375-9601(00)00247-4 |
0.453 |
|
1998 |
Kapitula T, Sandstede B. Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation Journal of the Optical Society of America B-Optical Physics. 15: 2757-2762. DOI: 10.1364/Josab.15.002757 |
0.597 |
|
1998 |
Kapitula T. The Evans function and generalized Melnikov integrals Siam Journal On Mathematical Analysis. 30: 273-297. DOI: 10.1137/S0036141097327963 |
0.472 |
|
1998 |
Kapitula T. Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrödinger equation Royal Society of Edinburgh - Proceedings A. 128: 585-629. DOI: 10.1017/S030821050002165X |
0.542 |
|
1998 |
Kapitula T, Sandstede B. Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations Physica D: Nonlinear Phenomena. 124: 58-103. DOI: 10.1016/S0167-2789(98)00172-9 |
0.627 |
|
1998 |
Kapitula T. Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equation Physica D: Nonlinear Phenomena. 116: 95-120. DOI: 10.1016/S0167-2789(97)00245-5 |
0.569 |
|
1998 |
Kapitula T, Sandstede B. Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations Physica D: Nonlinear Phenomena. 124: 58-103. |
0.581 |
|
1997 |
Kapitula T. Multidimensional stability of planar travelling waves Transactions of the American Mathematical Society. 349: 257-269. DOI: 10.1090/S0002-9947-97-01668-1 |
0.513 |
|
1996 |
Kapitula T. Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation Nonlinearity. 9: 669-685. DOI: 10.1088/0951-7715/9/3/004 |
0.549 |
|
1996 |
Kapitula T, Maier-Paape S. Spatial dynamics of time periodic solutions for the Ginzburg-Landau equation Zeitschrift Fur Angewandte Mathematik Und Physik. 47: 265-305. DOI: 10.1007/Bf00916827 |
0.355 |
|
1995 |
Kapitula T. Singular heteroclinic orbits for degenerate modulation equations Physica D: Nonlinear Phenomena. 82: 36-59. DOI: 10.1016/0167-2789(94)00223-D |
0.503 |
|
1994 |
Kapitula T. On the Stability of Traveling Waves in Weighted L∞ Spaces Journal of Differential Equations. 112: 179-215. DOI: 10.1006/Jdeq.1994.1100 |
0.543 |
|
1994 |
Kapitula T. On the nonlinear stability of plane waves for the ginzburg‐landau equation Communications On Pure and Applied Mathematics. 47: 831-841. DOI: 10.1002/Cpa.3160470603 |
0.596 |
|
1993 |
Jones CKRT, Gardner R, Kapitula T. Stability of travelling waves for non-convex scalar viscous conservation laws Communications On Pure and Applied Mathematics. 46: 505-526. DOI: 10.1002/Cpa.3160460404 |
0.543 |
|
Show low-probability matches. |