Year |
Citation |
Score |
2020 |
Bertola M, Blackstone E, Katsevich A, Tovbis A. Diagonalization of the finite Hilbert transform on two adjacent intervals: the Riemann-Hilbert approach. Analysis and Mathematical Physics. 10: 27. PMID 32684912 DOI: 10.1007/S13324-020-00371-6 |
0.331 |
|
2020 |
Katsevich A. Analysis of resolution of tomographic-type reconstruction from discrete data for a class of conormal distributions. Inverse Problems. DOI: 10.1088/1361-6420/Abb2Fb |
0.317 |
|
2019 |
Zhu Z, Katsevich A, Pang S. Interior x-ray diffraction tomography with low-resolution exterior information. Physics in Medicine and Biology. 64: 025009. PMID 30540983 DOI: 10.1088/1361-6560/Aaf819 |
0.428 |
|
2019 |
Katsevich A. Analysis of Reconstruction from Discrete Radon Transform Data in R^3 When the Function Has Jump Discontinuities Siam Journal On Applied Mathematics. 79: 1607-1626. DOI: 10.1137/19M1251837 |
0.339 |
|
2018 |
Zhu Z, Katsevich A, Kapadia AJ, Greenberg JA, Pang S. X-ray diffraction tomography with limited projection information. Scientific Reports. 8: 522. PMID 29323224 DOI: 10.1038/S41598-017-19089-W |
0.348 |
|
2017 |
Katsevich A. A Local Approach to Resolution Analysis of Image Reconstruction in Tomography Siam Journal On Applied Mathematics. 77: 1706-1732. DOI: 10.1137/17M1112108 |
0.397 |
|
2017 |
Katsevich A, Rothermel D, Schuster T. An improved exact inversion formula for solenoidal fields in cone beam vector tomography Inverse Problems. 33: 064001. DOI: 10.1088/1361-6420/Aa58D5 |
0.326 |
|
2016 |
Liu B, Katsevich A, Yu H. Interior tomography with curvelet-based regularization. Journal of X-Ray Science and Technology. PMID 27612055 DOI: 10.3233/Xst-160602 |
0.43 |
|
2016 |
Alaifari R, Defrise M, Katsevich A. Stability estimates for the regularized inversion of the truncated Hilbert transform Inverse Problems. 32. DOI: 10.1088/0266-5611/32/6/065005 |
0.328 |
|
2016 |
Bertola M, Katsevich A, Tovbis A. On Sobolev instability of the interior problem of tomography Journal of Mathematical Analysis and Applications. 438: 962-990. DOI: 10.1016/J.Jmaa.2015.12.062 |
0.336 |
|
2016 |
Katsevich A. Reconstruction Algorithms for a Class of Restricted Ray Transforms Without Added Singularities Journal of Fourier Analysis and Applications. 1-22. DOI: 10.1007/S00041-016-9473-Y |
0.36 |
|
2016 |
Katsevich A, Tovbis A. Diagonalization of the Finite Hilbert Transform on Two Adjacent Intervals Journal of Fourier Analysis and Applications. 1-25. DOI: 10.1007/S00041-016-9458-X |
0.353 |
|
2016 |
Bertola M, Katsevich A, Tovbis A. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach Communications On Pure and Applied Mathematics. 69: 407-477. DOI: 10.1002/Cpa.21547 |
0.339 |
|
2015 |
Krylov R, Katsevich A. Inversion of the broken ray transform in the case of energy-dependent attenuation Physics in Medicine and Biology. 60: 4313-4334. PMID 25974246 DOI: 10.1088/0031-9155/60/11/4313 |
0.35 |
|
2015 |
Alaifari R, Defrise M, Katsevich A. Asymptotic analysis of the SVD for the truncated Hilbert transform with overlap Siam Journal On Mathematical Analysis. 47: 797-824. DOI: 10.1137/140952296 |
0.301 |
|
2015 |
Katsevich E, Katsevich A, Singer A. Covariance matrix estimation for the cryo-em heterogeneity problem Siam Journal On Imaging Sciences. 8: 126-185. DOI: 10.1137/130935434 |
0.352 |
|
2014 |
Shi B, Katsevich G, Chiang BS, Katsevich A, Zamyatin A. Image registration for motion estimation in cardiac CT Progress in Biomedical Optics and Imaging - Proceedings of Spie. 9033. DOI: 10.1117/12.2043559 |
0.584 |
|
2013 |
Katsevich A, Krylov R. Broken ray transform: Inversion and a range condition Inverse Problems. 29. DOI: 10.1088/0266-5611/29/7/075008 |
0.354 |
|
2013 |
Katsevich A, Schuster T. An exact inversion formula for cone beam vector tomography Inverse Problems. 29. DOI: 10.1088/0266-5611/29/6/065013 |
0.371 |
|
2012 |
Jin X, Katsevich A, Yu H, Wang G, Li L, Chen Z. Interior tomography with continuous singular value decomposition. Ieee Transactions On Medical Imaging. 31: 2108-19. PMID 22907966 DOI: 10.1109/Tmi.2012.2213304 |
0.393 |
|
2012 |
Katsevich E, Katsevich A, Wang G. Stability of the interior problem with polynomial attenuation in the region of interest Inverse Problems. 28. DOI: 10.1088/0266-5611/28/6/065022 |
0.335 |
|
2012 |
Katsevich A, Tovbis A. Finite Hilbert transform with incomplete data: Null-space and singular values Inverse Problems. 28. DOI: 10.1088/0266-5611/28/10/105006 |
0.347 |
|
2011 |
Katsevich A, Silver M, Zamyatin A. Local Tomography and the Motion Estimation Problem Siam Journal On Imaging Sciences. 4: 200-219. DOI: 10.1137/100796728 |
0.597 |
|
2011 |
Katsevich A. A note on computing the derivative at a constant direction Physics in Medicine and Biology. 56. DOI: 10.1088/0031-9155/56/4/N01 |
0.401 |
|
2010 |
Lu Y, Katsevich A, Zhao J, Yu H, Wang G. Fast exact/quasi-exact FBP algorithms for triple-source helical cone-beam CT. Ieee Transactions On Medical Imaging. 29: 756-70. PMID 19923043 DOI: 10.1109/Tmi.2009.2035617 |
0.435 |
|
2010 |
Katsevich A. An accurate approximate algorithm for motion compensation in two-dimensional tomography Inverse Problems. 26. DOI: 10.1088/0266-5611/26/6/065007 |
0.404 |
|
2010 |
Katsevich A. Singular value decomposition for the truncated Hubert transform Inverse Problems. 26. DOI: 10.1088/0266-5611/26/11/115011 |
0.405 |
|
2009 |
Katsevich A, Zamyatin AA, Silver MD. Optimized reconstruction algorithm for helical CT with fractional pitch between 1PI and 3PI. Ieee Transactions On Medical Imaging. 28: 982-90. PMID 19211349 DOI: 10.1109/Tmi.2008.2008961 |
0.63 |
|
2008 |
Zamyatin AA, Katsevich A, Chiang BS. Exact image reconstruction for a circle and line trajectory with a gantry tilt. Physics in Medicine and Biology. 53: N423-35. PMID 18997271 DOI: 10.1088/0031-9155/53/23/N02 |
0.609 |
|
2008 |
Zamyatin AA, Katsevich A. Investigation of detector coverage for exact reconstruction with general circle+curve trajectory Ieee Nuclear Science Symposium Conference Record. 5423-5425. DOI: 10.1109/NSSMIC.2008.4774481 |
0.63 |
|
2008 |
Katsevich A. Motion compensated local tomography Inverse Problems. 24. DOI: 10.1088/0266-5611/24/4/045012 |
0.408 |
|
2007 |
Katsevich A, Kapralov M. Filtered backprojection inversion of the cone beam transform for a general class of curves Siam Journal On Applied Mathematics. 68: 334-353. DOI: 10.1137/060673187 |
0.368 |
|
2007 |
Zamyatin AA, Chiang B, Katsevich A, Nakanishi S, Silver MD. Implementation of the circle-and-line algorithm for 256-detector row CT Progress in Biomedical Optics and Imaging - Proceedings of Spie. 6510. DOI: 10.1117/12.713779 |
0.633 |
|
2007 |
Zamyatin AA, Chiang BS, Katsevich A. Implementation of a circle and helix reconstruction algorithm for 256-slice CT Ieee Nuclear Science Symposium Conference Record. 4: 3094-3097. DOI: 10.1109/NSSMIC.2007.4436784 |
0.608 |
|
2007 |
Zamyatin AA, Katsevich A, Silver MD, Nakanishi S. Helical CT reconstruction with large cone angle Ieee Nuclear Science Symposium Conference Record. 4: 2264-2267. DOI: 10.1109/NSSMIC.2006.354365 |
0.599 |
|
2007 |
Katsevich A. Image reconstruction for a general circle-plus trajectory Inverse Problems. 23: 2223-2230. DOI: 10.1088/0266-5611/23/5/024 |
0.391 |
|
2006 |
Katsevich A, Taguchi K, Zamyatin AA. Formulation of four Katsevich algorithms in native geometry. Ieee Transactions On Medical Imaging. 25: 855-68. PMID 16827487 DOI: 10.1109/Tmi.2006.876159 |
0.628 |
|
2006 |
Kapralov M, Katsevich A. A one-PI algorithm for helical trajectories that violate the convexity condition Inverse Problems. 22: 2123-2143. DOI: 10.1088/0266-5611/22/6/013 |
0.444 |
|
2006 |
Katsevich A. Improved cone beam local tomography Inverse Problems. 22: 627-643. DOI: 10.1088/0266-5611/22/2/015 |
0.357 |
|
2006 |
Katsevich A. 3PI algorithms for helical computer tomography Advances in Applied Mathematics. 36: 213-250. DOI: 10.1016/J.Aam.2006.01.001 |
0.454 |
|
2005 |
Katsevich A. Image reconstruction for the circle-and-arc trajectory. Physics in Medicine and Biology. 50: 2249-65. PMID 15876665 DOI: 10.1088/0031-9155/50/10/005 |
0.476 |
|
2005 |
Dennerlein F, Katsevich A, Lauritsch G, Hornegger J. Exact and efficient cone-beam reconstruction algorithm for a short-scan circle combined with various lines Progress in Biomedical Optics and Imaging - Proceedings of Spie. 5747: 388-399. DOI: 10.1117/12.595186 |
0.384 |
|
2005 |
Katsevich A. Stability estimates for helical computer tomography Journal of Fourier Analysis and Applications. 11: 85-105. DOI: 10.1007/S00041-004-4013-6 |
0.316 |
|
2004 |
Katsevich A. Image reconstruction for the circle and line trajectory. Physics in Medicine and Biology. 49: 5059-72. PMID 15609558 DOI: 10.1088/0031-9155/49/22/003 |
0.371 |
|
2004 |
Katsevich A, Basu S, Hsieh J. Exact filtered backprojection reconstruction for dynamic pitch helical cone beam computed tomography. Physics in Medicine and Biology. 49: 3089-103. PMID 15357183 DOI: 10.1088/0031-9155/49/14/004 |
0.489 |
|
2004 |
Katsevich A. On two versions of a 3-pi algorithm for spiral CT. Physics in Medicine and Biology. 49: 2129-43. PMID 15248568 DOI: 10.1088/0031-9155/49/11/001 |
0.415 |
|
2004 |
Lauritsch G, Katsevich A, Hirsch M. Exact consideration of data redundancies for spiral cone-beam CT Proceedings of Spie - the International Society For Optical Engineering. 5370: 2034-2045. DOI: 10.1117/12.535249 |
0.411 |
|
2004 |
Katsevich A. An improved exact filtered backprojection algorithm for spiral computed tomography Advances in Applied Mathematics. 32: 681-697. DOI: 10.1016/S0196-8858(03)00099-X |
0.463 |
|
2003 |
Katsevich A. A general scheme for constructing inversion algorithms for cone beam CT International Journal of Mathematics and Mathematical Sciences. 2003: 1305-1321. DOI: 10.1155/S0161171203209315 |
0.437 |
|
2003 |
Katsevich A, Lauritsch G, Bruder H, Flohr T, Stierstorfer K. Evaluation and empirical analysis of an exact FBP algorithm for spiral cone-beam CT Proceedings of Spie - the International Society For Optical Engineering. 5032: 663-674. DOI: 10.1117/12.481348 |
0.396 |
|
2002 |
Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT. Physics in Medicine and Biology. 47: 2583-97. PMID 12200926 DOI: 10.1088/0031-9155/47/15/302 |
0.438 |
|
2002 |
Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT Siam Journal On Applied Mathematics. 62: 2012-2026. DOI: 10.1137/S0036139901387186 |
0.476 |
|
2002 |
Katsevich A. Microlocal analysis of an FBP algorithm for truncated spiral cone beam data Journal of Fourier Analysis and Applications. 8: 407-425. DOI: 10.1007/S00041-002-0020-7 |
0.488 |
|
2000 |
Katsevich A. On quasi-local inversion of spiral CT data Mathematical Methods in the Applied Sciences. 23: 271-297. DOI: 10.1002/(Sici)1099-1476(200002)23:3<271::Aid-Mma114>3.0.Co;2-C |
0.401 |
|
1999 |
Katsevich A. Asymptotics of pseudodifferential operators acting on functions with corner singularities Applicable Analysis. 72: 229-252. DOI: 10.1080/00036819908840739 |
0.327 |
|
1999 |
Katsevich A. Local Tomography with Nonsmooth Attenuation II Transactions of the American Mathematical Society. 351: 1947-1974. DOI: 10.1007/978-1-4020-7975-7_5 |
0.306 |
|
Show low-probability matches. |