Shibi Fang - Publications

Affiliations: 
Institute of Chemistry Chinese Academy of Sciences, Beijing, China 

63 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Ma P, Fang Y, Fu N, Zhou X, Fang S, Lin Y. Ionic conductivity enhancement of “soggy sand” electrolytes with AlOOH nanofibers for dye-sensitized solar cells Electrochimica Acta. 337: 135849. DOI: 10.1016/J.Electacta.2020.135849  0.478
2019 Fang Y, Ma P, Cheng H, Tan G, Wu J, Zheng J, Zhou X, Fang S, Dai Y, Lin Y. Synthesis of low-viscosity ionic liquids for application in dye-sensitized solar cells. Chemistry, An Asian Journal. PMID 31596051 DOI: 10.1002/Asia.201901130  0.383
2018 Ma P, Fang Y, Cheng H, Wang Y, Zhou X, Fang S, Lin Y. NH 2 -rich silica nanoparticle as a universal additive in electrolytes for high-efficiency quasi-solid-state dye-sensitized solar cells and quantum dot sensitized solar cells Electrochimica Acta. 262: 197-205. DOI: 10.1016/J.Electacta.2018.01.003  0.433
2018 Ma P, Tan J, Cheng H, Fang Y, Wang Y, Dai Y, Fang S, Zhou X, Lin Y. Polyaniline-grafted silica nanocomposites-based gel electrolytes for quasi-solid-state dye-sensitized solar cells Applied Surface Science. 427: 458-464. DOI: 10.1016/J.Apsusc.2017.08.018  0.51
2017 Fang Y, Ma P, Fu N, Zhou X, Fang S, Lin Y. Surface NH2-rich nanoparticles: Solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells Journal of Power Sources. 370: 20-26. DOI: 10.1016/J.Jpowsour.2017.10.007  0.418
2013 Huang Y, Xiang W, Zhou X, Fang S, Lin Y. The effect of oligo-organosiloxane on poly(ethylene oxide) electrolyte system for solid dye sensitized solar cells Electrochimica Acta. 89: 29-34. DOI: 10.1016/J.Electacta.2012.11.009  0.501
2012 Huang Y, Zhou X, Fang S, Lin Y. Molecular organic conductors with triiodide/hole dual channels as efficient electrolytes for solid-state dye sensitized solar cells Rsc Advances. 2: 5550-5553. DOI: 10.1039/C2Ra20629C  0.364
2012 Wang G, Zhuo S, Wang L, Fang S, Lin Y. Mono-ion transport electrolyte based on ionic liquid polymer for all-solid-state dye-sensitized solar cells Solar Energy. 86: 1546-1551. DOI: 10.1016/J.Solener.2012.02.016  0.556
2012 Fang Y, Zhang J, Zhou X, Lin Y, Fang S. A novel thixotropic and ionic liquid-based gel electrolyte for efficient dye-sensitized solar cells Electrochimica Acta. 68: 235-239. DOI: 10.1016/J.Electacta.2012.02.070  0.465
2012 Fang Y, Zhang J, Zhou X, Lin Y, Fang S. “Soggy sand” electrolyte based on COOH-functionalized silica nanoparticles for dye-sensitized solar cells Electrochemistry Communications. 16: 10-13. DOI: 10.1016/J.Elecom.2011.12.018  0.372
2011 Wang G, Wang L, Zhuo S, Fang S, Lin Y. An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells. Chemical Communications (Cambridge, England). 47: 2700-2. PMID 21234485 DOI: 10.1039/C0Cc04948D  0.509
2011 Xiang W, Fang Y, Lin Y, Fang S. Polymer–metal complex as gel electrolyte for quasi-solid-state dye-sensitized solar cells Electrochimica Acta. 56: 1605-1610. DOI: 10.1016/J.Electacta.2010.10.061  0.483
2011 Fang Y, Xiang W, Zhou X, Lin Y, Fang S. High-performance novel acidic ionic liquid polymer/ionic liquid composite polymer electrolyte for dye-sensitized solar cells Electrochemistry Communications. 13: 60-63. DOI: 10.1016/J.Elecom.2010.11.013  0.497
2010 Yin X, Tan W, Xiang W, Lin Y, Zhang J, Xiao X, Li X, Zhou X, Fang S. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells Electrochimica Acta. 55: 5803-5807. DOI: 10.1016/J.Electacta.2010.05.026  0.504
2009 Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Improvements of photocurrent by using modified SiO2 in the poly(ether urethane)/poly(ethylene oxide) polymer electrolyte for all-solid-state dye-sensitized solar cells Chemical Communications. 3895-3897. PMID 19662244 DOI: 10.1039/B903877A  0.525
2009 Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Influences of poly(ether urethane) introduction on poly(ethylene oxide) based polymer electrolyte for solvent-free dye-sensitized solar cells Electrochimica Acta. 54: 6645-6650. DOI: 10.1016/J.Electacta.2009.06.064  0.582
2009 Xiang W, Zhou Y, Yin X, Zhou X, Fang S, Lin Y. In situ quaterizable oligo-organophosphazene electrolyte with modified nanocomposite SiO2 for all-solid-state dye-sensitized solar cell Electrochimica Acta. 54: 4186-4191. DOI: 10.1016/J.Electacta.2009.02.063  0.485
2009 Xiang W, Zhou S, Yin X, Xiao X, Lin Y, Fang S. Polymer electrolyte using in situ quanternization for all solid-state dye-sensitized solar cells Polymers For Advanced Technologies. 20: 519-523. DOI: 10.1002/Pat.1375  0.499
2008 FANG S. POLYMER ELECTROLYTES FOR DYE-SENSITIZED SOLAR CELLS Acta Polymerica Sinica. 8: 507-516. DOI: 10.3724/SP.J.1105.2008.00507  0.404
2007 Li X, Zhang J, Xue Z, Yan R, Fang S. Novel Eucommia ulmoides Gum-based Damping Materials for Multicomponent Latex Interpenetrating Polymer Networks International Symposium On Eucommia Ulmoides. 1: 119-122. DOI: 10.3387/ISEU.1.119  0.331
2007 Zhou S, Fang S. High ionic conductivity of all-solid polymer electrolytes based on polyorganophosphazenes European Polymer Journal. 43: 3695-3700. DOI: 10.1016/J.EURPOLYMJ.2007.06.001  0.43
2007 Li M, Feng S, Fang S, Xiao X, Li X, Zhou X, Lin Y. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells Electrochimica Acta. 52: 4858-4863. DOI: 10.1016/J.Electacta.2007.01.027  0.479
2007 Li M, Feng S, Fang S, Xiao X, Li X, Zhou X, Lin Y. Quasi-solid state dye-sensitized solar cells based on pyridine or imidazole containing copolymer chemically crosslinked gel electrolytes Chinese Science Bulletin. 52: 2320-2325. DOI: 10.1007/s11434-007-0340-8  0.366
2006 Jiang H, Fang S. All solid-state comb-like network polymer electrolytes based on poly(methylsiloxane) Journal of Power Sources. 159: 673-678. DOI: 10.1016/J.Jpowsour.2005.11.019  0.528
2006 Zhou S, Fang S. Electrochemical characters of cross‐linkable oligo(oxyethylene) branched low molecular weight poly(organophosphazenes) Polymers For Advanced Technologies. 17: 518-522. DOI: 10.1002/Pat.739  0.542
2006 Wang L, Fang S, Lin Y. Novel polymer electrolytes containing chemically crosslinked gelators for dye‐sensitized solar cells Polymers For Advanced Technologies. 17: 512-517. DOI: 10.1002/Pat.738  0.538
2006 Jiang H, Fang S. New composite polymer electrolytes based on room temperature ionic liquids and polyether Polymers For Advanced Technologies. 17: 494-499. DOI: 10.1002/Pat.736  0.517
2005 Wang L, Fang S, Lin Y, Zhou X, Li M. A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chemical Communications (Cambridge, England). 5687-9. PMID 16292391 DOI: 10.1039/B510335E  0.526
2005 Li W, Kang J, Li X, Fang S, Lin Y, Wang G, Xiao X. A novel polymer quaternary ammonium iodide and application in quasi-solid-state dye-sensitized solar cells Journal of Photochemistry and Photobiology a-Chemistry. 170: 1-6. DOI: 10.1016/J.Jphotochem.2004.07.016  0.542
2004 Zhang C, Wang M, Zhou X, Lin Y, Fang S, Li X, Xiao X, Cen K. Optimization of polymer electrolytes for quasi-solidstate dye-sensitized solar cells Chinese Science Bulletin. 49: 2033-2036. DOI: 10.1360/03Wb0227  0.551
2004 Wang G, Zhou X, Li M, Zhang J, Kang J, Lin Y, Fang S, Xiao X. Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells Materials Research Bulletin. 39: 2113-2118. DOI: 10.1016/J.Materresbull.2004.07.004  0.563
2004 Kang J, Li W, Lin Y, Li X, Xiao X, Fang S. Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups Polymers For Advanced Technologies. 15: 61-64. DOI: 10.1002/Pat.434  0.51
2003 Pan Q, Guo K, Wang L, Fang S. Impedance Study on Graphite Encapsulated with Ionic Conducting Polymer for Lithium-Ion Batteries Electrochemical and Solid State Letters. 6. DOI: 10.1149/1.1621752  0.45
2003 Li W, Kang J, Li X, Fang S, Lin Y, Wang G, Xiao X. Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes Chinese Science Bulletin. 48: 646-648. DOI: 10.1007/Bf03325647  0.513
2003 Pan Q, Wang L, Fang S. Ionic conducting polymer encapsulated graphite as the anode material for lithium ion batteries Polymers For Advanced Technologies. 14: 216-220. DOI: 10.1002/Pat.294  0.483
2002 Pan Q, Guo K, Wang L, Fang S. Novel Modified Graphite as Anode Material for Lithium-Ion Batteries Journal of the Electrochemical Society. 149. DOI: 10.1149/1.1499499  0.476
2002 Pan Q, Guo K, Wang L, Fang S. Novel modified graphite as anode material for lithium ion batteries Journal of Materials Chemistry. 12: 1833-1838. DOI: 10.1039/B200230B  0.522
2002 Ren Y, Zhang Z, Fang S, Yang M, Cai S. Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells Solar Energy Materials and Solar Cells. 71: 253-259. DOI: 10.1016/S0927-0248(01)00084-8  0.642
2002 Guo K, Pan Q, Fang S. Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries Journal of Power Sources. 111: 350-356. DOI: 10.1016/S0378-7753(02)00347-6  0.422
2002 Wu Y, Fang S, Jiang Y, Holze R. Effects of doped sulfur on electrochemical performance of carbon anode Journal of Power Sources. 108: 245-249. DOI: 10.1016/S0378-7753(02)00013-7  0.432
2002 Pan Q, Guo K, Wang L, Fang S. Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries Solid State Ionics. 149: 193-200. DOI: 10.1016/S0167-2738(02)00278-3  0.528
2002 Xiang H, Fang S, Jiang Y. Carbons prepared from boron-containing polymers as host materials for lithium insertion Solid State Ionics. 148: 35-43. DOI: 10.1016/S0167-2738(02)00108-X  0.408
2001 Xiang H, Fang S, Jiang Y. Effect of cross-linking of polymer precursors on electrochemical properties of resultant carbons Synthetic Metals. 123: 287-292. DOI: 10.1016/S0379-6779(01)00297-1  0.534
2001 Xiang H, Fang S, Jiang Y. Lithium insertion in carbons prepared from phosphorus-containing polymers Journal of Power Sources. 94: 85-91. DOI: 10.1016/S0378-7753(00)00628-5  0.388
2000 Zhang Z, Fang S. Novel network polymer electrolytes based on polysiloxane with internal plasticizer Electrochimica Acta. 45: 2131-2138. DOI: 10.1016/S0013-4686(99)00435-1  0.632
2000 Zhang Z, Fang S. Ionic conductivity and physical stability study of gel nework polymer electrolytes Journal of Applied Polymer Science. 77: 2957-2962. DOI: 10.1002/1097-4628(20000923)77:13<2957::AID-APP19>3.0.CO;2-A  0.382
2000 Wu YP, Jiang CY, Wan CR, Fang SB, Jiang YY. Nitrogen-containing polymeric carbon as anode material for lithium ion secondary battery Journal of Applied Polymer Science. 77: 1735-1741. DOI: 10.1002/1097-4628(20000822)77:8<1735::AID-APP10>3.0.CO;2-W  0.32
1999 Wu Y, Wan C, Li Y, Fang S, Jiang Y. Effects of Morphology on the Properties of Carbon Anodes Electrochemical and Solid State Letters. 2: 118-120. DOI: 10.1149/1.1390753  0.35
1999 Wu Y, Li Y, Fang S, Jiang Y. Carbon anode materials based on copolymers of nitrogen-containing monomers with DVB Journal of Materials Science. 34: 4253-4258. DOI: 10.1023/A:1004654803464  0.478
1999 Wu Y, Fang S, Jiang Y. Effects of nitrogen on the carbon anode of a lithium secondary battery Solid State Ionics. 120: 117-123. DOI: 10.1016/S0167-2738(98)00158-1  0.424
1999 Deng B, Li Y, Wang R, Fang S. Two reduction processes for hydrogen adsorption and absorption at MmNi5-type alloy electrodes Electrochimica Acta. 44: 2853-2857. DOI: 10.1016/S0013-4686(99)00009-2  0.316
1999 Hu S, Fang S. Solid electrolyte based on an `inorganic salt–organic salt' hybrid system Electrochimica Acta. 44: 2721-2726. DOI: 10.1016/S0013-4686(98)00401-0  0.403
1999 Wu Y, Wan C, Jiang C, Fang S, Jiang Y. Mechanism of lithium storage in low temperature carbon Carbon. 37: 1901-1908. DOI: 10.1016/S0008-6223(99)00067-6  0.446
1999 Xiang H, Fang S, Jiang Y. A model for lithium insertion in high-capacity carbons with large hysteresis Carbon. 37: 709-711. DOI: 10.1016/S0008-6223(99)00039-1  0.336
1999 Xiang H, Fang S, Jiang Y. Mechanism of lithium insertion in carbons pyrolyzed at low temperature Chinese Science Bulletin. 44: 385-390. DOI: 10.1007/Bf02977874  0.377
1999 Yi F, Yang X, Li Y, Fang S. Synthesis and ion conductivity of poly(oxyethylene) methacrylates containing a quaternary ammonium group Polymers For Advanced Technologies. 10: 473-475. DOI: 10.1002/(Sici)1099-1581(199907)10:7<473::Aid-Pat900>3.0.Co;2-2  0.465
1999 Xiang H, Fang S, Jiang Y. Electrochemical properties of polyacenes prepared from poly(styrene-co-divinylbenzene) Polymers For Advanced Technologies. 10: 65-68. DOI: 10.1002/(Sici)1099-1581(199901/02)10:1/2<65::Aid-Pat768>3.0.Co;2-9  0.434
1998 Wu Y, Fang S, Jiang Y. Carbon anode materials based on melamine resin Journal of Materials Chemistry. 8: 2223-2227. DOI: 10.1039/A805080E  0.373
1998 Wu Y, Fang S, Jiang Y. Carbon anodes for a lithium secondary battery based on polyacrylonitrile Journal of Power Sources. 75: 201-206. DOI: 10.1016/S0378-7753(98)00097-4  0.405
1998 Wu Y, Fang S, Jiang Y. Investigation of the effects of V2O5 addition on the electrochemical properties of carbon anodes Journal of Power Sources. 75: 167-170. DOI: 10.1016/S0378-7753(98)00047-0  0.386
1998 Wu Y, Fang S, Ju W, Jiang Y. Improving the electrochemical properties of carbon anodes in lithium secondary batteries Journal of Power Sources. 70: 114-117. DOI: 10.1016/S0378-7753(97)02627-X  0.4
1998 Hu S, Fang S. A novel "inorganic salt-polymer salt" hybrid system as a solid state electrolyte Macromolecular Rapid Communications. 19: 539-542. DOI: 10.1002/(SICI)1521-3927(19981001)19:10<539::AID-MARC539>3.0.CO;2-Z  0.391
1997 Xiang H, Fang S, Jiang Y. Carbonaceous Anodes for Lithium‐Ion Batteries Prepared from Phenolic Resins with Different Cross‐linking Densities Journal of the Electrochemical Society. 144. DOI: 10.1149/1.1837794  0.383
Show low-probability matches.