Year |
Citation |
Score |
2022 |
Spietz RL, Payne D, Kulkarni G, Metcalf WW, Roden EE, Boyd ES. Investigating Abiotic and Biotic Mechanisms of Pyrite Reduction. Frontiers in Microbiology. 13: 878387. PMID 35615515 DOI: 10.3389/fmicb.2022.878387 |
0.568 |
|
2021 |
Napieralski SA, Fang Y, Marcon V, Forsythe B, Brantley SL, Xu H, Roden EE. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. Geobiology. PMID 34633148 DOI: 10.1111/gbi.12474 |
0.345 |
|
2020 |
Napieralski SA, Roden EE. The Weathering Microbiome of an Outcropping Granodiorite. Frontiers in Microbiology. 11: 601907. PMID 33381096 DOI: 10.3389/fmicb.2020.601907 |
0.557 |
|
2020 |
Fortney NW, Beard BL, Hutchings JA, Shields MR, Bianchi TS, Boyd ES, Johnson CM, Roden EE. Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Astrobiology. PMID 32580560 DOI: 10.1089/Ast.2019.2058 |
0.666 |
|
2019 |
Napieralski SA, Buss HL, Brantley SL, Lee S, Xu H, Roden EE. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proceedings of the National Academy of Sciences of the United States of America. PMID 31843926 DOI: 10.1073/Pnas.1909970117 |
0.662 |
|
2019 |
He S, Lau MP, Linz AM, Roden EE, McMahon KD. Extracellular Electron Transfer May Be an Overlooked Contribution to Pelagic Respiration in Humic-Rich Freshwater Lakes. Msphere. 4. PMID 30674644 DOI: 10.1128/mSphere.00436-18 |
0.337 |
|
2019 |
Jung HB, Xu H, Roden EE. Long-term sorption and desorption of uranium in saprolite subsoil with nanoporous goethite Applied Geochemistry. 102: 129-138. DOI: 10.1016/J.Apgeochem.2019.01.017 |
0.445 |
|
2018 |
Thiel V, Garcia Costas AM, Fortney NW, Martinez JN, Tank M, Roden EE, Boyd ES, Ward DM, Hanada S, Bryant DA. " Thermonerobacter thiotrophicus," A Non-phototrophic Member of the With Dissimilatory Sulfur Metabolism in Hot Spring Mat Communities. Frontiers in Microbiology. 9: 3159. PMID 30687241 DOI: 10.3389/Fmicb.2018.03159 |
0.343 |
|
2018 |
Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE. Stability of ferrihydrite-humic acid coprecipitates under iron-reducing conditions. Environmental Science & Technology. PMID 30354092 DOI: 10.1021/Acs.Est.8B03615 |
0.551 |
|
2018 |
Fortney NW, He S, Converse BJ, Boyd ES, Roden EE. Investigating the Composition and Metabolic Potential of Microbial Communities in Chocolate Pots Hot Springs. Frontiers in Microbiology. 9: 2075. PMID 30245673 DOI: 10.3389/Fmicb.2018.02075 |
0.656 |
|
2018 |
Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES. Electron Acceptor Availability Alters Carbon and Energy Metabolism in a Thermoacidophile. Environmental Microbiology. PMID 29749696 DOI: 10.1111/1462-2920.14270 |
0.469 |
|
2018 |
Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction. Environmental Science & Technology. PMID 29658273 DOI: 10.1021/Acs.Est.7B06574 |
0.462 |
|
2018 |
Fortney NW, He S, Kulkarni A, Friedrich MW, Holz C, Boyd ES, Roden EE. Stable isotope probing of microbial iron reduction in Chocolate Pots hot spring, Yellowstone National Park. Applied and Environmental Microbiology. PMID 29602784 DOI: 10.1128/Aem.02894-17 |
0.667 |
|
2017 |
Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES. Microbial substrate preference dictated by energy demand, not supply. Nature Geoscience. 10: 577-581. PMID 30944580 DOI: 10.1038/Ngeo2978 |
0.472 |
|
2017 |
He S, Barco RA, Emerson D, Roden EE. Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer. Frontiers in Microbiology. 8: 1584. PMID 28871245 DOI: 10.3389/Fmicb.2017.01584 |
0.466 |
|
2017 |
Stern N, Ginder-Vogel M, Stegen JC, Arntzen E, Kennedy DW, Larget BR, Roden EE. Colonization habitat controls biomass, composition, and metabolic activity of attached microbial communities in the Columbia River hyporheic corridor. Applied and Environmental Microbiology. PMID 28600318 DOI: 10.1128/Aem.00260-17 |
0.314 |
|
2017 |
Creswell JE, Shafer MM, Babiarz CL, Tan SZ, Musinsky AL, Schott TH, Roden EE, Armstrong DE. Biogeochemical controls on mercury methylation in the Allequash Creek wetland. Environmental Science and Pollution Research International. PMID 28502050 DOI: 10.1007/S11356-017-9094-2 |
0.363 |
|
2017 |
Percak-Dennett E, He S, Converse B, Konishi H, Xu H, Corcoran A, Noguera D, Chan C, Bhayyacharyya A, Borch T, Boyd E, Roden EE. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. Geobiology. PMID 28452176 DOI: 10.1111/Gbi.12241 |
0.54 |
|
2017 |
Adhikari D, Zhao Q, Das K, Mejia J, Huang R, Wang X, Poulson SR, Tang Y, Roden EE, Yang Y. Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction Geochimica Et Cosmochimica Acta. 212: 221-233. DOI: 10.1016/J.Gca.2017.06.017 |
0.62 |
|
2017 |
Zhao Q, Adhikari D, Huang R, Patel A, Wang X, Tang Y, Obrist D, Roden EE, Yang Y. Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction Chemical Geology. 464: 118-126. DOI: 10.1016/J.Chemgeo.2016.12.014 |
0.627 |
|
2016 |
Shi B, Liu K, Wu L, Li W, Smeaton CM, Beard BL, Johnson CM, Roden EE, Van Cappellen P. Iron isotope fractionations reveal a finite bioavailable Fe pool for structural Fe(III) reduction in nontronite. Environmental Science & Technology. PMID 27291525 DOI: 10.1021/Acs.Est.6B02019 |
0.647 |
|
2016 |
Urschel MR, Hamilton TL, Roden EE, Boyd ES. Substrate Preference, Uptake Kinetics, and Bioenergetics in a Facultatively Autotrophic, Thermoacidophilic Crenarchaeote. Fems Microbiology Ecology. PMID 27037359 DOI: 10.1093/Femsec/Fiw069 |
0.325 |
|
2016 |
Mejia J, Roden EE, Ginder-Vogel MA. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science & Technology. PMID 26949922 DOI: 10.1021/Acs.Est.5B05519 |
0.681 |
|
2016 |
He S, Tominski C, Kappler A, Behrens S, Roden EE. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment Culture KS. Applied and Environmental Microbiology. PMID 26896135 DOI: 10.1128/Aem.03493-15 |
0.587 |
|
2016 |
Xu S, Adhikari D, Huang R, Zhang H, Tang Y, Roden EE, Yang Y. Biochar-Facilitated Microbial Reduction of Hematite. Environmental Science & Technology. PMID 26836650 DOI: 10.1021/Acs.Est.5B05517 |
0.56 |
|
2016 |
Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park. Geobiology. PMID 26750514 DOI: 10.1111/Gbi.12173 |
0.685 |
|
2016 |
Wu T, Griffin AM, Gorski CA, Shelobolina ES, Xu H, Kukkadapu RK, Roden EE. Interactions Between Fe(III)-oxides and Fe(III)-phyllosilicates During Microbial Reduction 2: Natural Subsurface Sediments Geomicrobiology Journal. 34: 231-241. DOI: 10.1080/01490451.2016.1174758 |
0.68 |
|
2016 |
Wu T, Kukkadapu RK, Griffin AM, Gorski CA, Konishi H, Xu H, Roden EE. Interactions Between Fe(III)-Oxides and Fe(III)-Phyllosilicates During Microbial Reduction 1: Synthetic Sediments Geomicrobiology Journal. 33: 793-806. DOI: 10.1080/01490451.2015.1117546 |
0.691 |
|
2016 |
Jung HB, Xu H, Konishi H, Roden EE. Role of nano-goethite in controlling U(VI) sorption-desorption in subsurface soil Journal of Geochemical Exploration. 169: 80-88. DOI: 10.1016/J.Gexplo.2016.07.014 |
0.442 |
|
2016 |
Reddy TR, Zheng XY, Roden EE, Beard BL, Johnson CM. Silicon isotope fractionation during microbial reduction of Fe(III)–Si gels under Archean seawater conditions and implications for iron formation genesis Geochimica Et Cosmochimica Acta. 190: 85-99. DOI: 10.1016/J.Gca.2016.06.035 |
0.621 |
|
2016 |
Zheng XY, Beard BL, Reddy TR, Roden EE, Johnson CM. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks Geochimica Et Cosmochimica Acta. 187: 102-122. DOI: 10.1016/J.Gca.2016.05.012 |
0.498 |
|
2015 |
Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, Roden EE. The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3. Frontiers in Microbiology. 6: 1389. PMID 26733947 DOI: 10.3389/Fmicb.2015.01389 |
0.324 |
|
2015 |
Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K, van Gelder W, Glover K, Roden EE, Boyd ES. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph. Applied and Environmental Microbiology. PMID 26712544 DOI: 10.1128/Aem.03398-15 |
0.436 |
|
2015 |
Converse BJ, McKinley JP, Resch CT, Roden EE. Microbial mineral colonization across a subsurface redox transition zone. Frontiers in Microbiology. 6: 858. PMID 26379637 DOI: 10.3389/Fmicb.2015.00858 |
0.608 |
|
2015 |
Xiong MY, Shelobolina ES, Roden EE. Potential for microbial oxidation of ferrous iron in basaltic glass. Astrobiology. 15: 331-40. PMID 25915449 DOI: 10.1089/ast.2014.1233 |
0.62 |
|
2015 |
Zhang F, Xu H, Shelobolina ES, Konishi H, Converse B, Shen Z, Roden EE. The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: Implications for the "dolomite problem" American Mineralogist. 100: 483-494. DOI: 10.2138/Am-2015-4999 |
0.324 |
|
2014 |
Percak-Dennett EM, Roden EE. Geochemical and microbiological responses to oxidant introduction into reduced subsurface sediment from the Hanford 300 Area, Washington. Environmental Science & Technology. 48: 9197-204. PMID 25014732 DOI: 10.1021/Es5009856 |
0.656 |
|
2013 |
Benzine J, Shelobolina E, Xiong MY, Kennedy DW, McKinley JP, Lin X, Roden EE. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Frontiers in Microbiology. 4: 388. PMID 24379809 DOI: 10.3389/Fmicb.2013.00388 |
0.652 |
|
2013 |
Wu L, Brucker RP, Beard BL, Roden EE, Johnson CM. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park. Astrobiology. 13: 1091-101. PMID 24219169 DOI: 10.1089/Ast.2013.0996 |
0.675 |
|
2013 |
Converse BJ, Wu T, Findlay RH, Roden EE. U(VI) reduction in sulfate-reducing subsurface sediments amended with ethanol or acetate. Applied and Environmental Microbiology. 79: 4173-7. PMID 23624470 DOI: 10.1128/Aem.00420-13 |
0.355 |
|
2013 |
Jin Q, Roden EE, Giska JR. Geomicrobial Kinetics: Extrapolating Laboratory Studies to Natural Environments Geomicrobiology Journal. 30: 173-185. DOI: 10.1080/01490451.2011.653084 |
0.3 |
|
2013 |
Li W, Czaja AD, Van Kranendonk MJ, Beard BL, Roden EE, Johnson CM. An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago Geochimica Et Cosmochimica Acta. 120: 65-79. DOI: 10.1016/J.Gca.2013.06.033 |
0.619 |
|
2013 |
Czaja AD, Johnson CM, Beard BL, Roden EE, Li W, Moorbath S. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland) Earth and Planetary Science Letters. 363: 192-203. DOI: 10.1016/J.Epsl.2012.12.025 |
0.64 |
|
2013 |
Percak-Dennett EM, Loizeau JL, Beard BL, Johnson CM, Roden EE. Iron isotope geochemistry of biogenic magnetite-bearing sediments from the bay of vidy, lake geneva Chemical Geology. 360: 32-40. DOI: 10.1016/J.Chemgeo.2013.10.008 |
0.663 |
|
2012 |
Roden EE. Microbial iron-redox cycling in subsurface environments. Biochemical Society Transactions. 40: 1249-56. PMID 23176463 DOI: 10.1042/Bst20120202 |
0.546 |
|
2012 |
Emerson D, Roden E, Twining BS. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Frontiers in Microbiology. 3: 383. PMID 23118735 DOI: 10.3389/Fmicb.2012.00383 |
0.459 |
|
2012 |
Wu T, Shelobolina E, Xu H, Konishi H, Kukkadapu R, Roden EE. Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments. Environmental Science & Technology. 46: 11618-26. PMID 23061986 DOI: 10.1021/Es302639N |
0.658 |
|
2012 |
Regier N, Frey B, Converse B, Roden E, Grosse-Honebrink A, Bravo AG, Cosio C. Effect of Elodea nuttallii roots on bacterial communities and MMHg proportion in a Hg polluted sediment. Plos One. 7: e45565. PMID 23029102 DOI: 10.1371/Journal.Pone.0045565 |
0.339 |
|
2012 |
Roden EE, McBeth JM, Blöthe M, Percak-Dennett EM, Fleming EJ, Holyoke RR, Luther GW, Emerson D, Schieber J. The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep. Frontiers in Microbiology. 3: 172. PMID 22783228 DOI: 10.3389/Fmicb.2012.00172 |
0.629 |
|
2012 |
Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Applied and Environmental Microbiology. 78: 5746-52. PMID 22685132 DOI: 10.1128/Aem.01034-12 |
0.673 |
|
2012 |
Jung HB, Boyanov MI, Konishi H, Sun Y, Mishra B, Kemner KM, Roden EE, Xu H. Redox behavior of uranium at the nanoporous aluminum oxide-water interface: implications for uranium remediation. Environmental Science & Technology. 46: 7301-9. PMID 22681597 DOI: 10.1021/Es2044163 |
0.4 |
|
2012 |
Shelobolina E, Konishi H, Xu H, Benzine J, Xiong MY, Wu T, Blöthe M, Roden E. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil. Frontiers in Microbiology. 3: 134. PMID 22493596 DOI: 10.3389/Fmicb.2012.00134 |
0.663 |
|
2012 |
Zhang F, Xu H, Konishi H, Kemp JM, Roden EE, Shen Z. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite Geochimica Et Cosmochimica Acta. 97: 148-165. DOI: 10.1016/J.Gca.2012.09.008 |
0.371 |
|
2012 |
Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR, Nägler TF, Beukes NJ, Wille M. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation Geochimica Et Cosmochimica Acta. 86: 118-137. DOI: 10.1016/J.Gca.2012.03.007 |
0.565 |
|
2012 |
Wu L, Percak-Dennett EM, Beard BL, Roden EE, Johnson CM. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record Geochimica Et Cosmochimica Acta. 84: 14-28. DOI: 10.1016/J.Gca.2012.01.007 |
0.645 |
|
2011 |
Chakraborty A, Roden EE, Schieber J, Picardal F. Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Applied and Environmental Microbiology. 77: 8548-56. PMID 22003007 DOI: 10.1128/Aem.06214-11 |
0.665 |
|
2011 |
Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE. Repeated anaerobic microbial redox cycling of iron. Applied and Environmental Microbiology. 77: 6036-42. PMID 21742920 DOI: 10.1128/Aem.00276-11 |
0.689 |
|
2011 |
Jin Q, Roden EE. Microbial physiology-based model of ethanol metabolism in subsurface sediments. Journal of Contaminant Hydrology. 125: 1-12. PMID 21652106 DOI: 10.1016/J.Jconhyd.2011.04.002 |
0.324 |
|
2011 |
Percak-Dennett EM, Beard BL, Xu H, Konishi H, Johnson CM, Roden EE. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology. 9: 205-20. PMID 21504536 DOI: 10.1111/J.1472-4669.2011.00277.X |
0.67 |
|
2011 |
Wu L, Beard BL, Roden EE, Johnson CM. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Environmental Science & Technology. 45: 1847-52. PMID 21294566 DOI: 10.1021/Es103171X |
0.659 |
|
2011 |
Konhauser KO, Kappler A, Roden EE. Iron in microbial metabolisms Elements. 7: 89-93. DOI: 10.2113/Gselements.7.2.89 |
0.65 |
|
2011 |
Regberg A, Singha K, Tien M, Picardal F, Zheng Q, Schieber J, Roden E, Brantley SL. Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems Water Resources Research. 47. DOI: 10.1029/2010Wr009551 |
0.352 |
|
2010 |
Tangalos GE, Beard BL, Johnson CM, Alpers CN, Shelobolina ES, Xu H, Konishi H, Roden EE. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Geobiology. 8: 197-208. PMID 20374296 DOI: 10.1111/J.1472-4669.2010.00237.X |
0.678 |
|
2010 |
Istok JD, Park M, Michalsen M, Spain AM, Krumholz LR, Liu C, McKinley J, Long P, Roden E, Peacock AD, Baldwin B. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction. Journal of Contaminant Hydrology. 112: 1-14. PMID 19683832 DOI: 10.1016/J.Jconhyd.2009.07.004 |
0.32 |
|
2010 |
Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu H. Extracellular electron transfer through microbial reduction of solid-phase humic substances Nature Geoscience. 3: 417-421. DOI: 10.1038/Ngeo870 |
0.493 |
|
2010 |
Wu L, Beard BL, Roden EE, Kennedy CB, Johnson CM. Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions Geochimica Et Cosmochimica Acta. 74: 4249-4265. DOI: 10.1016/J.Gca.2010.04.060 |
0.661 |
|
2010 |
Kirk MF, Roden EE, Crossey LJ, Brealey AJ, Spilde MN. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors Geochimica Et Cosmochimica Acta. 74: 2538-2555. DOI: 10.1016/J.Gca.2010.02.002 |
0.631 |
|
2010 |
Heimann A, Johnson CM, Beard BL, Valley JW, Roden EE, Spicuzza MJ, Beukes NJ. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments Earth and Planetary Science Letters. 294: 8-18. DOI: 10.1016/J.Epsl.2010.02.015 |
0.592 |
|
2010 |
Craig L, Bahr JM, Roden EE. Localized zones of denitrification in a floodplain aquifer in Southern Wisconsin, USA Hydrogeology Journal. 18: 1867-1879. DOI: 10.1007/S10040-010-0665-2 |
0.43 |
|
2009 |
Blöthe M, Roden EE. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Applied and Environmental Microbiology. 75: 6937-40. PMID 19749073 DOI: 10.1128/Aem.01742-09 |
0.615 |
|
2009 |
Shelobolina ES, Konishi H, Xu H, Roden EE. U(VI) sequestration in hydroxyapatite produced by microbial glycerol 3-phosphate metabolism. Applied and Environmental Microbiology. 75: 5773-8. PMID 19633115 DOI: 10.1128/Aem.00628-09 |
0.328 |
|
2009 |
Blöthe M, Roden EE. Microbial iron redox cycling in a circumneutral-pH groundwater seep. Applied and Environmental Microbiology. 75: 468-73. PMID 19047399 DOI: 10.1128/Aem.01817-08 |
0.659 |
|
2009 |
Wu L, Beard BL, Roden EE, Johnson CM. Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite Geochimica Et Cosmochimica Acta. 73: 5584-5599. DOI: 10.1016/J.Gca.2009.06.026 |
0.66 |
|
2008 |
Mohanty SR, Kollah B, Hedrick DB, Peacock AD, Kukkadapu RK, Roden EE. Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments. Environmental Science & Technology. 42: 4384-90. PMID 18605559 DOI: 10.1021/Es703082V |
0.469 |
|
2008 |
Johnson CM, Beard BL, Roden EE. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth Annual Review of Earth and Planetary Sciences. 36: 457-493. DOI: 10.1146/Annurev.Earth.36.031207.124139 |
0.561 |
|
2008 |
Creswell JE, Kerr SC, Meyer MH, Babiarz CL, Shafer MM, Armstrong DE, Roden EE. Factors controlling temporal and spatial distribution of total mercury and methylmercury in hyporheic sediments of the Allequash Creek wetland, northern Wisconsin Journal of Geophysical Research: Biogeosciences. 113: n/a-n/a. DOI: 10.1029/2008Jg000742 |
0.435 |
|
2008 |
Johnson CM, Beard BL, Klein C, Beukes NJ, Roden EE. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis Geochimica Et Cosmochimica Acta. 72: 151-169. DOI: 10.1016/J.Gca.2007.10.013 |
0.622 |
|
2007 |
Phillippi JM, Loganathan VA, McIndoe MJ, Barnett MO, Clement TP, Roden EE. Theoretical solid/solution ratio effects on adsorption and transport: Uranium(VI) and carbonate Soil Science Society of America Journal. 71: 329-335. DOI: 10.2136/Sssaj2006.0159 |
0.343 |
|
2007 |
Romero-González MR, Cheng T, Barnett MO, Roden EE. Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption Radiochimica Acta. 95: 251-259. DOI: 10.1524/Ract.2007.95.5.251 |
0.569 |
|
2007 |
Crosby HA, Roden EE, Johnson CM, Beard BL. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens Geobiology. 5: 169-189. DOI: 10.1111/J.1472-4669.2007.00103.X |
0.659 |
|
2007 |
Burgos WD, Senko JM, Dempsey BA, Roden EE, Stone JJ, Kemner KM, Kelly SD. Soil humic acid decreases biological uranium(VI) reduction by Shewanella putrefaciens CN32 Environmental Engineering Science. 24: 755-761. DOI: 10.1089/Ees.2006.0009 |
0.371 |
|
2007 |
Boyanov MI, O'Loughlin EJ, Roden EE, Fein JB, Kemner KM. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS Geochimica Et Cosmochimica Acta. 71: 1898-1912. DOI: 10.1016/J.Gca.2007.01.025 |
0.596 |
|
2006 |
Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology. 72: 7919-21. PMID 17056699 DOI: 10.1128/Aem.01602-06 |
0.444 |
|
2006 |
Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environmental Microbiology. 8: 100-13. PMID 16343326 DOI: 10.1111/J.1462-2920.2005.00873.X |
0.818 |
|
2006 |
Scheibe TD, Fang Y, Murray CJ, Roden EE, Chen J, Chien YJ, Brooks SC, Hubbard SS. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer Geosphere. 2: 220-235. DOI: 10.1130/Ges00029.1 |
0.391 |
|
2006 |
Roden EE. Geochemical and microbiological controls on dissimilatory iron reduction Comptes Rendus - Geoscience. 338: 456-467. DOI: 10.1016/J.Crte.2006.04.009 |
0.645 |
|
2005 |
Crosby HA, Johnson CM, Roden EE, Beard BL. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environmental Science & Technology. 39: 6698-704. PMID 16190229 DOI: 10.1021/Es0505346 |
0.675 |
|
2005 |
Jeon BH, Dempsey BA, Burgos WD, Barnett MO, Roden EE. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environmental Science & Technology. 39: 5642-9. PMID 16124298 DOI: 10.1021/Es0487527 |
0.685 |
|
2005 |
Warner KA, Bonzongo JC, Roden EE, Ward GM, Green AC, Chaubey I, Lyons WB, Arrington DA. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. The Science of the Total Environment. 347: 187-207. PMID 16084978 DOI: 10.1016/J.Scitotenv.2004.12.011 |
0.38 |
|
2005 |
Roden EE, Scheibe TD. Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments. Chemosphere. 59: 617-28. PMID 15792659 DOI: 10.1016/J.Chemosphere.2004.11.007 |
0.347 |
|
2005 |
Johnson CM, Roden EE, Welch SA, Beard BL. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction Geochimica Et Cosmochimica Acta. 69: 963-993. DOI: 10.1016/J.Gca.2004.06.043 |
0.666 |
|
2004 |
Wildung RE, Li SW, Murray CJ, Krupka KM, Xie Y, Hess NJ, Roden EE. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential Fems Microbiology Ecology. 49: 151-162. PMID 19712393 DOI: 10.1016/J.Femsec.2003.08.016 |
0.665 |
|
2004 |
Jeon OH, Kelly SD, Kemner KM, Barnett MO, Burgos WD, Dempsey BA, Roden EE. Microbial reduction of U(VI) at the solid-water interface. Environmental Science & Technology. 38: 5649-55. PMID 15575284 DOI: 10.1021/Es0496120 |
0.626 |
|
2004 |
Cheng T, Barnett MO, Roden EE, Zhuang J. Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environmental Science & Technology. 38: 6059-65. PMID 15573607 DOI: 10.1021/Es040388O |
0.38 |
|
2004 |
Johnson CM, Beard BL, Roden EE, Newman DK, Nealson KH. Isotopic constraints on biogeochemical cycling of Fe Reviews in Mineralogy and Geochemistry. 55: 359-408. DOI: 10.2138/Gsrmg.55.1.359 |
0.643 |
|
2004 |
Roden EE, Sobolev D, Glazer B, Luther GW. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface Geomicrobiology Journal. 21: 379-391. DOI: 10.1080/01490450490485872 |
0.806 |
|
2004 |
Sobolev D, Roden EE. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium from freshwater wetland sediments Geomicrobiology Journal. 21: 1-10. DOI: 10.1080/01490450490253310 |
0.774 |
|
2004 |
Chen J, Hubbard S, Rubin Y, Murray C, Roden E, Majer E. Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: A case study at the South Oyster bacterial transport site in Virginia Water Resources Research. 40. DOI: 10.1029/2003Wr002883 |
0.571 |
|
2004 |
Roden EE. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics Geochimica Et Cosmochimica Acta. 68: 3205-3216. DOI: 10.1016/J.Gca.2004.03.028 |
0.632 |
|
2003 |
Roden EE. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms. Applied and Environmental Microbiology. 69: 5702-6. PMID 12957966 DOI: 10.1128/Aem.69.9.5702-5706.2003 |
0.651 |
|
2003 |
Warner KA, Roden EE, Bonzongo JC. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environmental Science & Technology. 37: 2159-65. PMID 12785521 DOI: 10.1021/Es0262939 |
0.44 |
|
2003 |
Roden EE, Wetzel RG. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments Microbial Ecology. 45: 252-258. PMID 12658519 DOI: 10.1007/S00248-002-1037-9 |
0.586 |
|
2003 |
Roden EE. Fe(III) oxide reactivity toward biological versus chemical reduction Environmental Science and Technology. 37: 1319-1324. DOI: 10.1021/Es026038O |
0.631 |
|
2002 |
Sobolev D, Roden EE. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie Van Leeuwenhoek. 81: 587-97. PMID 12448754 DOI: 10.1023/A:1020569908536 |
0.812 |
|
2002 |
Roden EE, Wetzel RG. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments Limnology and Oceanography. 47: 198-211. DOI: 10.4319/Lo.2002.47.1.0198 |
0.68 |
|
2002 |
Roden EE, Urrutia MM. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction Geomicrobiology Journal. 19: 209-251. DOI: 10.1080/01490450252864280 |
0.688 |
|
2002 |
Roden EE, Leonardo MR, Ferris FG. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction Geochimica Et Cosmochimica Acta. 66: 2823-2839. DOI: 10.1016/S0016-7037(02)00878-5 |
0.522 |
|
2001 |
Weber KA, Picardal FW, Roden EE. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environmental Science & Technology. 35: 1644-50. PMID 11329715 DOI: 10.1021/Es0016598 |
0.788 |
|
2001 |
Sobolev D, Roden EE. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH. Applied and Environmental Microbiology. 67: 1328-34. PMID 11229928 DOI: 10.1128/Aem.67.3.1328-1334.2001 |
0.805 |
|
2000 |
Roden EE, Urrutia MM, Mann CJ. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors Applied and Environmental Microbiology. 66: 1062-1065. PMID 10698772 DOI: 10.1128/Aem.66.3.1062-1065.2000 |
0.675 |
|
2000 |
Parmar N, Warren LA, Roden EE, Ferris FG. Solid phase capture of strontium by the iron reducing bacteria Shewanella alga strain BrY Chemical Geology. 169: 281-288. DOI: 10.1016/S0009-2541(00)00208-4 |
0.512 |
|
2000 |
Roden EE, Ferris FG. Immobilization of aqueous strontium during carbonate mineral formation coupled to microbial Fe(III) oxide reduction Acs Division of Environmental Chemistry, Preprints. 40: 400-402. |
0.545 |
|
1999 |
Small TD, Warren LA, Roden EE, Ferris FG. Sorption of strontium by bacteria, fe(III) oxide, and bacteria - Fe(III) oxide composites Environmental Science and Technology. 33: 4465-4470. DOI: 10.1021/Es9905694 |
0.549 |
|
1999 |
Urrutia MM, Roden EE, Zachara JM. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(II) oxides Environmental Science and Technology. 33: 4022-4028. DOI: 10.1021/Es990447B |
0.655 |
|
1999 |
Roden EE, Urrutia MM. Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides Environmental Science and Technology. 33: 1847-1853. DOI: 10.1021/Es9809859 |
0.682 |
|
1998 |
Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR. Recovery of humic-reducing bacteria from a diversity of environments Applied and Environmental Microbiology. 64: 1504-1509. PMID 9546186 DOI: 10.1128/Aem.64.4.1504-1509.1998 |
0.516 |
|
1998 |
Urrutia MM, Roden EE, Fredrickson JK, Zachara JM. Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron‐reducing bacteriumShewanella alga Geomicrobiology Journal. 15: 269-291. DOI: 10.1080/01490459809378083 |
0.673 |
|
1998 |
Urrutia MM, Roden EE, Fredrickson JK, Zachara JM. Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Geomicrobiology Journal. 15: 269-291. |
0.622 |
|
1997 |
Roden EE, Edmonds JW. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation Archiv Fur Hydrobiologie. 139: 347-378. DOI: 10.1127/Archiv-Hydrobiol/139/1997/347 |
0.662 |
|
1996 |
Roden EE, Wetzel RG. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments Limnology and Oceanography. 41: 1733-1748. DOI: 10.4319/Lo.1996.41.8.1733 |
0.663 |
|
1996 |
Roden EE, Tuttle JH. Carbon cycling in mesohaline Chesapeake Bay sediments 2: Kinetics of particulate and dissolved organic carbon turnover Journal of Marine Research. 54: 343-383. DOI: 10.1357/0022240963213349 |
0.331 |
|
1996 |
Roden EE, Zachara JM. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth Environmental Science and Technology. 30: 1618-1628. DOI: 10.1021/Es9506216 |
0.654 |
|
1995 |
Roden EE, Tuttle JH, Boynton WR, Kemp WM. Carbon cycling in mesohaline Chesapeake Bay sediments 1: POC deposition rates and mineralization pathways Journal of Marine Research. 53: 799-819. DOI: 10.1357/0022240953213025 |
0.317 |
|
1993 |
Roden EE, Tuttle JH. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments Marine Ecology Progress Series. 93: 101-118. DOI: 10.3354/Meps093101 |
0.357 |
|
1993 |
Phillips EJP, Lovley DR, Roden EE. Composition of non-microbially reducible Fe(III) in aquatic sediments Applied and Environmental Microbiology. 59: 2727-2729. DOI: 10.1128/Aem.59.8.2727-2729.1993 |
0.671 |
|
1993 |
Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans Applied and Environmental Microbiology. 59: 734-742. DOI: 10.1128/Aem.59.3.734-742.1993 |
0.65 |
|
1993 |
Roden EE, Lovley DR. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments Geomicrobiology Journal. 11: 49-56. DOI: 10.1080/01490459309377931 |
0.666 |
|
1993 |
Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria Marine Geology. 113: 41-53. DOI: 10.1016/0025-3227(93)90148-O |
0.681 |
|
1993 |
Roden EE, Tuttle JH. Inorganic sulfur turnover in oligohaline estuarine sediments Biogeochemistry. 22: 81-105. DOI: 10.1007/Bf00002706 |
0.356 |
|
Show low-probability matches. |