Kenneth A. Fields - Publications

University of Miami, Coral Gables, FL 
Microbiology Biology

28 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Wolf K, Rahnama M, Fields KA. Genetic Manipulation of Chlamydia trachomatis: Chromosomal Deletions. Methods in Molecular Biology (Clifton, N.J.). 2042: 151-164. PMID 31385275 DOI: 10.1007/978-1-4939-9694-0_11  0.52
2017 Mueller KE, Wolf K, Fields KA. Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis. Current Protocols in Microbiology. 45: 11A.3.1-11A.3.15. PMID 28510361 DOI: 10.1002/cpmc.31  0.52
2016 Mueller KE, Wolf K, Fields KA. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis. Mbio. 7. PMID 26787828 DOI: 10.1128/mBio.01817-15  0.52
2016 Ferrell JC, Fields KA. A working model for the type III secretion mechanism in Chlamydia. Microbes and Infection / Institut Pasteur. 18: 84-92. PMID 26515030 DOI: 10.1016/j.micinf.2015.10.006  1
2016 Mueller KE, Wolf K, Fields KA. Gene deletion by fluorescence-reported allelic exchange mutagenesis in Chlamydia trachomatis Mbio. 7. DOI: 10.1128/mBio.01817-15  1
2013 Shrestha N, Boucher J, Bahnan W, Clark ES, Rosqvist R, Fields KA, Khan WN, Schesser K. The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens. Plos One. 8: e68754. PMID 23874749 DOI: 10.1371/Journal.Pone.0068754  1
2013 Engström P, Nguyen BD, Normark J, Nilsson I, Bastidas RJ, Gylfe A, Elofsson M, Fields KA, Valdivia RH, Wolf-Watz H, Bergström S. Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. Journal of Bacteriology. 195: 4221-30. PMID 23852872 DOI: 10.1128/Jb.00506-13  1
2013 McKuen MJ, Dahl G, Fields KA. Assessing a potential role of host Pannexin 1 during Chlamydia trachomatis infection. Plos One. 8: e63732. PMID 23700432 DOI: 10.1371/Journal.Pone.0063732  1
2013 Wolf K, Fields KA. Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. Journal of Immunology (Baltimore, Md. : 1950). 190: 1695-701. PMID 23303668 DOI: 10.4049/Jimmunol.1202443  0.52
2012 Shrestha N, Bahnan W, Wiley DJ, Barber G, Fields KA, Schesser K. Eukaryotic initiation factor 2 (eIF2) signaling regulates proinflammatory cytokine expression and bacterial invasion. The Journal of Biological Chemistry. 287: 28738-44. PMID 22761422 DOI: 10.1074/Jbc.M112.375915  1
2012 Bullock HD, Hower S, Fields KA. Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins. The Journal of Biological Chemistry. 287: 28078-86. PMID 22711538 DOI: 10.1074/Jbc.M112.386904  1
2011 Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, Plano GV. Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. Journal of Bacteriology. 193: 3490-6. PMID 21571996 DOI: 10.1128/Jb.00203-11  0.52
2009 Hower S, Wolf K, Fields KA. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Molecular Microbiology. 72: 1423-37. PMID 19460098 DOI: 10.1111/J.1365-2958.2009.06732.X  1
2009 Wolf K, Plano GV, Fields KA. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cellular Microbiology. 11: 769-79. PMID 19159390 DOI: 10.1111/J.1462-5822.2009.01290.X  0.52
2009 Betts HJ, Wolf K, Fields KA. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Current Opinion in Microbiology. 12: 81-7. PMID 19138553 DOI: 10.1016/J.Mib.2008.11.009  0.52
2008 Betts HJ, Twiggs LE, Sal MS, Wyrick PB, Fields KA. Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. Journal of Bacteriology. 190: 1680-90. PMID 18165300 DOI: 10.1128/Jb.01671-07  1
2007 Chellas-Géry B, Linton CN, Fields KA. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cellular Microbiology. 9: 2417-30. PMID 17532760 DOI: 10.1111/J.1462-5822.2007.00970.X  0.52
2006 Wolf K, Betts HJ, Chellas-Géry B, Hower S, Linton CN, Fields KA. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Molecular Microbiology. 61: 1543-55. PMID 16968227 DOI: 10.1111/J.1365-2958.2006.05347.X  1
2005 Clifton DR, Dooley CA, Grieshaber SS, Carabeo RA, Fields KA, Hackstadt T. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infection and Immunity. 73: 3860-8. PMID 15972471 DOI: 10.1128/IAI.73.7.3860-3868.2005  1
2004 Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proceedings of the National Academy of Sciences of the United States of America. 101: 10166-71. PMID 15199184 DOI: 10.1073/Pnas.0402829101  1
2000 Fields KA, Hackstadt T. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism Molecular Microbiology. 38: 1048-1060. PMID 11123678 DOI: 10.1046/j.1365-2958.2000.02212.x  1
2000 Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Molecular Microbiology. 37: 913-25. PMID 10972811 DOI: 10.1046/J.1365-2958.2000.02057.X  1
1999 Fields KA, Nilles ML, Cowan C, Straley SC. Virulence role of V antigen of Yersinia pestis at the bacterial surface Infection and Immunity. 67: 5395-5408. PMID 10496922 DOI: 10.1128/Iai.67.10.5395-5408.1999  1
1999 Fields KA, Straley SC. LcrV of Yersinia pestis enters infected eukaryotic cells by a virulence plasmid-independent mechanism Infection and Immunity. 67: 4801-4813. PMID 10456934 DOI: 10.1128/Iai.67.9.4801-4813.1999  1
1998 Nilles ML, Fields KA, Straley SC. The V antigen of Yersinia pestis regulates Yop vectorial targeting as well as Yop secretion through effects on YopB and LcrG Journal of Bacteriology. 180: 3410-3420. PMID 9642196 DOI: 10.1128/Jb.180.13.3410-3420.1998  1
1997 Fields KA, Williams AW, Straley SC. Failure to detect binding of LcrH to the V antigen of Yersinia pestis Infection and Immunity. 65: 3954-3957. PMID 9284179 DOI: 10.1128/Iai.65.9.3954-3957.1997  1
1994 Fields KA, Plano GV, Straley SC. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis Journal of Bacteriology. 176: 569-579. PMID 8300512 DOI: 10.1128/jb.176.3.569-579.1994  1
1993 Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca2+ in the Yersinia low-Ca2+ response Molecular Microbiology. 8: 1005-1010. PMID 8361348 DOI: 10.1111/J.1365-2958.1993.Tb01644.X  1
Show low-probability matches.