Dominique Orban - Publications

Affiliations: 
Mathematics and Industrial Engineering Ecole Polytechnique, Montreal (Canada) 
Area:
Operations Research

41 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Montoison A, Orban D. BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property Siam Journal On Matrix Analysis and Applications. 41: 1145-1166. DOI: 10.1137/19M1290991  0.401
2020 Estrin R, Friedlander MP, Orban D, Saunders MA. Implementing a Smooth Exact Penalty Function for General Constrained Nonlinear Optimization Siam Journal On Scientific Computing. 42. DOI: 10.1137/19M1238265  0.384
2020 Dehghani M, Lambe A, Orban D. A Regularized Interior-Point Method for Constrained Linear Least Squares Infor. 58: 202-224. DOI: 10.1080/03155986.2018.1559428  0.463
2020 Mestdagh G, Goussard Y, Orban D. Scaled projected-directions methods with application to transmission tomography Optimization and Engineering. 1-25. DOI: 10.1007/S11081-020-09484-0  0.423
2020 Orban D, Siqueira AS. A regularization method for constrained nonlinear least squares Computational Optimization and Applications. 76: 961-989. DOI: 10.1007/S10589-020-00201-2  0.45
2019 Dahito M, Orban D. The Conjugate Residual Method in Linesearch and Trust-Region Methods Siam Journal On Optimization. 29: 1988-2025. DOI: 10.1137/18M1204255  0.371
2019 Estrin R, Orban D, Saunders MA. LNLQ: An Iterative Method for Least-Norm Problems with an Error Minimization Property Siam Journal On Matrix Analysis and Applications. 40: 1102-1124. DOI: 10.1137/18M1194948  0.4
2019 Buttari A, Orban D, Ruiz D, Titley-Peloquin D. A Tridiagonalization Method for Symmetric Saddle-Point Systems Siam Journal On Scientific Computing. 41. DOI: 10.1137/18M1194900  0.379
2019 Estrin R, Orban D, Saunders MA. LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property Siam Journal On Matrix Analysis and Applications. 40: 254-275. DOI: 10.1137/17M1113552  0.453
2018 Arreckx S, Orban D. A Regularized Factorization-Free Method for Equality-Constrained Optimization Siam Journal On Optimization. 28: 1613-1639. DOI: 10.1137/16M1088570  0.505
2017 Dehghani A, Goffin JL, Orban D. A primal–dual regularized interior-point method for semidefinite programming Optimization Methods & Software. 32: 193-219. DOI: 10.1080/10556788.2016.1235708  0.505
2016 Towhidi M, Orban D. Customizing the solution process of COIN-OR’s linear solvers with Python Mathematical Programming Computation. 8: 377-391. DOI: 10.1007/S12532-015-0094-2  0.394
2015 Arreckx S, Lambe A, Martins JRRA, Orban D. A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization Optimization and Engineering. DOI: 10.1007/S11081-015-9287-9  0.488
2015 Gould NIM, Orban D, Toint PL. CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization Computational Optimization and Applications. 60: 545-557. DOI: 10.1007/S10589-014-9687-3  0.32
2015 Gould NIM, Orban D, Toint PL. An interior-point ℓ1-penalty method for nonlinear optimization Springer Proceedings in Mathematics and Statistics. 134: 117-150. DOI: 10.1007/978-3-319-17689-5_6  0.471
2014 Gould N, Orban D, Rees T. Projected Krylov methods for saddle-point systems Siam Journal On Matrix Analysis and Applications. 35: 1329-1343. DOI: 10.1137/130916394  0.35
2014 Greif C, Moulding E, Orban D. Bounds on eigenvalues of matrices arising from interior-point methods Siam Journal On Optimization. 24: 49-83. DOI: 10.1137/120890600  0.496
2014 Audet C, Dang KC, Orban D. Optimization of algorithms with OPAL Mathematical Programming Computation. 6: 233-254. DOI: 10.1007/S12532-014-0067-X  0.541
2014 Orban D. Limited-memory LDL<sup>⊤</sup> factorization of symmetric quasi-definite matrices with application to constrained optimization Numerical Algorithms. 70: 9-41. DOI: 10.1007/S11075-014-9933-X  0.361
2013 Harvey JP, Eriksson G, Orban D, Chartrand P. Global minimization of the gibbs energy of multicomponent systems involving the presence of order/disorder phase transitions American Journal of Science. 313: 199-241. DOI: 10.2475/03.2013.02  0.407
2013 Armand P, Benoist J, Orban D. From global to local convergence of interior methods for nonlinear optimization Optimization Methods and Software. 28: 1051-1080. DOI: 10.1080/10556788.2012.668905  0.525
2013 Gould NIM, Orban D, Robinson DP. Trajectory-following methods for large-scale degenerate convex quadratic programming Mathematical Programming Computation. 5: 113-142. DOI: 10.1007/S12532-012-0050-3  0.506
2013 Audet C, Dang CK, Orban D. Efficient use of parallelism in algorithmic parameter optimization applications Optimization Letters. 7: 421-433. DOI: 10.1007/S11590-011-0428-6  0.688
2012 Armand P, Orban D. The Squared Slacks Transformation in Nonlinear Programming Sultan Qaboos University Journal For Science. 17: 22-29. DOI: 10.24200/Squjs.Vol17Iss1Pp22-29  0.412
2012 Coulibaly Z, Orban D. An l 1 elastic interior-point method for mathematical programs with complementarity constraints Siam Journal On Optimization. 22: 187-211. DOI: 10.1137/090777232  0.691
2012 Friedlander MP, Orban D. A primal-dual regularized interior-point method for convex quadratic programs Mathematical Programming Computation. 4: 71-107. DOI: 10.1007/S12532-012-0035-2  0.572
2010 Fourer R, Maheshwari C, Neumaier A, Orban D, Schichl H. Convexity and concavity detection in computational graphs: Tree walks for convexity assessment Informs Journal On Computing. 22: 26-43. DOI: 10.1287/Ijoc.1090.0321  0.456
2010 Raymond V, Soumis F, Orban D. A new version of the Improved Primal Simplex for degenerate linear programs Computers and Operations Research. 37: 91-98. DOI: 10.1016/J.Cor.2009.03.020  0.488
2010 Fourer R, Orban D. DrAmpl: A meta solver for optimization problem analysis Computational Management Science. 7: 437-463. DOI: 10.1007/S10287-009-0101-Z  0.439
2010 Audet C, Dang CK, Orban D. Algorithmic parameter optimization of the DFO method with the OPAL framework Software Automatic Tuning: From Concepts to State-of-the-Art Results. 255-274. DOI: 10.1007/978-1-4419-6935-4_15  0.701
2008 Armand P, Benoist J, Orban D. Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming Computational Optimization and Applications. 41: 1-25. DOI: 10.1007/S10589-007-9095-Z  0.514
2006 Audet C, Orban D. Finding optimal algorithmic parameters using derivative-free optimization Siam Journal On Optimization. 17: 642-664. DOI: 10.1137/040620886  0.573
2006 Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps Mathematical Programming. 107: 391-408. DOI: 10.1007/S10107-004-0560-5  0.504
2005 Gould N, Orban D, Toint P. Numerical methods for large-scale nonlinear optimization Acta Numerica. 14: 299-361. DOI: 10.1017/S0962492904000248  0.503
2005 Gould NIM, Orban D, Sartenaer A, Toint PL. Sensitivity of trust-region algorithms to their parameters 4or. 3: 227-241. DOI: 10.1007/S10288-005-0065-Y  0.444
2003 Gould NIM, Orban D, Toint PL. CUTEr and sifdec: A constrained and unconstrained testing environment, revisited Acm Transactions On Mathematical Software. 29: 373-394. DOI: 10.1145/962437.962439  0.358
2003 Gould NIM, Orban D, Toint PL. GALAHAD, a library of thread-safe fortran 90 packages for large-scale nonlinear optimization Acm Transactions On Mathematical Software. 29: 353-372. DOI: 10.1145/962437.962438  0.479
2002 Wright SJ, Orban D. Properties of the log-barrier function on degenerate nonlinear programs Mathematics of Operations Research. 27: 585-613. DOI: 10.1287/Moor.27.3.585.312  0.382
2002 Gould NIM, Orban D, Sartenaer A, Toint PL. Componentwise fast convergence in the solution of full-rank systems of nonlinear equations Mathematical Programming, Series B. 92: 481-508. DOI: 10.1007/S101070100287  0.465
2001 Gould NIM, Orban D, Sartenaer A, Toint PL. Superlinear convergence of primal-dual interior point algorithms for nonlinear programming Siam Journal On Optimization. 11: 974-1002. DOI: 10.1137/S1052623400370515  0.515
2000 Conn AR, Gould NIM, Orban D, Toint PL. A primal-dual trust-region algorithm for non-convex nonlinear programming Mathematical Programming, Series B. 87: 215-249. DOI: 10.1007/S101070050112  0.488
Show low-probability matches.