Year |
Citation |
Score |
2023 |
Duran H, Cuevas-Maraver J, Kevrekidis PG, Vainchtein A. Discrete breathers in a mechanical metamaterial. Physical Review. E. 107: 014220. PMID 36797898 DOI: 10.1103/PhysRevE.107.014220 |
0.389 |
|
2022 |
Gorbushin N, Vainchtein A, Truskinovsky L. Transition fronts and their universality classes. Physical Review. E. 106: 024210. PMID 36109908 DOI: 10.1103/PhysRevE.106.024210 |
0.372 |
|
2020 |
Vainchtein A. Rarefactive lattice solitary waves with high-energy sonic limit. Physical Review. E. 102: 052218. PMID 33327111 DOI: 10.1103/PhysRevE.102.052218 |
0.514 |
|
2019 |
Truskinovsky L, Vainchtein A. Strictly supersonic solitary waves in lattices with second-neighbor interactions Physica D: Nonlinear Phenomena. 389: 24-50. DOI: 10.1016/J.Physd.2018.10.001 |
0.494 |
|
2018 |
Xu H, Cuevas-Maraver J, Kevrekidis PG, Vainchtein A. An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 376. PMID 29507176 DOI: 10.1098/Rsta.2017.0192 |
0.513 |
|
2018 |
Vainchtein A. Solitary wave propagation in a two-dimensional lattice Wave Motion. 83: 12-24. DOI: 10.1016/J.WAVEMOTI.2018.08.004 |
0.46 |
|
2018 |
Starosvetsky Y, Vainchtein A. Solitary waves in FPU lattices with alternating bond potentials Mechanics Research Communications. 93: 148-153. DOI: 10.1016/J.MECHRESCOM.2017.10.007 |
0.367 |
|
2017 |
Cuevas-Maraver J, Kevrekidis PG, Vainchtein A, Xu H. Unifying perspective: Solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability. Physical Review. E. 96: 032214. PMID 29346986 DOI: 10.1103/Physreve.96.032214 |
0.471 |
|
2016 |
Vainchtein A, Starosvetsky Y, Wright JD, Perline R. Solitary waves in diatomic chains. Physical Review. E. 93: 042210. PMID 27176296 DOI: 10.1103/PhysRevE.93.042210 |
0.467 |
|
2016 |
Duanmu M, Whitaker N, Kevrekidis PG, Vainchtein A, Rubin JE. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators Physica D: Nonlinear Phenomena. 325: 25-40. DOI: 10.1016/J.Physd.2016.02.001 |
0.542 |
|
2015 |
Vainchtein A, Van Vleck ES, Zhang A. Propagation of periodic patterns in a discrete system with competing interactions Siam Journal On Applied Dynamical Systems. 14: 523-555. DOI: 10.1137/140969348 |
0.421 |
|
2014 |
Truskinovsky L, Vainchtein A. Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 90: 042903. PMID 25375563 DOI: 10.1103/Physreve.90.042903 |
0.403 |
|
2014 |
Liu L, Vainchtein A, Wang Y. Kinetics of a twinning step Mathematics and Mechanics of Solids. 19: 832-851. DOI: 10.1177/1081286513490187 |
0.467 |
|
2013 |
Rosakis P, Vainchtein A. New solutions for slow moving kinks in a forced frenkel-kontorova Chain Journal of Nonlinear Science. 23: 1089-1110. DOI: 10.1007/S00332-013-9180-7 |
0.334 |
|
2012 |
Vainchtein A, Kevrekidis PG. Dynamics of phase transitions in a piecewise linear diatomic chain Journal of Nonlinear Science. 22: 107-134. DOI: 10.1007/S00332-011-9110-5 |
0.593 |
|
2012 |
Trofimov E, Vainchtein A. Erratum to: Shocks versus kinks in a discrete model of displacive phase transitions Continuum Mechanics and Thermodynamics. 25: 107-108. DOI: 10.1007/s00161-012-0276-3 |
0.45 |
|
2010 |
Vainchtein A. Effect of nonlinearity on the steady motion of a twinning dislocation Physica D: Nonlinear Phenomena. 239: 1170-1179. DOI: 10.1016/j.physd.2010.03.007 |
0.324 |
|
2010 |
Vainchtein A. The role of spinodal region in the kinetics of lattice phase transitions Journal of the Mechanics and Physics of Solids. 58: 227-240. DOI: 10.1016/j.jmps.2009.10.004 |
0.613 |
|
2009 |
Vainchtein A, Van Vleck ES. Nucleation and propagation of phase mixtures in a bistable chain Physical Review B - Condensed Matter and Materials Physics. 79. DOI: 10.1103/PhysRevB.79.144123 |
0.478 |
|
2008 |
Zhen Y, Vainchtein A. Dynamics of steps along a martensitic phase boundary II: Numerical simulations Journal of the Mechanics and Physics of Solids. 56: 521-541. DOI: 10.1016/j.jmps.2007.05.018 |
0.474 |
|
2008 |
Zhen Y, Vainchtein A. Dynamics of steps along a martensitic phase boundary I: Semi-analytical solution Journal of the Mechanics and Physics of Solids. 56: 496-520. DOI: 10.1016/j.jmps.2007.05.017 |
0.365 |
|
2008 |
Truskinovsky L, Vainchtein A. Dynamics of martensitic phase boundaries: Discreteness, dissipation and inertia Continuum Mechanics and Thermodynamics. 20: 97-122. DOI: 10.1007/S00161-008-0069-X |
0.452 |
|
2007 |
Sharma BL, Vainchtein A. Quasistatic propagation of steps along a phase boundary Continuum Mechanics and Thermodynamics. 19: 347-377. DOI: 10.1007/s00161-007-0059-4 |
0.487 |
|
2006 |
Truskinovsky L, Vainchtein A. Kinetics of martensitic phase transitions: Lattice model Siam Journal On Applied Mathematics. 66: 533-553. DOI: 10.1137/040616942 |
0.642 |
|
2006 |
Truskinovsky L, Vainchtein A. Quasicontinuum models of dynamic phase transitions Continuum Mechanics and Thermodynamics. 18: 1-21. DOI: 10.1007/S00161-006-0018-5 |
0.433 |
|
2005 |
Truskinovsky L, Vainchtein A. Quasicontinuum modelling of short-wave instabilities in crystal lattices Philosophical Magazine. 85: 4055-4065. DOI: 10.1080/14786430500363270 |
0.495 |
|
2004 |
Truskinovsky L, Vainchtein A. The origin of nucleation peak in transformational plasticity Journal of the Mechanics and Physics of Solids. 52: 1421-1446. DOI: 10.1016/J.Jmps.2003.09.034 |
0.339 |
|
2003 |
Truskinovsky L, Vainchtein A. Peierls-Nabarro landscape for martensitic phase transitions Physical Review B - Condensed Matter and Materials Physics. 67: 1721031-1721034. DOI: 10.1103/Physrevb.67.172103 |
0.44 |
|
2003 |
Vainchtein A. Non-isothermal kinetics of a moving phase boundary Continuum Mechanics and Thermodynamics. 15: 1-19. DOI: 10.1007/s00161-002-0100-6 |
0.484 |
|
1999 |
Vainchtein A. Dynamics of phase transitions and hysteresis in a viscoelastic Ericksen's bar on an elastic foundation Journal of Elasticity. 57: 243-280. DOI: 10.1023/A:1007661727193 |
0.402 |
|
1999 |
Vainchtein A, Healey TJ, Rosakis P. Bifurcation and metastability in a new one-dimensional model for martensitic phase transitions Computer Methods in Applied Mechanics and Engineering. 170: 407-421. DOI: 10.1016/S0045-7825(98)00205-9 |
0.491 |
|
1999 |
Vainchtein A, Rosakis P. Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions Journal of Nonlinear Science. 9: 697-719. DOI: 10.1007/S003329900083 |
0.428 |
|
1998 |
Vainchtein A, Healey T, Rosakis P, Truskinovsky L. The role of the spinodal region in one-dimensional martensitic phase transitions Physica D: Nonlinear Phenomena. 115: 29-48. DOI: 10.1016/S0167-2789(97)00224-8 |
0.351 |
|
Show low-probability matches. |