Year |
Citation |
Score |
2021 |
Balanov Z, Hooton E, Krawcewicz W, Rachinskii D. Patterns of non-radial solutions to coupled semilinear elliptic systems on a disc Nonlinear Analysis-Theory Methods & Applications. 202: 112094. DOI: 10.1016/J.Na.2020.112094 |
0.332 |
|
2019 |
García-Azpeitia C, Krawcewicz W, Lv Y. Solutions of fixed period in the nonlinear wave equation on networks Nodea-Nonlinear Differential Equations and Applications. 26: 1-27. DOI: 10.1007/S00030-019-0568-4 |
0.353 |
|
2018 |
Balanov Z, Kravetc P, Krawcewicz W, Rachinskii D. Equivariant degree method for analysis of Hopf bifurcation of relative periodic solutions: Case study of a ring of oscillators Journal of Differential Equations. 265: 4530-4574. DOI: 10.1016/J.Jde.2018.06.014 |
0.472 |
|
2017 |
Hooton E, Balanov Z, Krawcewicz W, Rachinskii DI. Noninvasive Stabilization of Periodic Orbits in O4-Symmetrically Coupled Systems Near a Hopf Bifurcation Point International Journal of Bifurcation and Chaos. 27: 1750087. DOI: 10.1142/S0218127417500870 |
0.409 |
|
2017 |
Dabkowski M, Krawcewicz W, Lv Y, Wu H. Multiple periodic solutions for Γ-symmetric Newtonian systems Journal of Differential Equations. 263: 6684-6730. DOI: 10.1016/J.Jde.2017.07.027 |
0.383 |
|
2016 |
Krawcewicz W, Lv Y, Xiao H. Multiple solutions with prescribed minimal period for second order odd newtonian systems with symmetries Topological Methods in Nonlinear Analysis. 47: 659-679. DOI: 10.12775/TMNA.2016.024 |
0.379 |
|
2015 |
Balanov Z, Krawcewicz W, Li Z. Symmetric Hopf bifurcation in implicit neutral functional differential equations: Equivariant degree approach Journal of Fixed Point Theory and Applications. 16: 109-147. DOI: 10.1007/S11784-015-0209-4 |
0.436 |
|
2014 |
Balanov Z, Krawcewicz W, Nguyen ML. Multiple solutions to symmetric boundary value problems for second order ODEs: Equivariant degree approach Nonlinear Analysis, Theory, Methods and Applications. 94: 45-64. DOI: 10.1016/J.Na.2013.07.030 |
0.43 |
|
2014 |
Balanov Z, Hu Q, Krawcewicz W. Global Hopf bifurcation of differential equations with threshold type state-dependent delay Journal of Differential Equations. 257: 2622-2670. DOI: 10.1016/J.Jde.2014.05.053 |
0.446 |
|
2013 |
Balanov Z, Krawcewicz W, Li Z, Nguyen M. Multiple solutions to implicit symmetric boundary value problems for second order ordinary differential equations (ODEs): Equivariant degree approach Symmetry. 5: 287-312. DOI: 10.3390/Sym5040287 |
0.41 |
|
2013 |
Krawcewicz W, Yu J, Xiao H. Multiplicity of periodic solutions to symmetric delay differential equations Journal of Fixed Point Theory and Applications. 13: 103-141. DOI: 10.1007/S11784-013-0119-2 |
0.489 |
|
2012 |
Balanov Z, Krawcewicz W, Rachinskii D, Zhezherun A. Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis Journal of Dynamics and Differential Equations. 24: 713-759. DOI: 10.1007/S10884-012-9271-4 |
0.396 |
|
2011 |
Hirano N, Krawcewicz W, Ruan H. Existence of nonstationary periodic solutions for F-symmetric Lotka-Volterra type systems Discrete and Continuous Dynamical Systems. 30: 709-735. DOI: 10.3934/dcds.2011.30.709 |
0.391 |
|
2011 |
Balanov Z, Krawcewicz W, Rachinskii D. On the equivariant Hopf bifurcation in hysteretic networks of van der Pol oscillators Journal of Physics: Conference Series. 268. DOI: 10.1088/1742-6596/268/1/012002 |
0.355 |
|
2010 |
Balanov Z, Krawcewicz W, Rybicki S, Steinlein H. A short treatise on the equivariant degree theory and its applications Journal of Fixed Point Theory and Applications. 1-74. DOI: 10.1007/S11784-010-0033-9 |
0.322 |
|
2008 |
Balanov Z, Krawcewicz W, Ruan H. G.E. Hutchinson's delay logistic system with symmetries and spatial diffusion Nonlinear Analysis: Real World Applications. 9: 154-182. DOI: 10.1016/j.nonrwa.2006.09.013 |
0.377 |
|
2006 |
Balanov Z, Farzamirad M, Krawcewicz W, Ruan H. Applied equivariant degree. Part II: Symmetric hopf bifurcations of functional differential equations Discrete and Continuous Dynamical Systems. 16: 923-960. |
0.349 |
|
2004 |
Krawcewicz W, Ma S, Wu J. Multiple slowly oscillating periodic solutions in coupled lossless transmission lines Nonlinear Analysis: Real World Applications. 5: 309-354. DOI: 10.1016/S1468-1218(03)00040-3 |
0.405 |
|
1998 |
Krawcewicz W, Vivi P, Wu J. Hopf Bifurcations of Functional Differential Equations with Dihedral Symmetries Journal of Differential Equations. 146: 157-184. DOI: 10.1006/Jdeq.1998.3422 |
0.411 |
|
1992 |
Erbe LH, Krawcewicz W, Gȩba K, Wu J. S1-degree and global Hopf bifurcation theory of functional differential equations Journal of Differential Equations. 98: 277-298. DOI: 10.1016/0022-0396(92)90094-4 |
0.323 |
|
Show low-probability matches. |