Anita T. Layton - Publications

Affiliations: 
Mathematics Duke University, Durham, NC 
Area:
Mathematics

100 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2016 Sgouralis I, Kett MM, Ow CP, Abdelkader A, Layton AT, Gardiner BS, Smith DW, Lankadeva YR, Evans RG. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: Experimental and modelling studies. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. ajpregu.00195.2016. PMID 27385734 DOI: 10.1152/Ajpregu.00195.2016  0.96
2016 Chen Y, Fry BC, Layton AT. Modeling Glucose Metabolism in the Kidney. Bulletin of Mathematical Biology. PMID 27371260 DOI: 10.1007/S11538-016-0188-7  0.96
2016 Nganguia H, Young YN, Layton AT, Lai MC, Hu WF. Electrohydrodynamics of a viscous drop with inertia. Physical Review. E. 93: 053114. PMID 27300985 DOI: 10.1103/Physreve.93.053114  0.96
2016 Sgouralis I, Maroulas V, Layton AT. Transfer Function Analysis of Dynamic Blood Flow Control in the Rat Kidney. Bulletin of Mathematical Biology. PMID 27173401 DOI: 10.1007/S11538-016-0168-Y  0.96
2016 Layton AT. Recent Advances in Renal Hypoxia: Insights from Bench Experiments and Computer Simulations. American Journal of Physiology. Renal Physiology. ajprenal.00228.2016. PMID 27147670 DOI: 10.1152/ajprenal.00228.2016  0.96
2016 Liu R, Layton AT. Modeling the effects of positive and negative feedback in kidney blood flow control. Mathematical Biosciences. PMID 26972744 DOI: 10.1016/J.Mbs.2016.02.007  0.96
2016 Fry BC, Edwards A, Layton AT. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. American Journal of Physiology. Renal Physiology. 310: F237-47. PMID 26831340 DOI: 10.1152/Ajprenal.00334.2015  0.96
2016 Layton AT, Vallon V, Edwards A. Predicted Consequences of Diabetes and SGLT Inhibition on Transport and Oxygen Consumption along a Rat Nephron. American Journal of Physiology. Renal Physiology. ajprenal.00543.2015. PMID 26764207 DOI: 10.1152/Ajprenal.00543.2015  0.96
2016 Sgouralis I, Layton AT. Conduction of feedback-mediated signal in a computational model of coupled nephrons. Mathematical Medicine and Biology : a Journal of the Ima. 33: 87-106. PMID 25795767 DOI: 10.1093/Imammb/Dqv005  0.96
2016 Herschlag G, Liu JG, Layton AT. Fluid extraction across pumping and permeable walls in the viscous limit Physics of Fluids. 28. DOI: 10.1063/1.4946005  0.96
2015 Xie L, Layton AT, Wang N, Larson PE, Zhang JL, Lee VS, Liu C, Johnson GA. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function. American Journal of Physiology. Renal Physiology. ajprenal.00351.2015. PMID 26447222 DOI: 10.1152/Ajprenal.00351.2015  0.96
2015 Layton AT, Edwards A. Predicted Effects of Nitric Oxide and Superoxide on the Vasoactivity of the Afferent Arteriole. American Journal of Physiology. Renal Physiology. ajprenal.00187.2015. PMID 26180238 DOI: 10.1152/Ajprenal.00187.2015  0.96
2015 Layton AT, Vallon V, Edwards A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. American Journal of Physiology. Renal Physiology. 308: F1343-57. PMID 25855513 DOI: 10.1152/Ajprenal.00007.2015  0.96
2015 Sgouralis I, Layton AT. Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Mathematical Biosciences. 264: 8-20. PMID 25765886 DOI: 10.1016/J.Mbs.2015.02.016  0.96
2015 Layton AT. Recent advances in renal hemodynamics: insights from bench experiments and computer simulations. American Journal of Physiology. Renal Physiology. 308: F951-5. PMID 25715984 DOI: 10.1152/Ajprenal.00008.2015  0.96
2015 Fry BC, Edwards A, Layton AT. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. American Journal of Physiology. Renal Physiology. 308: F967-80. PMID 25651567 DOI: 10.1152/Ajprenal.00600.2014  0.96
2015 Nganguia H, Young YN, Layton AT, Hu WF, Lai MC. An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow Communications in Computational Physics. 18: 429-449. DOI: 10.4208/Cicp.171014.270315A  0.96
2015 Herschlag G, Liu JG, Layton AT. An exact solution for stokes flow in a channel with arbitrarily large wall permeability Siam Journal On Applied Mathematics. 75: 2246-2267. DOI: 10.1137/140995854  0.96
2014 Layton AT. Mathematical modeling of urea transport in the kidney. Sub-Cellular Biochemistry. 73: 31-43. PMID 25298337 DOI: 10.1007/978-94-017-9343-8_3  0.96
2014 Fry BC, Layton AT. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels. Mathematical Biosciences. 258: 68-76. PMID 25260928 DOI: 10.1016/J.Mbs.2014.09.009  0.96
2014 Pannabecker TL, Layton AT. Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. American Journal of Physiology. Renal Physiology. 307: F649-55. PMID 25056344 DOI: 10.1152/Ajprenal.00276.2014  0.96
2014 Fry BC, Edwards A, Sgouralis I, Layton AT. Impact of renal medullary three-dimensional architecture on oxygen transport. American Journal of Physiology. Renal Physiology. 307: F263-72. PMID 24899054 DOI: 10.1152/Ajprenal.00149.2014  0.96
2014 Edwards A, Castrop H, Laghmani K, Vallon V, Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. American Journal of Physiology. Renal Physiology. 307: F137-46. PMID 24848496 DOI: 10.1152/Ajprenal.00158.2014  0.96
2014 Sgouralis I, Layton AT. Theoretical assessment of renal autoregulatory mechanisms. American Journal of Physiology. Renal Physiology. 306: F1357-71. PMID 24623150 DOI: 10.1152/Ajprenal.00649.2013  0.96
2014 Moss R, Layton AT. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: A mathematical model American Journal of Physiology - Renal Physiology. 306: F952-F969. PMID 24553433 DOI: 10.1152/Ajprenal.00500.2013  0.96
2014 Edwards A, Layton AT. Calcium dynamics underlying the myogenic response of the renal afferent arteriole. American Journal of Physiology. Renal Physiology. 306: F34-48. PMID 24173354 DOI: 10.1152/Ajprenal.00317.2013  0.96
2014 Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clinical Journal of the American Society of Nephrology : Cjasn. 9: 1781-9. PMID 23908457 DOI: 10.2215/Cjn.08750812  0.96
2014 Ryu H, Layton AT. Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney. Journal of Mathematical Biology. 68: 1023-49. PMID 23529284 DOI: 10.1007/S00285-013-0667-5  0.96
2014 Li Y, Sgouralis I, Layton AT. Computing viscous flow in an elastic tube Numerical Mathematics. 7: 555-574. DOI: 10.4208/nmtma.2014.1303si  0.96
2013 Sgouralis I, Layton AT. Control and modulation of fluid flow in the rat kidney. Bulletin of Mathematical Biology. 75: 2551-74. PMID 24132579 DOI: 10.1007/S11538-013-9907-5  0.96
2013 Layton AT. Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 5: 557-73. PMID 23852667 DOI: 10.1002/Wsbm.1232  0.96
2013 Nieves-González A, Clausen C, Marcano M, Layton AT, Layton HE, Moore LC. Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. American Journal of Physiology. Renal Physiology. 304: F634-52. PMID 23097469 DOI: 10.1152/Ajprenal.00100.2012  0.96
2013 Nieves-González A, Clausen C, Layton AT, Layton HE, Moore LC. Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology. Renal Physiology. 304: F653-64. PMID 23097466 DOI: 10.1152/Ajprenal.00101.2012  0.96
2013 Ryu H, Layton AT. Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb. Mathematical Medicine and Biology : a Journal of the Ima. 30: 191-212. PMID 22511507 DOI: 10.1093/Imammb/Dqs020  0.96
2013 Li Y, Williams SA, Layton AT. A hybrid immersed interface method for driven stokes flow in an elastic tube Numerical Mathematics. 6: 600-616. DOI: 10.1017/S1004897900000337  0.96
2013 Leiderman K, Bouzarth EL, Cortez R, Layton AT. A regularization method for the numerical solution of periodic Stokes flow Journal of Computational Physics. 236: 187-202. DOI: 10.1016/J.Jcp.2012.09.035  0.96
2012 Layton AT, Wei G. Interface methods for biological and biomedical problems. International Journal For Numerical Methods in Biomedical Engineering. 28: 289-90. PMID 25830199 DOI: 10.1002/Cnm.2477  0.96
2012 Edwards A, Layton AT. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. American Journal of Physiology. Renal Physiology. 303: F907-17. PMID 22791340 DOI: 10.1152/Ajprenal.00055.2012  0.96
2012 Layton AT, Pham P, Ryu H. Signal transduction in a compliant short loop of Henle. International Journal For Numerical Methods in Biomedical Engineering. 28: 369-83. PMID 22577511 DOI: 10.1002/Cnm.1475  0.96
2012 Sgouralis I, Layton AT. Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. American Journal of Physiology. Renal Physiology. 303: F229-39. PMID 22496414 DOI: 10.1152/Ajprenal.00589.2011  0.96
2012 Savage NS, Layton AT, Lew DJ. Mechanistic mathematical model of polarity in yeast. Molecular Biology of the Cell. 23: 1998-2013. PMID 22438587 DOI: 10.1091/Mbc.E11-10-0837  0.96
2012 Layton AT, Moore LC, Layton HE. Signal transduction in a compliant thick ascending limb. American Journal of Physiology. Renal Physiology. 302: F1188-202. PMID 22262482 DOI: 10.1152/Ajprenal.00732.2010  0.96
2012 Layton AT, Gilbert RL, Pannabecker TL. Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 302: F830-9. PMID 22160770 DOI: 10.1152/Ajprenal.00539.2011  0.96
2012 Layton AT, Dantzler WH, Pannabecker TL. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter. American Journal of Physiology. Renal Physiology. 302: F591-605. PMID 22088433 DOI: 10.1152/Ajprenal.00263.2011  0.96
2012 Layton AT, Beale JT. A partially implicit hybrid method for computing interface motion in stokes flow Discrete and Continuous Dynamical Systems - Series B. 17: 1139-1153. DOI: 10.3934/Dcdsb.2012.17.1139  0.96
2012 Li Y, Layton AT. Accurate computation of Stokes flow driven by an open immersed interface Journal of Computational Physics. 231: 5195-5215. DOI: 10.1016/J.Jcp.2012.04.020  0.96
2011 Edwards A, Layton AT. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide. American Journal of Physiology. Renal Physiology. 301: F979-96. PMID 21849492 DOI: 10.1152/Ajprenal.00096.2011  0.96
2011 Lei T, Zhou L, Layton AT, Zhou H, Zhao X, Bankir L, Yang B. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism American Journal of Physiology - Renal Physiology. 301: F1251-F1259. PMID 21849488 DOI: 10.1152/Ajprenal.00404.2011  0.96
2011 Layton AT, Layton HE. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. American Journal of Physiology. Renal Physiology. 301: F1047-56. PMID 21753076 DOI: 10.1152/Ajprenal.00620.2010  0.96
2011 Layton AT, Bowen M, Wen A, Layton HE. Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs. Mathematical Biosciences. 230: 115-27. PMID 21329704 DOI: 10.1016/J.Mbs.2011.02.004  0.96
2011 Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG, Lew DJ. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Current Biology : Cb. 21: 184-94. PMID 21277209 DOI: 10.1016/J.Cub.2011.01.012  0.96
2011 Chen J, Sgouralis I, Moore LC, Layton HE, Layton AT. A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology. Renal Physiology. 300: F669-81. PMID 21190949 DOI: 10.1152/Ajprenal.00382.2010  0.96
2011 Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology. Renal Physiology. 300: F372-84. PMID 21068088 DOI: 10.1152/Ajprenal.00204.2010  0.96
2011 Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 300: F356-71. PMID 21068086 DOI: 10.1152/Ajprenal.00203.2010  0.96
2011 Dantzler WH, Pannabecker TL, Layton AT, Layton HE. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture Acta Physiologica (Oxford, England). 202: 361-378. PMID 21054810 DOI: 10.1111/J.1748-1716.2010.02214.X  0.96
2011 Bouzarth EL, Layton AT, Young YN. Modeling a semi-flexible filament in cellular Stokes flow using regularized Stokeslets International Journal For Numerical Methods in Biomedical Engineering. 27: 2021-2034. DOI: 10.1002/Cnm.1454  0.96
2010 Layton AT. Feedback-mediated dynamics in a model of a compliant thick ascending limb. Mathematical Biosciences. 228: 185-94. PMID 20934438 DOI: 10.1016/J.Mbs.2010.10.002  0.96
2010 Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. American Journal of Physiology. Renal Physiology. 299: F616-33. PMID 20534869 DOI: 10.1152/Ajprenal.00680.2009  0.96
2010 Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. American Journal of Physiology. Renal Physiology. 299: F634-47. PMID 20519375 DOI: 10.1152/Ajprenal.00681.2009  0.96
2010 Chen J, Edwards A, Layton AT. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. American Journal of Physiology. Renal Physiology. 298: F1369-83. PMID 20335320 DOI: 10.1152/Ajprenal.00572.2009  0.96
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 298: F973-87. PMID 20053796 DOI: 10.1152/Ajprenal.00249.2009  0.96
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. American Journal of Physiology. Renal Physiology. 298: F962-72. PMID 20042460 DOI: 10.1152/Ajprenal.00250.2009  0.96
2010 Marcano M, Layton AT, Layton HE. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of Mathematical Biology. 72: 314-39. PMID 19915926 DOI: 10.1007/S11538-009-9448-0  0.96
2010 Loreto M, Layton AT. An optimization study of a mathematical model of the urine concentrating mechanism of the rat kidney. Mathematical Biosciences. 223: 66-78. PMID 19891979 DOI: 10.1016/J.Mbs.2009.10.009  0.96
2010 Hallen MA, Layton AT. Expanding the scope of quantitative FRAP analysis. Journal of Theoretical Biology. 262: 295-305. PMID 19836405 DOI: 10.1016/J.Jtbi.2009.10.020  0.96
2010 Layton AT, Edwards A. Tubuloglomerular feedback signal transduction in a short loop of henle. Bulletin of Mathematical Biology. 72: 34-62. PMID 19657700 DOI: 10.1007/S11538-009-9436-4  0.96
2009 Layton AT, Toyama Y, Yang GQ, Edwards GS, Kiehart DP, Venakides S. Drosophila morphogenesis: tissue force laws and the modeling of dorsal closure. Hfsp Journal. 3: 441-60. PMID 20514134 DOI: 10.2976/1.3266062  0.96
2009 Layton AT, Layton HE, Dantzler WH, Pannabecker TL. The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology (Bethesda, Md.). 24: 250-6. PMID 19675356 DOI: 10.1152/Physiol.00013.2009  0.96
2009 Chen J, Layton AT, Edwards A. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. American Journal of Physiology. Renal Physiology. 297: F517-36. PMID 19403646 DOI: 10.1152/Ajprenal.90496.2008  0.96
2009 Chen J, Edwards A, Layton AT. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. American Journal of Physiology. Renal Physiology. 297: F537-48. PMID 19403645 DOI: 10.1152/Ajprenal.90497.2008  0.96
2009 Layton AT, Moore LC, Layton HE. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of Mathematical Biology. 71: 515-55. PMID 19205808 DOI: 10.1007/S11538-008-9370-X  0.96
2009 Beale JT, Layton AT. A velocity decomposition approach for moving interfaces in viscous fluids Journal of Computational Physics. 228: 3358-3367. DOI: 10.1016/J.Jcp.2009.01.023  0.96
2009 Layton AT. Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces Computers and Fluids. 38: 266-272. DOI: 10.1016/J.Compfluid.2008.02.003  0.96
2009 Layton AT. On the efficiency of spectral deferred correction methods for time-dependent partial differential equations Applied Numerical Mathematics. 59: 1629-1643. DOI: 10.1016/J.Apnum.2008.11.004  0.96
2008 Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 295: F1271-85. PMID 18495796 DOI: 10.1152/Ajprenal.90252.2008  0.96
2008 Layton AT. An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary Computer Methods in Applied Mechanics and Engineering. 197: 2147-2155. DOI: 10.1016/J.Cma.2007.08.018  0.96
2008 Layton AT. On the choice of correctors for semi-implicit Picard deferred correction methods Applied Numerical Mathematics. 58: 845-858. DOI: 10.1016/J.Apnum.2007.03.003  0.96
2007 Layton AT. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bulletin of Mathematical Biology. 69: 887-929. PMID 17265123 DOI: 10.1007/S11538-005-9030-3  0.96
2006 Marcano M, Layton AT, Layton HE. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 68: 1625-60. PMID 16967257 DOI: 10.1007/S11538-006-9087-1  0.96
2006 Layton AT, Moore LC, Layton HE. Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology. 291: F79-97. PMID 16204416 DOI: 10.1152/Ajprenal.00048.2005  0.96
2006 Layton AT. Modeling water transport across elastic boundaries using an explicit jump method Siam Journal On Scientific Computing. 28: 2189-2207. DOI: 10.1137/050642198  0.96
2006 Thomas SR, Layton AT, Layton HE, Moore LC. Kidney modeling: Status and perspectives Proceedings of the Ieee. 94: 740-752. DOI: 10.1109/JPROC.2006.871770  0.96
2006 Layton AT, Christara CC, Jackson KR. Quadratic spline methods for the shallow water equations on the sphere: Galerkin Mathematics and Computers in Simulation. 71: 175-186. DOI: 10.1016/j.matcom.2004.10.008  0.96
2006 Layton AT, Christara CC, Jackson KR. Quadratic spline methods for the shallow water equations on the sphere: Collocation Mathematics and Computers in Simulation. 71: 187-205. DOI: 10.1016/J.Matcom.2004.10.008  0.96
2005 Layton AT. Role of structural organization in the urine concentrating mechanism of an avian kidney. Mathematical Biosciences. 197: 211-30. PMID 16135372 DOI: 10.1016/J.Mbs.2005.07.004  0.96
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 289: F1346-66. PMID 15914776 DOI: 10.1152/Ajprenal.00346.2003  0.96
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. American Journal of Physiology. Renal Physiology. 289: F1367-81. PMID 15914775 DOI: 10.1152/Ajprenal.00347.2003  0.96
2005 Layton AT. A methodology for tracking solute distribution in a mathematical model of the kidney Journal of Biological Systems. 13: 399-419. DOI: 10.1142/S0218339005001598  0.96
2005 Layton AT, Minion ML. Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations Bit Numerical Mathematics. 45: 341-373. DOI: 10.1007/S10543-005-0016-1  0.96
2004 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Two modes for concentrating urine in rat inner medulla. American Journal of Physiology. Renal Physiology. 287: F816-39. PMID 15213067 DOI: 10.1152/Ajprenal.00398.2003  0.96
2004 Layton AT, Minion ML. Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics Journal of Computational Physics. 194: 697-715. DOI: 10.1016/J.Jcp.2003.09.010  0.96
2003 Layton AT, Layton HE. A region-based model framework for the rat urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 859-901. PMID 12909254 DOI: 10.1016/S0092-8240(03)00045-4  0.96
2003 Layton AT, Layton HE. An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Mathematical Biosciences. 181: 111-32. PMID 12445757 DOI: 10.1016/S0025-5564(02)00176-1  0.96
2003 Layton AT. A semi-Lagrangian collocation method for the shallow water equations on the sphere Siam Journal On Scientific Computing. 24: 1433-1449. DOI: 10.1137/S1064827501395021  0.96
2003 Bourlioux A, Layton AT, Minion ML. High-order multi-implicit spectral deferred correction methods for problems of reactive flow Journal of Computational Physics. 189: 651-675. DOI: 10.1016/S0021-9991(03)00251-1  0.96
2003 Layton AT, Spotz WF. A semi-Lagrangian double Fourier method for the shallow water equations on the sphere Journal of Computational Physics. 189: 180-196. DOI: 10.1016/S0021-9991(03)00207-9  0.96
2002 Layton AT, Layton HE. A numerical method for renal models that represent tubules with abrupt changes in membrane properties. Journal of Mathematical Biology. 45: 549-67. PMID 12439590 DOI: 10.1007/S00285-002-0166-6  0.96
2002 Layton AT, Layton HE. A semi-lagrangian semi-implicit numerical method for models of the urine concentrating mechanism Siam Journal On Scientific Computing. 23: 1526-1548. DOI: 10.1137/S1064827500381781  0.96
2002 Layton AT, Van de Panne M. A numerically efficient and stable algorithm for animating water waves Visual Computer. 18: 41-53. DOI: 10.1007/S003710100131  0.96
2002 Layton AT. Cubic spline collocation method for the shallow water equations on the sphere Journal of Computational Physics. 179: 578-592. DOI: 10.1006/Jcph.2002.7075  0.96
Show low-probability matches.