Year |
Citation |
Score |
2020 |
Hu X, Azmy YY. Asymptotic convergence of the angular discretization error in the scalar flux computed from the particle transport equation with the method of discrete ordinates Annals of Nuclear Energy. 138: 107199. DOI: 10.1016/J.Anucene.2019.107199 |
0.43 |
|
2017 |
Nelson N, Azmy Y, Gardner R, Mattingly J, Smith R, Worrall L, Dewji S. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms. 410: 1-15. DOI: 10.1016/J.Nimb.2017.07.015 |
0.355 |
|
2017 |
Nelson N, Azmy Y. Numerical convergence and validation of the DIMP inverse particle transport model Nuclear Engineering and Technology. 49: 1358-1367. DOI: 10.1016/J.Net.2017.07.009 |
0.426 |
|
2015 |
Schunert S, Azmy Y. Comparison of Spatial Discretization Methods for Solving the S N Equations Using a Three-Dimensional Method of Manufactured Solutions Benchmark Suite with Escalating Order of Nonsmoothness Nuclear Science and Engineering. 180: 1-29. DOI: 10.13182/Nse14-77 |
0.697 |
|
2015 |
Hykes JM, Azmy YY. Radiation source mapping with bayesian inverse methods Nuclear Science and Engineering. 179: 364-380. DOI: 10.13182/Nse13-91 |
0.677 |
|
2015 |
Anistratov DY, Azmy YY. Iterative stability analysis of spatial domain decomposition based on block Jacobi algorithm for the diamond-difference scheme Journal of Computational Physics. 297: 462-479. DOI: 10.1016/J.Jcp.2015.05.033 |
0.437 |
|
2013 |
Schunert S, Azmy Y. Using the Cartesian Discrete Ordinates Code DORT for Assembly-Level Calculations Nuclear Science and Engineering. 173: 233-258. DOI: 10.13182/Nse11-17 |
0.689 |
|
2012 |
Ferrer RM, Azmy YY. A Robust Arbitrarily High-Order Transport Method of the Characteristic Type for Unstructured Grids Nuclear Science and Engineering. 172: 33-51. DOI: 10.13182/Nse10-106 |
0.68 |
|
2011 |
Gill DF, Azmy YY, Warsa JS, Densmore JD. Newton’s Method for the Computation of k-Eigenvalues in SN Transport Applications Nuclear Science and Engineering. 168: 37-58. DOI: 10.13182/Nse10-01 |
0.389 |
|
2011 |
Gill DF, Azmy YY. Newton's Method for Solving k -Eigenvalue Problems in Neutron Diffusion Theory Nuclear Science and Engineering. 167: 141-153. DOI: 10.13182/Nse09-98 |
0.327 |
|
2010 |
Rosa M, Azmy YY, Morel JE. On the Degradation of Cell-Centered Diffusive Preconditioners for Accelerating SN Transport Calculations in the Periodic Horizontal Interface Configuration Nuclear Science and Engineering. 166: 218-238. DOI: 10.13182/Nse09-69 |
0.356 |
|
2009 |
Rosa M, Azmy YY, Morel JE. Properties of the SN-Equivalent Integral Transport Operator in Slab Geometry and the Iterative Acceleration of Neutral Particle Transport Methods Nuclear Science and Engineering. 162: 234-252. DOI: 10.13182/Nse162-234 |
0.364 |
|
2009 |
Ferrer RM, Azmy YY. Error Analysis of the Nodal Integral Method for Solving the Neutron Diffusion Equation in Two-Dimensional Cartesian Geometry Nuclear Science and Engineering. 162: 215-233. DOI: 10.13182/Nse162-215 |
0.697 |
|
2009 |
Duo JI, Azmy YY. Spatial Convergence Study of Discrete Ordinates Methods Via the Singular Characteristic Tracking Algorithm Nuclear Science and Engineering. 162: 41-55. DOI: 10.13182/Nse08-28 |
0.495 |
|
2009 |
Bekar KB, Azmy YY. TORT solutions to the NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space Annals of Nuclear Energy. 36: 368-374. DOI: 10.1016/J.Anucene.2008.11.036 |
0.441 |
|
2008 |
Duo JI, Azmy YY, Zikatanov LT. A posteriori error estimator and AMR for discrete ordinates nodal transport methods International Conference On the Physics of Reactors 2008, Physor 08. 1: 477-484. DOI: 10.1016/J.Anucene.2008.12.008 |
0.419 |
|
2007 |
Duo JI, Azmy YY. Error Comparison of Diamond Difference, Nodal, and Characteristic Methods for Solving Multidimensional Transport Problems with the Discrete Ordinates Approximation Nuclear Science and Engineering. 156: 139-153. DOI: 10.13182/Nse05-91 |
0.468 |
|
2007 |
Fischer JW, Azmy YY. Comparison via parallel performance models of angular and spatial domain decompositions for solving neutral particle transport problems Progress in Nuclear Energy. 49: 37-60. DOI: 10.1016/J.Pnucene.2006.08.003 |
0.385 |
|
2006 |
Klingensmith JJ, Azmy YY, Gehin JC, Orsi R. Tort solutions to the three-dimensional MOX benchmark, 3-D Extension C5G7MOX Progress in Nuclear Energy. 48: 445-455. DOI: 10.1016/J.Pnucene.2006.01.011 |
0.458 |
|
2006 |
Alim F, Bekar K, Ivanov K, Unlu K, Brenizer J, Azmy Y. Modeling and optimization of existing beam port facility of PSBR Annals of Nuclear Energy. 33: 1391-1395. DOI: 10.1016/J.Anucene.2006.10.007 |
0.48 |
|
2004 |
Azmy YY, Gehin JC, Orsi R. Dort solutions to the two-dimensional C5G7MOXbenchmark problem Progress in Nuclear Energy. 45: 215-231. DOI: 10.1016/J.Pnueene.2004.09.011 |
0.437 |
|
2002 |
Azmy YY. Unconditionally stable and robust adjacent-cell diffusive preconditioning of weighted-difference particle transport methods is impossible Journal of Computational Physics. 182: 213-233. DOI: 10.1006/Jcph.2002.7162 |
0.434 |
|
2000 |
Zamonsky OM, Buscaglia GC, Azmy YY. A posteriori error estimation for the one-dimensional arbitrarily high-order transport-nodal method Annals of Nuclear Energy. 27: 355-369. DOI: 10.1016/S0306-4549(99)00071-7 |
0.372 |
|
1992 |
Kirk BL, Azmy YY. An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computers Nuclear Science and Engineering. 111: 57-65. DOI: 10.13182/Nse92-A23923 |
0.432 |
|
Show low-probability matches. |