Thomas Hillen - Publications

Affiliations: 
Mathematical and Statistical Sciences University of Alberta, Edmonton, Alberta, Canada 
Area:
Applied Mathematics

60 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Hillen T, Loy N, Painter KJ, Thiessen R. Modelling microtube driven invasion of glioma. Journal of Mathematical Biology. 88: 4. PMID 38015257 DOI: 10.1007/s00285-023-02025-0  0.355
2020 Rhodes A, Hillen T. Implications of immune-mediated metastatic growth on metastatic dormancy, blow-up, early detection, and treatment. Journal of Mathematical Biology. PMID 32789610 DOI: 10.1007/S00285-020-01521-X  0.334
2020 Hillen T, Painter KJ, Stolarska MA, Xue C. Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer. Journal of Mathematical Biology. PMID 32006100 DOI: 10.1007/S00285-020-01473-2  0.339
2020 Hillen T, Buttenschön A. Nonlocal Adhesion Models for Microorganisms on Bounded Domains Siam Journal On Applied Mathematics. 80: 382-401. DOI: 10.1137/19M1250315  0.383
2019 Frei C, Hillen T, Rhodes A. A stochastic model for cancer metastasis: branching stochastic process with settlement. Mathematical Medicine and Biology : a Journal of the Ima. PMID 31162540 DOI: 10.1093/Imammb/Dqz009  0.378
2018 Olobatuyi O, de Vries G, Hillen T. Effects of G2-checkpoint dynamics on low-dose hyper-radiosensitivity. Journal of Mathematical Biology. PMID 29679122 DOI: 10.1007/S00285-018-1236-8  0.386
2017 Buttenschön A, Hillen T, Gerisch A, Painter KJ. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. Journal of Mathematical Biology. PMID 28597056 DOI: 10.1007/S00285-017-1144-3  0.46
2017 Bica I, Hillen T, Painter KJ. Aggregation of biological particles under radial directional guidance. Journal of Theoretical Biology. PMID 28596112 DOI: 10.1016/J.Jtbi.2017.05.039  0.337
2017 Swan A, Hillen T, Bowman JC, Murtha AD. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread. Bulletin of Mathematical Biology. PMID 28493055 DOI: 10.1007/S11538-017-0271-8  0.383
2017 Hillen T, White D, de Vries G, Dawes A. Existence and uniqueness for a coupled PDE model for motor-induced microtubule organization. Journal of Biological Dynamics. 1-22. PMID 28426333 DOI: 10.1080/17513758.2017.1310939  0.34
2017 Hillen T, Painter KJ, Swan AC, Murtha AD. Moments of von Mises and Fisher distributions and applications. Mathematical Biosciences and Engineering : Mbe. 14: 673-694. PMID 28092958 DOI: 10.3934/Mbe.2017038  0.327
2017 Hillen T, Painter KJ, Winkler M. Global solvability and explicit bounds for non-local adhesion models European Journal of Applied Mathematics. 29: 645-684. DOI: 10.1017/S0956792517000328  0.343
2016 Olobatuyi O, de Vries G, Hillen T. A reaction-diffusion model for radiation-induced bystander effects. Journal of Mathematical Biology. PMID 28035423 DOI: 10.1007/S00285-016-1090-5  0.332
2016 Stocks T, Hillen T, Gong J, Burger M. A stochastic model for the normal tissue complication probability (NTCP) and applicationss. Mathematical Medicine and Biology : a Journal of the Ima. PMID 27591250 DOI: 10.1093/Imammb/Dqw013  0.586
2016 Rhodes A, Hillen T. Mathematical Modeling of the Role of Survivin on Dedifferentiation and Radioresistance in Cancer. Bulletin of Mathematical Biology. PMID 27271121 DOI: 10.1007/S11538-016-0177-X  0.331
2016 Konstorum A, Hillen T, Lowengrub J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bulletin of Mathematical Biology. PMID 27113934 DOI: 10.1007/S11538-016-0161-5  0.319
2016 Martin J, Hillen T. The Spotting Distribution of Wildfires Applied Sciences. 6: 177. DOI: 10.3390/App6060177  0.304
2015 Borsi I, Fasano A, Primicerio M, Hillen T. A non-local model for cancer stem cells and the tumour growth paradox Mathematical Medicine and Biology-a Journal of the Ima. 34: 59-75. PMID 26588931 DOI: 10.1093/Imammb/Dqv037  0.406
2015 Painter KJ, Hillen T. Navigating the flow: individual and continuum models for homing in flowing environments. Journal of the Royal Society, Interface / the Royal Society. 12. PMID 26538557 DOI: 10.1098/Rsif.2015.0647  0.332
2015 Engwer C, Hillen T, Knappitsch M, Surulescu C. Glioma follow white matter tracts: a multiscale DTI-based model. Journal of Mathematical Biology. 71: 551-82. PMID 25212910 DOI: 10.1007/S00285-014-0822-7  0.404
2015 Hillen T, Greese B, Martin J, de Vries G. Birth-jump processes and application to forest fire spotting. Journal of Biological Dynamics. 9: 104-27. PMID 25186246 DOI: 10.1080/17513758.2014.950184  0.409
2015 Potts JR, Hillen T, Lewis MA. The “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions Theoretical Ecology. 1-15. DOI: 10.1007/S12080-015-0283-7  0.302
2013 Bachman JW, Hillen T. Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Frontiers in Oncology. 3: 52. PMID 23508300 DOI: 10.3389/Fonc.2013.00052  0.307
2013 Painter KJ, Hillen T. Mathematical modelling of glioma growth: The use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion Journal of Theoretical Biology. 323: 25-39. PMID 23376578 DOI: 10.1016/J.Jtbi.2013.01.014  0.399
2013 Hillen T, Enderling H, Hahnfeldt P. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bulletin of Mathematical Biology. 75: 161-84. PMID 23196354 DOI: 10.1007/S11538-012-9798-X  0.339
2013 Gong J, Dos Santos MM, Finlay C, Hillen T. Are more complicated tumour control probability models better? Mathematical Medicine and Biology : a Journal of the Ima. 30: 1-19. PMID 22006625 DOI: 10.1093/Imammb/Dqr023  0.6
2013 Hillen T, Zielinski J, Painter KJ. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model Discrete and Continuous Dynamical Systems - Series B. 18: 2513-2536. DOI: 10.3934/Dcdsb.2013.18.2513  0.321
2013 Hillen T, Painter KJ, Winkler M. Convergence of a cancer invasion model to a logistic chemotaxis model Mathematical Models and Methods in Applied Sciences. 23: 165-198. DOI: 10.1142/S0218202512500480  0.408
2013 Hillen T, Painter KJ, Winkler M. Anisotropic diffusion in oriented environments can lead to singularity formation European Journal of Applied Mathematics. 24: 371-413. DOI: 10.1017/S0956792512000447  0.353
2011 Painter KJ, Hillen T. Spatio-temporal chaos in a chemotaxis model Physica D: Nonlinear Phenomena. 240: 363-375. DOI: 10.1016/J.Physd.2010.09.011  0.369
2010 Hillen T, de Vries G, Gong J, Finlay C. From cell population models to tumor control probability: including cell cycle effects. Acta Oncologica (Stockholm, Sweden). 49: 1315-23. PMID 20843174 DOI: 10.3109/02841861003631487  0.575
2010 Hillen T, Hinow P, Wang ZA. Mathematical analysis of a kinetic model for cell movement in network tissues Discrete and Continuous Dynamical Systems - Series B. 14: 1055-1080. DOI: 10.3934/Dcdsb.2010.14.1055  0.398
2009 Lee JM, Hillen T, Lewis MA. Pattern formation in prey-taxis systems Journal of Biological Dynamics. 3: 551-573. PMID 22880961 DOI: 10.1080/17513750802716112  0.302
2009 O'Rourke SFC, McAneney H, Hillen T. Linear quadratic and tumour control probability modelling in external beam radiotherapy Journal of Mathematical Biology. 58: 799-817. PMID 18825382 DOI: 10.1007/S00285-008-0222-Y  0.413
2009 Hillen T, Painter KJ. A user's guide to PDE models for chemotaxis Journal of Mathematical Biology. 58: 183-217. PMID 18626644 DOI: 10.1007/S00285-008-0201-3  0.443
2008 Lee JM, Hillen T, Lewis MA. Continuous traveling waves for prey-taxis Bulletin of Mathematical Biology. 70: 654-676. PMID 18253803 DOI: 10.1007/S11538-007-9271-4  0.345
2008 Wang ZA, Hillen T, Li M. Mesenchymal motion models in one dimension Siam Journal On Applied Mathematics. 69: 375-397. DOI: 10.1137/080714178  0.413
2008 Wang Z, Hillen T. Shock formation in a Chemotaxis model Mathematical Methods in the Applied Sciences. 31: 45-70. DOI: 10.1002/Mma.898  0.334
2007 Wang Z, Hillen T. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos (Woodbury, N.Y.). 17: 037108. PMID 17903015 DOI: 10.1063/1.2766864  0.407
2007 Chauviere A, Hillen T, Preziosi L. Modeling cell movement in anisotropic and heterogeneous network tissues Networks and Heterogeneous Media. 2: 333-357. DOI: 10.3934/Nhm.2007.2.333  0.385
2007 Hillen T, Painter K, Schmeiser C. Global existence for chemotaxis with finite sampling radius Discrete and Continuous Dynamical Systems - Series B. 7: 125-144. DOI: 10.3934/Dcdsb.2007.7.125  0.404
2007 Hillen T. A classification of spikes and plateaus Siam Review. 49: 35-51. DOI: 10.1137/050632427  0.396
2006 Hillen T. M5 mesoscopic and macroscopic models for mesenchymal motion. Journal of Mathematical Biology. 53: 585-616. PMID 16821068 DOI: 10.1007/S00285-006-0017-Y  0.399
2006 Dawson A, Hillen T. Derivation of the tumour control probability (TCP) from a cell cycle model Computational and Mathematical Methods in Medicine. 7: 121-141. DOI: 10.1080/10273660600968937  0.408
2005 Potapov AB, Hillen T. Metastability in chemotaxis models Journal of Dynamics and Differential Equations. 17: 293-330. DOI: 10.1007/S10884-005-2938-3  0.422
2005 Hillen T. Modeling differential equations in biology The Mathematical Intelligencer. 27: 82-83. DOI: 10.1007/Bf02985799  0.37
2004 Hadeler KP, Hillen T, Lutscher F. The Langevin or Kramers approach to biological modeling Mathematical Models and Methods in Applied Sciences. 14: 1561-1583. DOI: 10.1142/S0218202504003726  0.371
2004 Hillen T, Potapov A. The one-dimensional chemotaxis model: Global existence and asymptotic profile Mathematical Methods in the Applied Sciences. 27: 1783-1801. DOI: 10.1002/Mma.569  0.368
2003 Hillen T. Transport equations with resting phases European Journal of Applied Mathematics. 14: 613-636. DOI: 10.1017/S0956792503005291  0.434
2003 Dolak Y, Hillen T. Cattaneo models for chemosensitive movement Journal of Mathematical Biology. 46: 460-460. DOI: 10.1007/S00285-003-0222-X  0.392
2002 Hillen T. Hyperbolic models for chemosensitive movement Mathematical Models and Methods in Applied Sciences. 12: 1007-1034. DOI: 10.1142/S0218202502002008  0.439
2002 Othmer HG, Hillen T. The diffusion limit of transport equations II: Chemotaxis equations Siam Journal On Applied Mathematics. 62: 1222-1250. DOI: 10.1137/S0036139900382772  0.356
2001 Hillen T, Rohde C, Lutscher F. Existence of Weak Solutions for a Hyperbolic Model of Chemosensitive Movement Journal of Mathematical Analysis and Applications. 260: 173-199. DOI: 10.1006/Jmaa.2001.7447  0.416
2001 Hillen T, Painter K. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding Advances in Applied Mathematics. 26: 280-301. DOI: 10.1006/Aama.2001.0721  0.39
2000 Hillen T, Othmer HG. The diffusion limit of transport equations derived from velocity-jump processes Siam Journal On Applied Mathematics. 61: 751-775. DOI: 10.1137/S0036139999358167  0.358
2000 Hillen T, Stevens A. Hyperbolic models for chemotaxis in 1-D Nonlinear Analysis: Real World Applications. 1: 409-433. DOI: 10.1016/S0362-546X(99)00284-9  0.304
1998 Hillen T. Qualitative analysis of semilinear Cattaneo equations Mathematical Models and Methods in Applied Sciences. 8: 507-519. DOI: 10.1142/S0218202598000238  0.323
1998 Müller J, Hillen T. Modulation equations and parabolic limits of reaction random-walk systems Mathematical Methods in the Applied Sciences. 21: 1207-1226. DOI: 10.1002/(Sici)1099-1476(19980910)21:13<1207::Aid-Mma992>3.0.Co;2-8  0.354
1997 Hillen T. Invariance principles for hyperbolic random walk systems Journal of Mathematical Analysis and Applications. 210: 360-374. DOI: 10.1006/Jmaa.1997.5411  0.325
1996 Hillen T. A Turing model with correlated random walk Journal of Mathematical Biology. 35: 49-72. DOI: 10.1007/S002850050042  0.359
Show low-probability matches.