Year |
Citation |
Score |
2020 |
Montoison A, Orban D. BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property Siam Journal On Matrix Analysis and Applications. 41: 1145-1166. DOI: 10.1137/19M1290991 |
0.401 |
|
2020 |
Estrin R, Friedlander MP, Orban D, Saunders MA. Implementing a Smooth Exact Penalty Function for General Constrained Nonlinear Optimization Siam Journal On Scientific Computing. 42. DOI: 10.1137/19M1238265 |
0.384 |
|
2020 |
Dehghani M, Lambe A, Orban D. A Regularized Interior-Point Method for Constrained Linear Least Squares Infor. 58: 202-224. DOI: 10.1080/03155986.2018.1559428 |
0.463 |
|
2020 |
Mestdagh G, Goussard Y, Orban D. Scaled projected-directions methods with application to transmission tomography Optimization and Engineering. 1-25. DOI: 10.1007/S11081-020-09484-0 |
0.423 |
|
2020 |
Orban D, Siqueira AS. A regularization method for constrained nonlinear least squares Computational Optimization and Applications. 76: 961-989. DOI: 10.1007/S10589-020-00201-2 |
0.45 |
|
2019 |
Dahito M, Orban D. The Conjugate Residual Method in Linesearch and Trust-Region Methods Siam Journal On Optimization. 29: 1988-2025. DOI: 10.1137/18M1204255 |
0.371 |
|
2019 |
Estrin R, Orban D, Saunders MA. LNLQ: An Iterative Method for Least-Norm Problems with an Error Minimization Property Siam Journal On Matrix Analysis and Applications. 40: 1102-1124. DOI: 10.1137/18M1194948 |
0.4 |
|
2019 |
Buttari A, Orban D, Ruiz D, Titley-Peloquin D. A Tridiagonalization Method for Symmetric Saddle-Point Systems Siam Journal On Scientific Computing. 41. DOI: 10.1137/18M1194900 |
0.379 |
|
2019 |
Estrin R, Orban D, Saunders MA. LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property Siam Journal On Matrix Analysis and Applications. 40: 254-275. DOI: 10.1137/17M1113552 |
0.453 |
|
2018 |
Arreckx S, Orban D. A Regularized Factorization-Free Method for Equality-Constrained Optimization Siam Journal On Optimization. 28: 1613-1639. DOI: 10.1137/16M1088570 |
0.505 |
|
2017 |
Dehghani A, Goffin JL, Orban D. A primal–dual regularized interior-point method for semidefinite programming Optimization Methods & Software. 32: 193-219. DOI: 10.1080/10556788.2016.1235708 |
0.505 |
|
2016 |
Towhidi M, Orban D. Customizing the solution process of COIN-OR’s linear solvers with Python Mathematical Programming Computation. 8: 377-391. DOI: 10.1007/S12532-015-0094-2 |
0.394 |
|
2015 |
Arreckx S, Lambe A, Martins JRRA, Orban D. A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization Optimization and Engineering. DOI: 10.1007/S11081-015-9287-9 |
0.488 |
|
2015 |
Gould NIM, Orban D, Toint PL. CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization Computational Optimization and Applications. 60: 545-557. DOI: 10.1007/S10589-014-9687-3 |
0.32 |
|
2015 |
Gould NIM, Orban D, Toint PL. An interior-point ℓ1-penalty method for nonlinear optimization Springer Proceedings in Mathematics and Statistics. 134: 117-150. DOI: 10.1007/978-3-319-17689-5_6 |
0.471 |
|
2014 |
Gould N, Orban D, Rees T. Projected Krylov methods for saddle-point systems Siam Journal On Matrix Analysis and Applications. 35: 1329-1343. DOI: 10.1137/130916394 |
0.35 |
|
2014 |
Greif C, Moulding E, Orban D. Bounds on eigenvalues of matrices arising from interior-point methods Siam Journal On Optimization. 24: 49-83. DOI: 10.1137/120890600 |
0.496 |
|
2014 |
Audet C, Dang KC, Orban D. Optimization of algorithms with OPAL Mathematical Programming Computation. 6: 233-254. DOI: 10.1007/S12532-014-0067-X |
0.541 |
|
2014 |
Orban D. Limited-memory LDL<sup>⊤</sup> factorization of symmetric quasi-definite matrices with application to constrained optimization Numerical Algorithms. 70: 9-41. DOI: 10.1007/S11075-014-9933-X |
0.361 |
|
2013 |
Harvey JP, Eriksson G, Orban D, Chartrand P. Global minimization of the gibbs energy of multicomponent systems involving the presence of order/disorder phase transitions American Journal of Science. 313: 199-241. DOI: 10.2475/03.2013.02 |
0.407 |
|
2013 |
Armand P, Benoist J, Orban D. From global to local convergence of interior methods for nonlinear optimization Optimization Methods and Software. 28: 1051-1080. DOI: 10.1080/10556788.2012.668905 |
0.525 |
|
2013 |
Gould NIM, Orban D, Robinson DP. Trajectory-following methods for large-scale degenerate convex quadratic programming Mathematical Programming Computation. 5: 113-142. DOI: 10.1007/S12532-012-0050-3 |
0.506 |
|
2013 |
Audet C, Dang CK, Orban D. Efficient use of parallelism in algorithmic parameter optimization applications Optimization Letters. 7: 421-433. DOI: 10.1007/S11590-011-0428-6 |
0.688 |
|
2012 |
Armand P, Orban D. The Squared Slacks Transformation in Nonlinear Programming Sultan Qaboos University Journal For Science. 17: 22-29. DOI: 10.24200/Squjs.Vol17Iss1Pp22-29 |
0.412 |
|
2012 |
Coulibaly Z, Orban D. An l 1 elastic interior-point method for mathematical programs with complementarity constraints Siam Journal On Optimization. 22: 187-211. DOI: 10.1137/090777232 |
0.691 |
|
2012 |
Friedlander MP, Orban D. A primal-dual regularized interior-point method for convex quadratic programs Mathematical Programming Computation. 4: 71-107. DOI: 10.1007/S12532-012-0035-2 |
0.572 |
|
2010 |
Fourer R, Maheshwari C, Neumaier A, Orban D, Schichl H. Convexity and concavity detection in computational graphs: Tree walks for convexity assessment Informs Journal On Computing. 22: 26-43. DOI: 10.1287/Ijoc.1090.0321 |
0.456 |
|
2010 |
Raymond V, Soumis F, Orban D. A new version of the Improved Primal Simplex for degenerate linear programs Computers and Operations Research. 37: 91-98. DOI: 10.1016/J.Cor.2009.03.020 |
0.488 |
|
2010 |
Fourer R, Orban D. DrAmpl: A meta solver for optimization problem analysis Computational Management Science. 7: 437-463. DOI: 10.1007/S10287-009-0101-Z |
0.439 |
|
2010 |
Audet C, Dang CK, Orban D. Algorithmic parameter optimization of the DFO method with the OPAL framework Software Automatic Tuning: From Concepts to State-of-the-Art Results. 255-274. DOI: 10.1007/978-1-4419-6935-4_15 |
0.701 |
|
2008 |
Armand P, Benoist J, Orban D. Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming Computational Optimization and Applications. 41: 1-25. DOI: 10.1007/S10589-007-9095-Z |
0.514 |
|
2006 |
Audet C, Orban D. Finding optimal algorithmic parameters using derivative-free optimization Siam Journal On Optimization. 17: 642-664. DOI: 10.1137/040620886 |
0.573 |
|
2006 |
Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps Mathematical Programming. 107: 391-408. DOI: 10.1007/S10107-004-0560-5 |
0.504 |
|
2005 |
Gould N, Orban D, Toint P. Numerical methods for large-scale nonlinear optimization Acta Numerica. 14: 299-361. DOI: 10.1017/S0962492904000248 |
0.503 |
|
2005 |
Gould NIM, Orban D, Sartenaer A, Toint PL. Sensitivity of trust-region algorithms to their parameters 4or. 3: 227-241. DOI: 10.1007/S10288-005-0065-Y |
0.444 |
|
2003 |
Gould NIM, Orban D, Toint PL. CUTEr and sifdec: A constrained and unconstrained testing environment, revisited Acm Transactions On Mathematical Software. 29: 373-394. DOI: 10.1145/962437.962439 |
0.358 |
|
2003 |
Gould NIM, Orban D, Toint PL. GALAHAD, a library of thread-safe fortran 90 packages for large-scale nonlinear optimization Acm Transactions On Mathematical Software. 29: 353-372. DOI: 10.1145/962437.962438 |
0.479 |
|
2002 |
Wright SJ, Orban D. Properties of the log-barrier function on degenerate nonlinear programs Mathematics of Operations Research. 27: 585-613. DOI: 10.1287/Moor.27.3.585.312 |
0.382 |
|
2002 |
Gould NIM, Orban D, Sartenaer A, Toint PL. Componentwise fast convergence in the solution of full-rank systems of nonlinear equations Mathematical Programming, Series B. 92: 481-508. DOI: 10.1007/S101070100287 |
0.465 |
|
2001 |
Gould NIM, Orban D, Sartenaer A, Toint PL. Superlinear convergence of primal-dual interior point algorithms for nonlinear programming Siam Journal On Optimization. 11: 974-1002. DOI: 10.1137/S1052623400370515 |
0.515 |
|
2000 |
Conn AR, Gould NIM, Orban D, Toint PL. A primal-dual trust-region algorithm for non-convex nonlinear programming Mathematical Programming, Series B. 87: 215-249. DOI: 10.1007/S101070050112 |
0.488 |
|
Show low-probability matches. |