Year |
Citation |
Score |
2018 |
Dai S, Li B, Lu J. Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation Archive For Rational Mechanics and Analysis. 227: 105-147. DOI: 10.1007/S00205-017-1158-4 |
0.328 |
|
2016 |
Dai S, Du Q. Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility Journal of Computational Physics. 310: 85-108. DOI: 10.1016/J.Jcp.2016.01.018 |
0.399 |
|
2016 |
Dai S, Du Q. Weak Solutions for the Cahn–Hilliard Equation with Degenerate Mobility Archive For Rational Mechanics and Analysis. 219: 1161-1184. DOI: 10.1007/S00205-015-0918-2 |
0.321 |
|
2015 |
Dai S, Promislow K. Competitive geometric evolution of amphiphilic interfaces Siam Journal On Mathematical Analysis. 47: 347-380. DOI: 10.1137/130941432 |
0.308 |
|
2014 |
Dai S, Du Q. Coarsening Mechanism for Systems Governed by the Cahn--Hilliard Equation with Degenerate Diffusion Mobility Multiscale Modeling & Simulation. 12: 1870-1889. DOI: 10.1137/140952387 |
0.36 |
|
2013 |
Dai S, Promislow K. Geometric evolution of bilayers under the functionalized cahn-hilliard equation Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences. 469. DOI: 10.1098/Rspa.2012.0505 |
0.304 |
|
2012 |
Dai S, Du Q. Motion of Interfaces Governed by the Cahn--Hilliard Equation with Highly Disparate Diffusion Mobility Siam Journal On Applied Mathematics. 72: 1818-1841. DOI: 10.1137/120862582 |
0.407 |
|
2011 |
Dai S. On the Ostwald ripening of thin liquid films Communications in Mathematical Sciences. 9: 143-160. DOI: 10.4310/Cms.2011.V9.N1.A7 |
0.326 |
|
2010 |
Dai S. On the shortening rate of collections of plane convex curves by the area-preserving mean curvature flow Siam Journal On Mathematical Analysis. 42: 323-333. DOI: 10.1137/080721261 |
0.415 |
|
2010 |
Dai S. On a mean field model for 1D thin film droplet coarsening Nonlinearity. 23: 325-340. DOI: 10.1088/0951-7715/23/2/006 |
0.362 |
|
2010 |
Dai S, Niethammer B, Pego RL. Crossover in coarsening rates for the monopole approximation of the Mullins-Sekerka model with kinetic drag Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences. 140: 553-571. DOI: 10.1017/S030821050900033X |
0.597 |
|
2005 |
Dai S, Pego RL. An upper bound on the coarsening rate for mushy zones in a phase-field model Interfaces and Free Boundaries. 7: 187-197. DOI: 10.4171/Ifb/120 |
0.578 |
|
2005 |
Dai S, Pego RL. Universal bounds on coarsening rates for mean-field models of phase transitions Siam Journal On Mathematical Analysis. 37: 347-371. DOI: 10.1137/040618047 |
0.593 |
|
2001 |
Chen Z, Dai S. Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg--Landau Model in Superconductivity Siam Journal On Numerical Analysis. 38: 1961-1985. DOI: 10.1137/S0036142998349102 |
0.342 |
|
Show low-probability matches. |