Year |
Citation |
Score |
2020 |
Zhou H, Deodatis G, Shields M, Benowitz B. Simulation of wind velocity time histories on long span structures modeled as non-Gaussian stochastic waves Probabilistic Engineering Mechanics. 59: 103016. DOI: 10.1016/J.Probengmech.2020.103016 |
0.434 |
|
2018 |
Vlachos C, Papakonstantinou KG, Deodatis G. Structural Applications of a Predictive Stochastic Ground Motion Model: Assessment and Use Asce-Asme Journal of Risk and Uncertainty in Engineering Systems, Part a: Civil Engineering. 4: 4018006. DOI: 10.1061/Ajrua6.0000946 |
0.714 |
|
2018 |
Vlachos C, Papakonstantinou KG, Deodatis G. Predictive model for site specific simulation of ground motions based on earthquake scenarios Earthquake Engineering & Structural Dynamics. 47: 195-218. DOI: 10.1002/Eqe.2948 |
0.727 |
|
2017 |
Tabbakhha M, Deodatis G. Effect of Uncertainty of Tensile Strength of Mortar Joints on the Behavior of Masonry Walls under Lateral Loads Journal of Structural Engineering-Asce. 143: 4016166. DOI: 10.1061/(Asce)St.1943-541X.0001640 |
0.358 |
|
2017 |
Gerasimidis S, Deodatis G, Yan Y, Ettouney M. Global Instability Induced Failure of Tall Steel Moment Frame Buildings Journal of Performance of Constructed Facilities. 31: 4016082. DOI: 10.1061/(Asce)Cf.1943-5509.0000940 |
0.304 |
|
2016 |
Vlachos C, Papakonstantinou KG, Deodatis G. A multi-modal analytical non-stationary spectral model for characterization and stochastic simulation of earthquake ground motions Soil Dynamics and Earthquake Engineering. 80: 177-191. DOI: 10.1016/J.Soildyn.2015.10.006 |
0.744 |
|
2016 |
Wu J, McAuliffe C, Waisman H, Deodatis G. Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method Computer Methods in Applied Mechanics and Engineering. 312: 596-634. DOI: 10.1016/J.Cma.2016.06.010 |
0.376 |
|
2015 |
Gerasimidis S, Deodatis G, Kontoroupi T, Ettouney M. Loss-of-stability induced progressive collapse modes in 3D steel moment frames Structure and Infrastructure Engineering. 11: 334-344. DOI: 10.1080/15732479.2014.979429 |
0.332 |
|
2015 |
Montoya A, Deodatis G, Betti R, Waisman H. Physics-based stochastic model to determine the failure load of suspension bridge main cables Journal of Computing in Civil Engineering. 29. DOI: 10.1061/(Asce)Cp.1943-5487.0000393 |
0.334 |
|
2015 |
Arwade SR, Deodatis G, Teferra K. Variability response functions for apparent material properties Probabilistic Engineering Mechanics. 44: 28-34. DOI: 10.1016/J.Probengmech.2015.10.010 |
0.762 |
|
2015 |
Benowitz BA, Shields MD, Deodatis G. Determining evolutionary spectra from non-stationary autocorrelation functions Probabilistic Engineering Mechanics. 41: 73-88. DOI: 10.1016/J.Probengmech.2015.06.004 |
0.4 |
|
2015 |
Vlachos C, Deodatis G, Papakonstantinou KG. A fully parametric non-stationary spectral-based stochastic ground motion model 12th International Conference On Applications of Statistics and Probability in Civil Engineering, Icasp 2015. |
0.322 |
|
2014 |
Podrouzek J, Bucher C, Deodatis G. Identification of critical samples of stochastic processes towards feasible structural reliability applications Structural Safety. 47: 39-47. DOI: 10.1016/J.Strusafe.2013.10.005 |
0.435 |
|
2014 |
Hancilar U, Çaktö E, Erdik M, Franco GE, Deodatis G. Earthquake vulnerability of school buildings: Probabilistic structural fragility analyses Soil Dynamics and Earthquake Engineering. 67: 169-178. DOI: 10.1016/J.Soildyn.2014.09.005 |
0.431 |
|
2014 |
Teferra K, Arwade SR, Deodatis G. Generalized variability response functions for two-dimensional elasticity problems Computer Methods in Applied Mechanics and Engineering. 272: 121-137. DOI: 10.1016/J.Cma.2014.01.013 |
0.797 |
|
2014 |
Savvas D, Stefanou G, Papadrakakis M, Deodatis G. Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM Computational Mechanics. 54: 1221-1235. DOI: 10.1007/S00466-014-1053-X |
0.426 |
|
2013 |
Chatzis MN, Deodatis G. Modeling of very large interacting multiple-beam systems with application to suspension bridge cables Journal of Structural Engineering (United States). 139: 1541-1554. DOI: 10.1061/(Asce)St.1943-541X.0000740 |
0.313 |
|
2013 |
Shields MD, Deodatis G. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic vector process by a translation process with applications in wind velocity simulation Probabilistic Engineering Mechanics. 31: 19-29. DOI: 10.1016/J.Probengmech.2012.10.003 |
0.404 |
|
2013 |
Benowitz BA, Deodatis G. Simulation of wind velocities on long span structures: A novel stochastic wave based model Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of the 11th International Conference On Structural Safety and Reliability, Icossar 2013. 5549-5553. DOI: 10.1016/J.Jweia.2015.10.004 |
0.377 |
|
2013 |
Shields MD, Deodatis G. Estimation of evolutionary spectra for simulation of non-stationary and non-gaussian stochastic processes Computers and Structures. 126: 149-163. DOI: 10.1016/J.Compstruc.2013.02.007 |
0.369 |
|
2012 |
Miranda M, Deodatis G. Generalized variability response functions for beam structures with stochastic parameters Journal of Engineering Mechanics. 138: 1165-1185. DOI: 10.1061/(Asce)Em.1943-7889.0000421 |
0.705 |
|
2012 |
Teferra K, Deodatis G. Variability response functions for beams with nonlinear constitutive laws Probabilistic Engineering Mechanics. 29: 139-148. DOI: 10.1016/J.Probengmech.2011.11.007 |
0.778 |
|
2012 |
Teferra K, Arwade SR, Deodatis G. Stochastic variability of effective properties via the generalized variability response function Computers and Structures. 110: 107-115. DOI: 10.1016/J.Compstruc.2012.07.005 |
0.783 |
|
2011 |
Cacciola P, Deodatis G. A method for generating fully non-stationary and spectrum-compatible ground motion vector processes Soil Dynamics and Earthquake Engineering. 31: 351-360. DOI: 10.1016/J.Soildyn.2010.09.003 |
0.477 |
|
2011 |
Shields MD, Deodatis G, Bocchini P. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process Probabilistic Engineering Mechanics. 26: 511-519. DOI: 10.1016/J.Probengmech.2011.04.003 |
0.423 |
|
2011 |
Arwade SR, Deodatis G. Variability response functions for effective material properties Probabilistic Engineering Mechanics. 26: 174-181. DOI: 10.1016/J.Probengmech.2010.11.005 |
0.456 |
|
2011 |
Bocchini P, Frangopol DM, Deodatis G. A random field based technique for the efficiency enhancement of bridge network life-cycle analysis under uncertainty Engineering Structures. 33: 3208-3217. DOI: 10.1016/J.Engstruct.2011.08.024 |
0.358 |
|
2011 |
Hiriyur B, Waisman H, Deodatis G. Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM International Journal For Numerical Methods in Engineering. 88: 257-278. DOI: 10.1002/Nme.3174 |
0.447 |
|
2008 |
Tantala MW, Nordenson GJP, Deodatis G, Jacob K. Earthquake loss estimation for the New York City Metropolitan Region Soil Dynamics and Earthquake Engineering. 28: 812-835. DOI: 10.1016/J.Soildyn.2007.10.012 |
0.339 |
|
2008 |
Bocchini P, Deodatis G. Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields Probabilistic Engineering Mechanics. 23: 393-407. DOI: 10.1016/J.Probengmech.2007.09.001 |
0.386 |
|
2007 |
Shi Y, Deodatis G, Betti R. Random field-based approach for strength evaluation of suspension bridge cables Journal of Structural Engineering. 133: 1690-1699. DOI: 10.1061/(Asce)0733-9445(2007)133:12(1690) |
0.579 |
|
2006 |
Koutsourelakis PS, Deodatis G. Simulation of multidimensional binary random fields with application to modeling of two-phase random media Journal of Engineering Mechanics. 132: 619-631. DOI: 10.1061/(Asce)0733-9399(2006)132:6(619) |
0.42 |
|
2006 |
Popescu R, Prevost JH, Deodatis G, Chakrabortty P. Dynamics of nonlinear porous media with applications to soil liquefaction Soil Dynamics and Earthquake Engineering. 26: 648-665. DOI: 10.1016/J.Soildyn.2006.01.015 |
0.313 |
|
2006 |
Papadopoulos V, Papadrakakis M, Deodatis G. Analysis of mean and mean square response of general linear stochastic finite element systems Computer Methods in Applied Mechanics and Engineering. 195: 5454-5471. DOI: 10.1016/J.Cma.2005.11.008 |
0.525 |
|
2006 |
Papadopoulos V, Deodatis G. Response variability of stochastic frame structures using evolutionary field theory Computer Methods in Applied Mechanics and Engineering. 195: 1050-1074. DOI: 10.1016/J.Cma.2005.04.003 |
0.543 |
|
2005 |
Popescu R, Prevost JH, Deodatis G. 3D effects in seismic liquefaction of stochastically variable soil deposits Geotechnique. 55: 21-31. DOI: 10.1680/Geot.2005.55.1.21 |
0.358 |
|
2005 |
Koutsourelakis PS, Deodatis G. Simulation of binary random fields with applications to two-phase random media Journal of Engineering Mechanics. 131: 397-412. DOI: 10.1061/(Asce)0733-9399(2005)131:4(397) |
0.412 |
|
2005 |
Popescu R, Deodatis G, Nobahar A. Effects of random heterogeneity of soil properties on bearing capacity Probabilistic Engineering Mechanics. 20: 324-341. DOI: 10.1016/J.Probengmech.2005.06.003 |
0.361 |
|
2005 |
Papadopoulos V, Deodatis G, Papadrakakis M. Flexibility-based upper bounds on the response variability of simple beams Computer Methods in Applied Mechanics and Engineering. 194: 1385-1404. DOI: 10.1016/J.Cma.2004.06.040 |
0.478 |
|
2004 |
Smyth AW, Altay G, Deodatis G, Erdik M, Franco G, Gülkan P, Kunreuther H, Luş H, Mete E, Seeber N, Yüzügüllü O. Probabilistic Benefit-Cost Analysis for Earthquake Damage Mitigation: Evaluating Measures for Apartment Houses in Turkey Earthquake Spectra. 20: 171-203. DOI: 10.1193/1.1649937 |
0.303 |
|
2003 |
Deodatis G, Graham-Brady L, Micaletti R. A hierarchy of upper bounds on the response of stochastic systems with large variation of their properties: Random field case Probabilistic Engineering Mechanics. 18: 365-375. DOI: 10.1016/j.probengmech.2003.08.002 |
0.717 |
|
2003 |
Deodatis G, Graham-Brady L, Micaletti R. A hierarchy of upper bounds on the response of stochastic systems with large variation of their properties: Random variable case Probabilistic Engineering Mechanics. 18: 349-363. DOI: 10.1016/J.Probengmech.2003.08.001 |
0.744 |
|
2003 |
Deodatis G, Graham-Brady L, Micaletti R. Upper bounds on the response variance of stochastic systems via generalized variability response functions Computational Fluid and Solid Mechanics 2003. 1918-1921. DOI: 10.1016/B978-008044046-0.50470-X |
0.71 |
|
2002 |
Koutsourelakis S, Prvost JH, Deodatis G. Risk assessment of an interacting structure-soil system due to liquefaction Earthquake Engineering and Structural Dynamics. 31: 851-879. DOI: 10.1002/Eqe.125 |
0.397 |
|
2001 |
Deodatis G, Micaletti RC. Simulation of highly skewed non-Gaussian stochastic processes Journal of Engineering Mechanics. 127: 1284-1295. DOI: 10.1061/(Asce)0733-9399(2001)127:12(1284) |
0.39 |
|
2001 |
Graham LL, Deodatis G. Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties Probabilistic Engineering Mechanics. 16: 11-29. DOI: 10.1016/S0266-8920(00)00003-5 |
0.496 |
|
1999 |
Shinozuka M, Deodatis G, Zhang R, Papageorgiou AS. Modeling, synthetics and engineering applications of strong earthquake wave motion Soil Dynamics and Earthquake Engineering. 18: 209-228. DOI: 10.1016/S0267-7261(98)00045-1 |
0.573 |
|
1998 |
Popescu R, Deodatis G, Prevost JH. Simulation of homogeneous nonGaussian stochastic vector fields Probabilistic Engineering Mechanics. 13: 1-13. DOI: 10.1016/S0266-8920(97)00001-5 |
0.433 |
|
1998 |
Graham L, Deodatis G. Variability response functions for stochastic plate bending problems Structural Safety. 20: 167-188. DOI: 10.1016/S0167-4730(98)00006-X |
0.493 |
|
1997 |
Popescu R, Prevost JH, Deodatis G. Effects of spatial variability on soil liquefaction: Some design recommendations Geotechnique. 47: 1019-1036. DOI: 10.1680/Geot.1997.47.5.1019 |
0.34 |
|
1996 |
Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation Applied Mechanics Reviews. 49: 29-53. DOI: 10.1115/1.3101883 |
0.647 |
|
1996 |
Deodatis G. Simulation of ergodic multivariate stochastic processes Journal of Engineering Mechanics. 122: 778-787. DOI: 10.1061/(Asce)0733-9399(1996)122:8(778) |
0.38 |
|
1996 |
Deodatis G. Non-stationary stochastic vector processes: Seismic ground motion applications Probabilistic Engineering Mechanics. 11: 149-167. DOI: 10.1016/0266-8920(96)00007-0 |
0.454 |
|
1996 |
Deodatis G, Asada H, Ito S. Reliability of aircraft structures under non-periodic inspection: A Bayesian approach Engineering Fracture Mechanics. 53: 789-805. DOI: 10.1016/0013-7944(95)00137-9 |
0.326 |
|
1996 |
Zhang R, Deodatis G. Seismic ground motion synthetics of the 1989 Loma Prieta earthquake Earthquake Engineering and Structural Dynamics. 25: 465-481. DOI: 10.1002/(Sici)1096-9845(199605)25:5<465::Aid-Eqe563>3.0.Co;2-J |
0.359 |
|
1994 |
Matteo J, Deodatis G, Billington DP. Safety analysis of suspension-bridge cables: Williamsburg bridge Journal of Structural Engineering (United States). 120: 3197-3211. DOI: 10.1061/(Asce)0733-9445(1994)120:11(3197) |
0.327 |
|
1994 |
Wall FJ, Deodatis G. Variability response functions of stochastic plane stress/strain problems Journal of Engineering Mechanics. 120: 1963-1982. DOI: 10.1061/(Asce)0733-9399(1994)120:9(1963) |
0.431 |
|
1994 |
Deodatis G, Theoharis AP. Seismic ground motion in a layered half-space due to a Haskell-type source. II: Applications Soil Dynamics and Earthquake Engineering. 13: 293-301. DOI: 10.1016/0267-7261(94)90033-7 |
0.387 |
|
1994 |
Theoharis AP, Deodatis G. Seismic ground motion in a layered half-space due to a Haskell-type source. I: Theory Soil Dynamics and Earthquake Engineering. 13: 281-292. DOI: 10.1016/0267-7261(94)90032-9 |
0.354 |
|
1992 |
Ito S, Deodatis G, Fujimoto Y, Asada H, Shinozuka M. Non-periodic inspection by Bayesian method II: Structures with elements subjected to different stress levels Probabilistic Engineering Mechanics. 7: 205-215. DOI: 10.1016/0266-8920(92)90024-C |
0.574 |
|
1992 |
Deodatis G, Fujimoto Y, Ito S, Spencer J, Itagaki H. Non-periodic inspection by Bayesian method I Probabilistic Engineering Mechanics. 7: 191-204. DOI: 10.1016/0266-8920(92)90023-B |
0.306 |
|
1991 |
Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation Applied Mechanics Reviews. 44: 191-204. DOI: 10.1115/1.3119501 |
0.635 |
|
1991 |
Deodatis G, Shinozuka M. Weighted integral method. Ii: Response variability and reliability Journal of Engineering Mechanics. 117: 1865-1877. DOI: 10.1061/(Asce)0733-9399(1991)117:8(1865) |
0.575 |
|
1991 |
Deodatis G. Weighted integral method. I: Stochastic stiffness matrix Journal of Engineering Mechanics. 117: 1851-1864. DOI: 10.1061/(Asce)0733-9399(1991)117:8(1851) |
0.439 |
|
1991 |
Shinozuka M, Deodatis G. Stochastic wave models for stationary and homogeneous seismic ground motion Structural Safety. 10: 235-246. DOI: 10.1016/0167-4730(91)90017-4 |
0.56 |
|
1990 |
Deodatis G. Bounds on response variability op stochastic finite element systems Journal of Engineering Mechanics. 116: 565-585. DOI: 10.1061/(Asce)0733-9399(1990)116:3(565) |
0.475 |
|
1990 |
Deodatis G, Shinozuka M, Papageorgiou A. Stochastic wave representation of seismic ground motion. II: Simulation Journal of Engineering Mechanics. 116: 2381-2399. DOI: 10.1061/(Asce)0733-9399(1990)116:11(2381) |
0.547 |
|
1990 |
Deodatis G, Shinozuka M, Papageorgiou A. Stochastic wave representation of seismic ground motion. I: F-k spectra Journal of Engineering Mechanics. 116: 2363-2379. DOI: 10.1061/(Asce)0733-9399(1990)116:11(2363) |
0.557 |
|
1990 |
Deodatis G. Bounds on response variability of stochastic finite element systems: effect of statistical dependence Probabilistic Engineering Mechanics. 5: 88-98. DOI: 10.1016/0266-8920(90)90012-9 |
0.456 |
|
1989 |
Deodatis G, Shinozuka M, Neal D. Spatial Strength Variation of Laminated Orthotropic Composites Journal of Composite Materials. 23: 1256-1272. DOI: 10.1177/002199838902301204 |
0.562 |
|
1989 |
Deodatis G, Shinozuka M. Simulation of seismic ground motion using stochastic waves Journal of Engineering Mechanics. 115: 2723-2737. DOI: 10.1061/(Asce)0733-9399(1989)115:12(2723) |
0.566 |
|
1989 |
Deodatis G, Shinozuka M. Bounds on response variability of stochastic systems Journal of Engineering Mechanics. 115: 2543-2563. DOI: 10.1061/(Asce)0733-9399(1989)115:11(2543) |
0.651 |
|
1989 |
Deodatis G. Stochastic FEM sensitivity analysis of nonlinear dynamic problems Probabilistic Engineering Mechanics. 4: 135-141. DOI: 10.1016/0266-8920(89)90019-2 |
0.388 |
|
1988 |
Shinozuka M, Deodatis G. Response variability o f stochastic finite element systems Journal of Engineering Mechanics. 114: 499-519. DOI: 10.1061/(Asce)0733-9399(1988)114:3(499) |
0.588 |
|
1988 |
Deodatis G, Shinozuka M. Auto-regressive model for nonstationary stochastic processes Journal of Engineering Mechanics. 114: 1995-2012. DOI: 10.1061/(Asce)0733-9399(1988)114:11(1995) |
0.572 |
|
1988 |
Shinozuka M, Deodatis G. Stochastic process models for earthquake ground motion Probabilistic Engineering Mechanics. 3: 114-123. DOI: 10.1016/0266-8920(88)90023-9 |
0.567 |
|
1988 |
Deodatis G, Shinozuka M. Stochastic FEM analysis of nonlinear dynamic problems . 152-155. |
0.557 |
|
1987 |
Naganuma T, Deodatis G, Shinozuka M. ARMA model for two-dimensional processes Journal of Engineering Mechanics. 113: 234-251. DOI: 10.1061/(Asce)0733-9399(1987)113:2(234) |
0.576 |
|
1985 |
Deodatis G, Shinozuka M, Samaras E. AR MODEL FOR NON-STATIONARY PROCESSES . |
0.509 |
|
Show low-probability matches. |