Year |
Citation |
Score |
2023 |
Hillen T, Loy N, Painter KJ, Thiessen R. Modelling microtube driven invasion of glioma. Journal of Mathematical Biology. 88: 4. PMID 38015257 DOI: 10.1007/s00285-023-02025-0 |
0.355 |
|
2020 |
Rhodes A, Hillen T. Implications of immune-mediated metastatic growth on metastatic dormancy, blow-up, early detection, and treatment. Journal of Mathematical Biology. PMID 32789610 DOI: 10.1007/S00285-020-01521-X |
0.334 |
|
2020 |
Hillen T, Painter KJ, Stolarska MA, Xue C. Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer. Journal of Mathematical Biology. PMID 32006100 DOI: 10.1007/S00285-020-01473-2 |
0.339 |
|
2020 |
Hillen T, Buttenschön A. Nonlocal Adhesion Models for Microorganisms on Bounded Domains Siam Journal On Applied Mathematics. 80: 382-401. DOI: 10.1137/19M1250315 |
0.383 |
|
2019 |
Frei C, Hillen T, Rhodes A. A stochastic model for cancer metastasis: branching stochastic process with settlement. Mathematical Medicine and Biology : a Journal of the Ima. PMID 31162540 DOI: 10.1093/Imammb/Dqz009 |
0.378 |
|
2018 |
Olobatuyi O, de Vries G, Hillen T. Effects of G2-checkpoint dynamics on low-dose hyper-radiosensitivity. Journal of Mathematical Biology. PMID 29679122 DOI: 10.1007/S00285-018-1236-8 |
0.386 |
|
2017 |
Buttenschön A, Hillen T, Gerisch A, Painter KJ. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. Journal of Mathematical Biology. PMID 28597056 DOI: 10.1007/S00285-017-1144-3 |
0.46 |
|
2017 |
Bica I, Hillen T, Painter KJ. Aggregation of biological particles under radial directional guidance. Journal of Theoretical Biology. PMID 28596112 DOI: 10.1016/J.Jtbi.2017.05.039 |
0.337 |
|
2017 |
Swan A, Hillen T, Bowman JC, Murtha AD. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread. Bulletin of Mathematical Biology. PMID 28493055 DOI: 10.1007/S11538-017-0271-8 |
0.383 |
|
2017 |
Hillen T, White D, de Vries G, Dawes A. Existence and uniqueness for a coupled PDE model for motor-induced microtubule organization. Journal of Biological Dynamics. 1-22. PMID 28426333 DOI: 10.1080/17513758.2017.1310939 |
0.34 |
|
2017 |
Hillen T, Painter KJ, Swan AC, Murtha AD. Moments of von Mises and Fisher distributions and applications. Mathematical Biosciences and Engineering : Mbe. 14: 673-694. PMID 28092958 DOI: 10.3934/Mbe.2017038 |
0.327 |
|
2017 |
Hillen T, Painter KJ, Winkler M. Global solvability and explicit bounds for non-local adhesion models European Journal of Applied Mathematics. 29: 645-684. DOI: 10.1017/S0956792517000328 |
0.343 |
|
2016 |
Olobatuyi O, de Vries G, Hillen T. A reaction-diffusion model for radiation-induced bystander effects. Journal of Mathematical Biology. PMID 28035423 DOI: 10.1007/S00285-016-1090-5 |
0.332 |
|
2016 |
Stocks T, Hillen T, Gong J, Burger M. A stochastic model for the normal tissue complication probability (NTCP) and applicationss. Mathematical Medicine and Biology : a Journal of the Ima. PMID 27591250 DOI: 10.1093/Imammb/Dqw013 |
0.586 |
|
2016 |
Rhodes A, Hillen T. Mathematical Modeling of the Role of Survivin on Dedifferentiation and Radioresistance in Cancer. Bulletin of Mathematical Biology. PMID 27271121 DOI: 10.1007/S11538-016-0177-X |
0.331 |
|
2016 |
Konstorum A, Hillen T, Lowengrub J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bulletin of Mathematical Biology. PMID 27113934 DOI: 10.1007/S11538-016-0161-5 |
0.319 |
|
2016 |
Martin J, Hillen T. The Spotting Distribution of Wildfires Applied Sciences. 6: 177. DOI: 10.3390/App6060177 |
0.304 |
|
2015 |
Borsi I, Fasano A, Primicerio M, Hillen T. A non-local model for cancer stem cells and the tumour growth paradox Mathematical Medicine and Biology-a Journal of the Ima. 34: 59-75. PMID 26588931 DOI: 10.1093/Imammb/Dqv037 |
0.406 |
|
2015 |
Painter KJ, Hillen T. Navigating the flow: individual and continuum models for homing in flowing environments. Journal of the Royal Society, Interface / the Royal Society. 12. PMID 26538557 DOI: 10.1098/Rsif.2015.0647 |
0.332 |
|
2015 |
Engwer C, Hillen T, Knappitsch M, Surulescu C. Glioma follow white matter tracts: a multiscale DTI-based model. Journal of Mathematical Biology. 71: 551-82. PMID 25212910 DOI: 10.1007/S00285-014-0822-7 |
0.404 |
|
2015 |
Hillen T, Greese B, Martin J, de Vries G. Birth-jump processes and application to forest fire spotting. Journal of Biological Dynamics. 9: 104-27. PMID 25186246 DOI: 10.1080/17513758.2014.950184 |
0.409 |
|
2015 |
Potts JR, Hillen T, Lewis MA. The “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions Theoretical Ecology. 1-15. DOI: 10.1007/S12080-015-0283-7 |
0.302 |
|
2013 |
Bachman JW, Hillen T. Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Frontiers in Oncology. 3: 52. PMID 23508300 DOI: 10.3389/Fonc.2013.00052 |
0.307 |
|
2013 |
Painter KJ, Hillen T. Mathematical modelling of glioma growth: The use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion Journal of Theoretical Biology. 323: 25-39. PMID 23376578 DOI: 10.1016/J.Jtbi.2013.01.014 |
0.399 |
|
2013 |
Hillen T, Enderling H, Hahnfeldt P. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bulletin of Mathematical Biology. 75: 161-84. PMID 23196354 DOI: 10.1007/S11538-012-9798-X |
0.339 |
|
2013 |
Gong J, Dos Santos MM, Finlay C, Hillen T. Are more complicated tumour control probability models better? Mathematical Medicine and Biology : a Journal of the Ima. 30: 1-19. PMID 22006625 DOI: 10.1093/Imammb/Dqr023 |
0.6 |
|
2013 |
Hillen T, Zielinski J, Painter KJ. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model Discrete and Continuous Dynamical Systems - Series B. 18: 2513-2536. DOI: 10.3934/Dcdsb.2013.18.2513 |
0.321 |
|
2013 |
Hillen T, Painter KJ, Winkler M. Convergence of a cancer invasion model to a logistic chemotaxis model Mathematical Models and Methods in Applied Sciences. 23: 165-198. DOI: 10.1142/S0218202512500480 |
0.408 |
|
2013 |
Hillen T, Painter KJ, Winkler M. Anisotropic diffusion in oriented environments can lead to singularity formation European Journal of Applied Mathematics. 24: 371-413. DOI: 10.1017/S0956792512000447 |
0.353 |
|
2011 |
Painter KJ, Hillen T. Spatio-temporal chaos in a chemotaxis model Physica D: Nonlinear Phenomena. 240: 363-375. DOI: 10.1016/J.Physd.2010.09.011 |
0.369 |
|
2010 |
Hillen T, de Vries G, Gong J, Finlay C. From cell population models to tumor control probability: including cell cycle effects. Acta Oncologica (Stockholm, Sweden). 49: 1315-23. PMID 20843174 DOI: 10.3109/02841861003631487 |
0.575 |
|
2010 |
Hillen T, Hinow P, Wang ZA. Mathematical analysis of a kinetic model for cell movement in network tissues Discrete and Continuous Dynamical Systems - Series B. 14: 1055-1080. DOI: 10.3934/Dcdsb.2010.14.1055 |
0.398 |
|
2009 |
Lee JM, Hillen T, Lewis MA. Pattern formation in prey-taxis systems Journal of Biological Dynamics. 3: 551-573. PMID 22880961 DOI: 10.1080/17513750802716112 |
0.302 |
|
2009 |
O'Rourke SFC, McAneney H, Hillen T. Linear quadratic and tumour control probability modelling in external beam radiotherapy Journal of Mathematical Biology. 58: 799-817. PMID 18825382 DOI: 10.1007/S00285-008-0222-Y |
0.413 |
|
2009 |
Hillen T, Painter KJ. A user's guide to PDE models for chemotaxis Journal of Mathematical Biology. 58: 183-217. PMID 18626644 DOI: 10.1007/S00285-008-0201-3 |
0.443 |
|
2008 |
Lee JM, Hillen T, Lewis MA. Continuous traveling waves for prey-taxis Bulletin of Mathematical Biology. 70: 654-676. PMID 18253803 DOI: 10.1007/S11538-007-9271-4 |
0.345 |
|
2008 |
Wang ZA, Hillen T, Li M. Mesenchymal motion models in one dimension Siam Journal On Applied Mathematics. 69: 375-397. DOI: 10.1137/080714178 |
0.413 |
|
2008 |
Wang Z, Hillen T. Shock formation in a Chemotaxis model Mathematical Methods in the Applied Sciences. 31: 45-70. DOI: 10.1002/Mma.898 |
0.334 |
|
2007 |
Wang Z, Hillen T. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos (Woodbury, N.Y.). 17: 037108. PMID 17903015 DOI: 10.1063/1.2766864 |
0.407 |
|
2007 |
Chauviere A, Hillen T, Preziosi L. Modeling cell movement in anisotropic and heterogeneous network tissues Networks and Heterogeneous Media. 2: 333-357. DOI: 10.3934/Nhm.2007.2.333 |
0.385 |
|
2007 |
Hillen T, Painter K, Schmeiser C. Global existence for chemotaxis with finite sampling radius Discrete and Continuous Dynamical Systems - Series B. 7: 125-144. DOI: 10.3934/Dcdsb.2007.7.125 |
0.404 |
|
2007 |
Hillen T. A classification of spikes and plateaus Siam Review. 49: 35-51. DOI: 10.1137/050632427 |
0.396 |
|
2006 |
Hillen T. M5 mesoscopic and macroscopic models for mesenchymal motion. Journal of Mathematical Biology. 53: 585-616. PMID 16821068 DOI: 10.1007/S00285-006-0017-Y |
0.399 |
|
2006 |
Dawson A, Hillen T. Derivation of the tumour control probability (TCP) from a cell cycle model Computational and Mathematical Methods in Medicine. 7: 121-141. DOI: 10.1080/10273660600968937 |
0.408 |
|
2005 |
Potapov AB, Hillen T. Metastability in chemotaxis models Journal of Dynamics and Differential Equations. 17: 293-330. DOI: 10.1007/S10884-005-2938-3 |
0.422 |
|
2005 |
Hillen T. Modeling differential equations in biology The Mathematical Intelligencer. 27: 82-83. DOI: 10.1007/Bf02985799 |
0.37 |
|
2004 |
Hadeler KP, Hillen T, Lutscher F. The Langevin or Kramers approach to biological modeling Mathematical Models and Methods in Applied Sciences. 14: 1561-1583. DOI: 10.1142/S0218202504003726 |
0.371 |
|
2004 |
Hillen T, Potapov A. The one-dimensional chemotaxis model: Global existence and asymptotic profile Mathematical Methods in the Applied Sciences. 27: 1783-1801. DOI: 10.1002/Mma.569 |
0.368 |
|
2003 |
Hillen T. Transport equations with resting phases European Journal of Applied Mathematics. 14: 613-636. DOI: 10.1017/S0956792503005291 |
0.434 |
|
2003 |
Dolak Y, Hillen T. Cattaneo models for chemosensitive movement Journal of Mathematical Biology. 46: 460-460. DOI: 10.1007/S00285-003-0222-X |
0.392 |
|
2002 |
Hillen T. Hyperbolic models for chemosensitive movement Mathematical Models and Methods in Applied Sciences. 12: 1007-1034. DOI: 10.1142/S0218202502002008 |
0.439 |
|
2002 |
Othmer HG, Hillen T. The diffusion limit of transport equations II: Chemotaxis equations Siam Journal On Applied Mathematics. 62: 1222-1250. DOI: 10.1137/S0036139900382772 |
0.356 |
|
2001 |
Hillen T, Rohde C, Lutscher F. Existence of Weak Solutions for a Hyperbolic Model of Chemosensitive Movement Journal of Mathematical Analysis and Applications. 260: 173-199. DOI: 10.1006/Jmaa.2001.7447 |
0.416 |
|
2001 |
Hillen T, Painter K. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding Advances in Applied Mathematics. 26: 280-301. DOI: 10.1006/Aama.2001.0721 |
0.39 |
|
2000 |
Hillen T, Othmer HG. The diffusion limit of transport equations derived from velocity-jump processes Siam Journal On Applied Mathematics. 61: 751-775. DOI: 10.1137/S0036139999358167 |
0.358 |
|
2000 |
Hillen T, Stevens A. Hyperbolic models for chemotaxis in 1-D Nonlinear Analysis: Real World Applications. 1: 409-433. DOI: 10.1016/S0362-546X(99)00284-9 |
0.304 |
|
1998 |
Hillen T. Qualitative analysis of semilinear Cattaneo equations Mathematical Models and Methods in Applied Sciences. 8: 507-519. DOI: 10.1142/S0218202598000238 |
0.323 |
|
1998 |
Müller J, Hillen T. Modulation equations and parabolic limits of reaction random-walk systems Mathematical Methods in the Applied Sciences. 21: 1207-1226. DOI: 10.1002/(Sici)1099-1476(19980910)21:13<1207::Aid-Mma992>3.0.Co;2-8 |
0.354 |
|
1997 |
Hillen T. Invariance principles for hyperbolic random walk systems Journal of Mathematical Analysis and Applications. 210: 360-374. DOI: 10.1006/Jmaa.1997.5411 |
0.325 |
|
1996 |
Hillen T. A Turing model with correlated random walk Journal of Mathematical Biology. 35: 49-72. DOI: 10.1007/S002850050042 |
0.359 |
|
Show low-probability matches. |