Carol A. Kumamoto - Publications

Affiliations: 
Molecular Microbiology Sackler School of Graduate Biomedical Sciences (Tufts University) 
Area:
Microbiology Biology, Molecular Biology

77 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus exacerbates infection by the bacterial pathogen in a murine model. Msphere. 8: e0012223. PMID 37358292 DOI: 10.1128/msphere.00122-23  0.315
2022 Romo JA, Kumamoto CA. Characterization of the Effects of Candida Gastrointestinal Colonization on Clostridioides difficile Infection in a Murine Model. Methods in Molecular Biology (Clifton, N.J.). 2542: 271-285. PMID 36008672 DOI: 10.1007/978-1-0716-2549-1_20  0.315
2020 Markey L, Hooper A, Melon LC, Baglot S, Hill MN, Maguire J, Kumamoto CA. Colonization with the commensal fungus Candida albicans perturbs the gut-brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology. 121: 104808. PMID 32739746 DOI: 10.1016/J.Psyneuen.2020.104808  0.327
2020 Romo JA, Markey L, Kumamoto CA. Lipid Species in the GI Tract are Increased by the Commensal Fungus and Decrease the Virulence of . Journal of Fungi (Basel, Switzerland). 6. PMID 32635220 DOI: 10.3390/Jof6030100  0.35
2020 Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Current Opinion in Microbiology. 56: 7-15. PMID 32604030 DOI: 10.1016/J.Mib.2020.05.006  0.435
2020 Romo JA, Kumamoto CA. On Commensalism of . Journal of Fungi (Basel, Switzerland). 6. PMID 31963458 DOI: 10.3390/Jof6010016  0.382
2019 Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. Plos Pathogens. 15: e1007823. PMID 31809527 DOI: 10.1371/Journal.Ppat.1007823  0.433
2019 Stewart D, Romo JA, Lamendella R, Kumamoto CA. The Role of Fungi in C. difficile Infection: An Underappreciated Transkingdom Interaction. Fungal Genetics and Biology : Fg & B. PMID 30978391 DOI: 10.1016/J.Fgb.2019.04.007  0.381
2019 Tscherner M, Giessen TW, Markey L, Kumamoto C, Silver PA. A synthetic system that senses Candida albicans and inhibits virulence factors. Acs Synthetic Biology. PMID 30608638 DOI: 10.1021/Acssynbio.8B00457  0.405
2018 Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes. 0. PMID 29667487 DOI: 10.1080/19490976.2018.1465158  0.451
2018 Shaban L, Chen Y, Fasciano AC, Lin Y, Kaplan DL, Kumamoto CA, Mecsas J. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe. PMID 29462695 DOI: 10.1016/J.Anaerobe.2018.02.006  0.318
2017 Regan H, Scaduto C, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett R, Whiteway M. Negative Regulation of Filamentous Growth in Candida albicans by Dig1p. Molecular Microbiology. PMID 28657681 DOI: 10.1111/Mmi.13738  0.795
2017 Herwald SE, Zucchi PC, Tan S, Kumamoto CA. The two transmembrane regions of Candida albicans Dfi1 contribute to its biogenesis. Biochemical and Biophysical Research Communications. PMID 28483525 DOI: 10.1016/J.Bbrc.2017.04.158  0.692
2016 Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. Plos Pathogens. 12: e1005898. PMID 27689357 DOI: 10.1371/Journal.Ppat.1005898  0.445
2016 Gunsalus KT, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. Msphere. 1. PMID 27303684 DOI: 10.1128/mSphere.00020-15  0.774
2016 Kumamoto CA. The Fungal Mycobiota: Small Numbers, Large Impacts. Cell Host & Microbe. 19: 750-1. PMID 27281565 DOI: 10.1016/J.Chom.2016.05.018  0.351
2016 Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto CA. The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression. Bmc Systems Biology. 10: 20. PMID 26927448 DOI: 10.1186/S12918-016-0268-1  0.747
2016 Gunsalus KT, Kumamoto CA. Transcriptional Profiling of Candida albicans in the Host. Methods in Molecular Biology (Clifton, N.J.). 1356: 17-29. PMID 26519062 DOI: 10.1007/978-1-4939-3052-4_2  0.789
2015 Chen Y, Lin Y, Davis KM, Wang Q, Rnjak-Kovacina J, Li C, Isberg RR, Kumamoto CA, Mecsas J, Kaplan DL. Robust bioengineered 3D functional human intestinal epithelium. Scientific Reports. 5: 13708. PMID 26374193 DOI: 10.1038/Srep13708  0.331
2014 Strijbis K, Yilmaz OH, Dougan SK, Esteban A, Gröne A, Kumamoto CA, Ploegh HL. Intestinal colonization by Candida albicans alters inflammatory responses in Bruton's tyrosine kinase-deficient mice. Plos One. 9: e112472. PMID 25379804 DOI: 10.1371/Journal.Pone.0112472  0.359
2014 Tebbji F, Chen Y, Richard Albert J, Gunsalus KT, Kumamoto CA, Nantel A, Sellam A, Whiteway M. A functional portrait of Med7 and the mediator complex in Candida albicans. Plos Genetics. 10: e1004770. PMID 25375174 DOI: 10.1371/Journal.Pgen.1004770  0.807
2014 Herwald SE, Kumamoto CA. Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. Current Fungal Infection Reports. 8: 179-184. PMID 24839528 DOI: 10.1007/S12281-014-0178-X  0.503
2014 Delattin N, De Brucker K, Craik DJ, Cheneval O, Fröhlich M, Veber M, Girandon L, Davis TR, Weeks AE, Kumamoto CA, Cos P, Coenye T, De Coninck B, Cammue BP, Thevissen K. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability. Antimicrobial Agents and Chemotherapy. 58: 2647-56. PMID 24566179 DOI: 10.1128/Aac.01274-13  0.796
2013 Davis TR, Zucchi PC, Kumamoto CA. Calmodulin binding to Dfi1p promotes invasiveness of Candida albicans. Plos One. 8: e76239. PMID 24155896 DOI: 10.1371/Journal.Pone.0076239  0.762
2013 Pérez JC, Kumamoto CA, Johnson AD. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. Plos Biology. 11: e1001510. PMID 23526879 DOI: 10.1371/Journal.Pbio.1001510  0.48
2013 Pierce JV, Dignard D, Whiteway M, Kumamoto CA. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryotic Cell. 12: 37-49. PMID 23125349 DOI: 10.1128/Ec.00236-12  0.782
2012 Pierce JV, Kumamoto CA. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. Mbio. 3: e00117-12. PMID 22829676 DOI: 10.1128/Mbio.00117-12  0.759
2012 Petrovska I, Kumamoto CA. Functional importance of the DNA binding activity of Candida albicans Czf1p. Plos One. 7: e39624. PMID 22761849 DOI: 10.1371/Journal.Pone.0039624  0.762
2012 Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, et al. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Molecular Microbiology. 84: 166-80. PMID 22384976 DOI: 10.1111/J.1365-2958.2012.08017.X  0.78
2011 Bruzual I, Kumamoto CA. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans. Molecular Genetics and Genomics : Mgg. 286: 347-57. PMID 21972105 DOI: 10.1007/S00438-011-0650-Z  0.327
2011 Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Current Opinion in Microbiology. 14: 386-91. PMID 21802979 DOI: 10.1016/J.Mib.2011.07.015  0.314
2011 Kumamoto CA, Pierce JV. Immunosensing during colonization by Candida albicans: does it take a village to colonize the intestine? Trends in Microbiology. 19: 263-7. PMID 21354799 DOI: 10.1016/J.Tim.2011.01.009  0.746
2010 Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A. Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biology. 11: R71. PMID 20618945 DOI: 10.1186/Gb-2010-11-7-R71  0.321
2010 Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryotic Cell. 9: 1075-86. PMID 20435697 DOI: 10.1128/Ec.00034-10  0.783
2010 Zucchi PC, Davis TR, Kumamoto CA. A Candida albicans cell wall-linked protein promotes invasive filamentation into semi-solid medium. Molecular Microbiology. 76: 733-48. PMID 20384695 DOI: 10.1111/J.1365-2958.2010.07137.X  0.756
2008 Kumamoto CA. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nature Reviews. Microbiology. 6: 667-73. PMID 18679170 DOI: 10.1038/Nrmicro1960  0.353
2008 Kumamoto CA. Niche-specific gene expression during C. albicans infection. Current Opinion in Microbiology. 11: 325-30. PMID 18579433 DOI: 10.1016/J.Mib.2008.05.008  0.471
2007 White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA. Self-regulation of Candida albicans population size during GI colonization. Plos Pathogens. 3: e184. PMID 18069889 DOI: 10.1371/Journal.Ppat.0030184  0.798
2007 Carruthers VB, Cotter PA, Kumamoto CA. Microbial pathogenesis: mechanisms of infectious disease. Cell Host & Microbe. 2: 214-9. PMID 18005739 DOI: 10.1016/J.Chom.2007.09.007  0.307
2007 Vinces MD, Kumamoto CA. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology (Reading, England). 153: 2877-84. PMID 17768232 DOI: 10.1099/Mic.0.2007/005983-0  0.433
2007 Bruzual I, Riggle P, Hadley S, Kumamoto CA. Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. The Journal of Antimicrobial Chemotherapy. 59: 441-50. PMID 17261564 DOI: 10.1093/Jac/Dkl521  0.34
2007 Francetic O, Buddelmeijer N, Lewenza S, Kumamoto CA, Pugsley AP. Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. Journal of Bacteriology. 189: 1783-93. PMID 17158657 DOI: 10.1128/Jb.01230-06  0.354
2006 Chen X, Kumamoto CA. A conserved G protein (Drg1p) plays a role in regulation of invasive filamentation in Candida albicans. Microbiology (Reading, England). 152: 3691-700. PMID 17159222 DOI: 10.1099/Mic.0.29246-0  0.477
2006 Riggle PJ, Kumamoto CA. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryotic Cell. 5: 1957-68. PMID 17041190 DOI: 10.1128/Ec.00243-06  0.387
2006 LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrobial Agents and Chemotherapy. 50: 3839-46. PMID 16923951 DOI: 10.1128/Aac.00684-06  0.412
2006 Vinces MD, Haas C, Kumamoto CA. Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryotic Cell. 5: 825-35. PMID 16682460 DOI: 10.1128/Ec.5.5.825-835.2006  0.495
2005 Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cellular Microbiology. 7: 1546-54. PMID 16207242 DOI: 10.1111/J.1462-5822.2005.00616.X  0.509
2005 Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annual Review of Microbiology. 59: 113-33. PMID 16153165 DOI: 10.1146/Annurev.Micro.59.030804.121034  0.425
2005 Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proceedings of the National Academy of Sciences of the United States of America. 102: 5576-81. PMID 15800048 DOI: 10.1073/Pnas.0407097102  0.457
2003 Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Journal of Bacteriology. 185: 5706-13. PMID 13129941 DOI: 10.1128/Jb.185.19.5706-5713.2003  0.301
2002 Giusani AD, Vinces M, Kumamoto CA. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics. 160: 1749-53. PMID 11973327  0.309
2000 Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. Journal of Bacteriology. 182: 4899-905. PMID 10940034 DOI: 10.1128/Jb.182.17.4899-4905.2000  0.355
2000 Woodbury RL, Topping TB, Diamond DL, Suciu D, Kumamoto CA, Hardy SJ, Randall LL. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. The Journal of Biological Chemistry. 275: 24191-8. PMID 10807917 DOI: 10.1074/Jbc.M002885200  0.353
2000 Andrutis KA, Riggle PJ, Kumamoto CA, Tzipori S. Intestinal Lesions Associated with Disseminated Candidiasis in an Experimental Animal Model Journal of Clinical Microbiology. 38: 2317-2323. DOI: 10.1128/Jcm.38.6.2317-2323.2000  0.392
1999 Brown DH, Giusani AD, Chen X, Kumamoto CA. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular Microbiology. 34: 651-62. PMID 10564506 DOI: 10.1046/J.1365-2958.1999.01619.X  0.515
1999 Volkert TL, Baleja JD, Kumamoto CA. A highly mobile C-terminal tail of the Escherichia coli protein export chaperone SecB. Biochemical and Biophysical Research Communications. 264: 949-54. PMID 10544036 DOI: 10.1006/Bbrc.1999.1590  0.392
1999 Riggle PJ, Andrutis KA, Chen X, Tzipori SR, Kumamoto CA. Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infection and Immunity. 67: 3649-52. PMID 10377153 DOI: 10.1128/Iai.67.7.3649-3652.1999  0.399
1999 Cook HA, Kumamoto CA. Overproduction of SecA suppresses the export defect caused by a mutation in the gene encoding the Escherichia coli export chaperone secB. Journal of Bacteriology. 181: 3010-7. PMID 10322000 DOI: 10.1128/Jb.181.10.3010-3017.1999  0.376
1999 Riggle PJ, Kumamoto CA. Genetic analysis in fungi using restriction-enzyme-mediated integration. Current Opinion in Microbiology. 1: 395-9. PMID 10066514 DOI: 10.1016/S1369-5274(98)80055-6  0.306
1998 Fekkes P, de Wit JG, van der Wolk JP, Kimsey HH, Kumamoto CA, Driessen AJ. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Molecular Microbiology. 29: 1179-90. PMID 9767586 DOI: 10.1046/J.1365-2958.1998.00997.X  0.339
1997 Riggle PJ, Slobodkin IV, Brown DH, Hanson MP, Volkert TL, Kumamoto CA. Two transcripts, differing at their 3' ends, are produced from the Candida albicans SEC14 gene. Microbiology (Reading, England). 143: 3527-35. PMID 9387231 DOI: 10.1099/00221287-143-11-3527  0.481
1996 Francetic O, Kumamoto CA. Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants. Journal of Bacteriology. 178: 5954-9. PMID 8830692 DOI: 10.1128/Jb.178.20.5954-5959.1996  0.339
1996 Brown DH, Slobodkin IV, Kumamoto CA. Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Molecular & General Genetics : Mgg. 251: 75-80. PMID 8628250 DOI: 10.1007/Bf02174347  0.381
1995 Kimsey HH, Dagarag MD, Kumamoto CA. Diverse effects of mutation on the activity of the Escherichia coli export chaperone SecB. The Journal of Biological Chemistry. 270: 22831-5. PMID 7559415 DOI: 10.1074/Jbc.270.39.22831  0.355
1993 McFarland L, Francetić O, Kumamoto CA. A mutation of Escherichia coli SecA protein that partially compensates for the absence of SecB. Journal of Bacteriology. 175: 2255-62. PMID 8468286 DOI: 10.1128/Jb.175.8.2255-2262.1993  0.324
1993 Kumamoto CA, Francetić O. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. Journal of Bacteriology. 175: 2184-8. PMID 8468278 DOI: 10.1128/Jb.175.8.2184-2188.1993  0.321
1993 Francetic O, Hanson MP, Kumamoto CA. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli Journal of Bacteriology. 175: 4036-4044. PMID 8320219 DOI: 10.1128/Jb.175.13.4036-4044.1993  0.351
1991 Kumamoto CA. Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Molecular Microbiology. 5: 19-22. PMID 1673017 DOI: 10.1111/J.1365-2958.1991.Tb01821.X  0.31
1990 Kumamoto CA. SecB protein: a cytosolic export factor that associates with nascent exported proteins. Journal of Bioenergetics and Biomembranes. 22: 337-51. PMID 2202722 DOI: 10.1007/Bf00763171  0.335
1989 Kumamoto CA. Escherichia coli SecB protein associates with exported protein precursors in vivo. Proceedings of the National Academy of Sciences of the United States of America. 86: 5320-4. PMID 2664780 DOI: 10.1073/Pnas.86.14.5320  0.34
1989 Kumamoto CA, Nault AK. Characterization of the Escherichia coli protein-export gene secB. Gene. 75: 167-75. PMID 2656409 DOI: 10.1016/0378-1119(89)90393-4  0.339
1989 Gannon PM, Li P, Kumamoto CA. The mature portion of Escherichia coli maltose-binding protein (MBP) determines the dependence of MBP on SecB for export. Journal of Bacteriology. 171: 813-8. PMID 2644237 DOI: 10.1128/Jb.171.2.813-818.1989  0.368
1986 Strauch KL, Kumamoto CA, Beckwith J. Does secA mediate coupling between secretion and translation in Escherichia coli? Journal of Bacteriology. 166: 505-512. DOI: 10.1128/Jb.166.2.505-512.1986  0.337
1985 Kumamoto CA, Beckwith J. Evidence for specificity at an early step in protein export in Escherichia coli. Journal of Bacteriology. 163: 267-74. PMID 3891730 DOI: 10.1128/Jb.163.1.267-274.1985  0.357
1984 Brickman ER, Oliver DB, Garwin JL, Kumamoto C, Beckwith J. The use of extragenic suppressors to define genes involved in protein export in Escherichia coli Mgg Molecular &Amp; General Genetics. 196: 24-27. PMID 6384729 DOI: 10.1007/Bf00334087  0.367
1984 Kumamoto CA, Oliver DB, Beckwith J. Signal sequence mutations disrupt feedback between secretion of an exported protein and its synthesis in E. coli Nature. 308: 863-864. PMID 6371546 DOI: 10.1038/308863A0  0.333
1983 Kumamoto CA, Beckwith J. Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. Journal of Bacteriology. 154: 253-60. PMID 6403503 DOI: 10.1128/Jb.154.1.253-260.1983  0.347
Show low-probability matches.