Year |
Citation |
Score |
2020 |
Xu Q, Meng L, Sinha K, Chowdhury FI, Hu J, Wang X. Ultrafast Colloidal Quantum Dot Infrared Photodiode Acs Photonics. 7: 1297-1303. DOI: 10.1021/Acsphotonics.0C00363 |
0.316 |
|
2019 |
Bao L, Pinchasik BE, Lei L, Xu Q, Hao H, Wang X, Zhang X. Controlling of femtoliter liquid on a microlens: a way to flexible dual microlens arrays. Acs Applied Materials & Interfaces. PMID 31268287 DOI: 10.1021/Acsami.9B06390 |
0.326 |
|
2019 |
Xu Q, Meng L, Wang X. Reducing shadowing losses in silicon solar cells using cellulose nanocrystal: polymer hybrid diffusers. Applied Optics. 58: 2505-2511. PMID 31045045 DOI: 10.1364/Ao.58.002505 |
0.308 |
|
2019 |
Xu Q, Meng L, Zeng T, Sinha K, Dick C, Wang X. On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing. Optics Letters. 44: 463-466. PMID 30644926 DOI: 10.1364/Ol.44.000463 |
0.415 |
|
2019 |
Meng L, Xu Q, Dan L, Wang X. Single-Walled Carbon Nanotube Based Triboelectric Flexible Touch Sensors Journal of Electronic Materials. 48: 7411-7416. DOI: 10.1007/S11664-019-07558-Z |
0.333 |
|
2018 |
Dyett B, Zhang Q, Xu Q, Wang X, Zhang X. Extraordinary Focusing Effect of Surface Nanolenses in Total Internal Reflection Mode. Acs Central Science. 4: 1511-1519. PMID 30555903 DOI: 10.1021/Acscentsci.8B00501 |
0.349 |
|
2018 |
Xiong Q, Chowdhury FI, Wang X. Filter-Free Narrowband Photodetectors Employing Colloidal Quantum Dots Ieee Journal of Selected Topics in Quantum Electronics. 24: 1-6. DOI: 10.1109/Jstqe.2017.2776522 |
0.353 |
|
2017 |
Meng L, Fan S, Mahpeykar SM, Wang X. Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS) bridge structure. Nanoscale. PMID 28054698 DOI: 10.1039/C6Nr07787K |
0.333 |
|
2017 |
Mahpeykar SM, Wang X. Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach Proceedings of Spie. 10099: 1009910. DOI: 10.1117/12.2248289 |
0.366 |
|
2017 |
Meng L, Xu Q, Fan S, Dick CR, Wang X. Field-effect enhanced triboelectric colloidal quantum dot flexible sensor Applied Physics Letters. 111: 183103. DOI: 10.1063/1.5002578 |
0.352 |
|
2017 |
Chowdhury FI, Dick C, Meng L, Mahpeykar SM, Ahvazi B, Wang X. Cellulose nanocrystals as host matrix and waveguide materials for recyclable luminescent solar concentrators Rsc Advances. 7: 32436-32441. DOI: 10.1039/C7Ra04344A |
0.32 |
|
2017 |
Mahpeykar SM, Zhao Y, Li X, Yang Z, Xu Q, Lu Z, Sargent EH, Wang X. Cellulose Nanocrystal:Polymer Hybrid Optical Diffusers for Index‐Matching‐Free Light Management in Optoelectronic Devices Advanced Optical Materials. 5: 1700430. DOI: 10.1002/Adom.201700430 |
0.319 |
|
2016 |
Wei J, Xiong Q, Mahpeykar SM, Wang X. Numerical Study of Complementary Nanostructures for Light Trapping in Colloidal Quantum Dot Solar Cells. Nanomaterials (Basel, Switzerland). 6. PMID 28335183 DOI: 10.3390/Nano6040055 |
0.372 |
|
2016 |
Xiong Q, Wei J, Mahpeykar SM, Meng L, Wang X. Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities. Optics Letters. 41: 1506-1509. PMID 27192273 DOI: 10.1364/Ol.41.001506 |
0.311 |
|
2016 |
Kiani A, Fayaz Movahed H, Hoogland S, Voznyy O, Wolowiec R, Levina L, Garcia de Arquer FP, Pietsch P, Wang X, Maraghechi P, Sargent EH. Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat Acs Energy Letters. 1: 740-746. DOI: 10.1021/Acsenergylett.6B00314 |
0.364 |
|
2016 |
Mahpeykar SM, Xiong Q, Wei J, Meng L, Russell BK, Hermansen P, Singhal AV, Wang X. Stretchable Hexagonal Diffraction Gratings as Optical Diffusers for In Situ Tunable Broadband Photon Management Advanced Optical Materials. DOI: 10.1002/Adom.201600122 |
0.375 |
|
2015 |
Wang X. Recent progress in colloidal quantum dot photovoltaics Frontiers of Optoelectronics. 8: 241-251. DOI: 10.1007/S12200-015-0524-9 |
0.385 |
|
2014 |
Mahpeykar SM, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express. 22: A1576-88. PMID 25607315 DOI: 10.1364/Oe.22.0A1576 |
0.392 |
|
2012 |
Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent EH. Quantum junction solar cells Nano Letters. 12: 4889-4894. PMID 22881834 DOI: 10.1021/Nl302436R |
0.356 |
|
2012 |
Koleilat GI, Wang X, Sargent EH. Graded recombination layers for multijunction photovoltaics. Nano Letters. 12: 3043-9. PMID 22554234 DOI: 10.1021/Nl300891H |
0.334 |
|
2012 |
Jeong KS, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent EH, Asbury JB. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. Acs Nano. 6: 89-99. PMID 22168594 DOI: 10.1021/Nn2039164 |
0.382 |
|
2011 |
Koleilat GI, Wang X, Labelle AJ, Ip AH, Carey GH, Fischer A, Levina L, Brzozowski L, Sargent EH. A donor-supply electrode (DSE) for colloidal quantum dot photovoltaics. Nano Letters. 11: 5173-8. PMID 22084839 DOI: 10.1021/Nl202337A |
0.358 |
|
2011 |
Wang X, Koleilat GI, Fischer A, Tang J, Debnath R, Levina L, Sargent EH. Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. Acs Applied Materials & Interfaces. 3: 3792-5. PMID 21936534 DOI: 10.1021/Am201097P |
0.382 |
|
2011 |
Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials. 10: 765-71. PMID 21927006 DOI: 10.1038/Nmat3118 |
0.371 |
|
2011 |
Liu H, Tang J, Kramer IJ, Debnath R, Koleilat GI, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent EH. Electron acceptor materials engineering in colloidal quantum dot solar cells. Advanced Materials (Deerfield Beach, Fla.). 23: 3832-7. PMID 21766353 DOI: 10.1002/Adma.201101783 |
0.339 |
|
2011 |
Wang X, Koleilat GI, Tang J, Liu H, Kramer IJ, Debnath R, Brzozowski L, Barkhouse DAR, Levina L, Hoogland S, Sargent EH. Tandem colloidal quantum dot solar cells employing a graded recombination layer Nature Photonics. 5: 480-484. DOI: 10.1038/Nphoton.2011.123 |
0.366 |
|
2011 |
Kramer IJ, Pattantyus-Abraham AG, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH. Advances in colloidal quantum dot solar cells: The depleted-heterojunction device Thin Solid Films. 519: 7351-7355. DOI: 10.1016/J.Tsf.2010.12.121 |
0.387 |
|
2010 |
Barkhouse DA, Kramer IJ, Wang X, Sargent EH. Dead zones in colloidal quantum dot photovoltaics: evidence and implications. Optics Express. 18: A451-7. PMID 21165075 DOI: 10.1364/Oe.18.00A451 |
0.392 |
|
2010 |
Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH. Depleted-heterojunction colloidal quantum dot solar cells. Acs Nano. 4: 3374-80. PMID 20496882 DOI: 10.1021/Nn100335G |
0.405 |
|
2010 |
Tang J, Wang X, Brzozowski L, Barkhouse DA, Debnath R, Levina L, Sargent EH. Schottky quantum dot solar cells stable in air under solar illumination. Advanced Materials (Deerfield Beach, Fla.). 22: 1398-402. PMID 20437490 DOI: 10.1002/Adma.200903240 |
0.325 |
|
2010 |
Debnath R, Tang J, Barkhouse DA, Wang X, Pattantyus-Abraham AG, Brzozowski L, Levina L, Sargent EH. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. Journal of the American Chemical Society. 132: 5952-3. PMID 20387887 DOI: 10.1021/Ja1013695 |
0.381 |
|
2010 |
Tang J, Brzozowski L, Barkhouse DA, Wang X, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham AG, Jamakosmanovic D, Sargent EH. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. Acs Nano. 4: 869-78. PMID 20104859 DOI: 10.1021/Nn901564Q |
0.375 |
|
2010 |
Kramer IJ, Debnath R, Pattantyus-Abraham AG, Barkhouse AR, Wang X, Levina L, Tang J, Fischer A, Konstantatos G, Greiner MT, Lu Z, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells Employing Low-Cost Metal Contacts Frontiers in Optics. DOI: 10.1364/Fio.2010.Fma2 |
0.344 |
|
2010 |
Chen Y, Wang X, Hong MK, Rosenberg CL, Reinhard BM, Erramilli S, Mohanty P. Nanoelectronic detection of breast cancer biomarker Applied Physics Letters. 97. DOI: 10.1063/1.3519983 |
0.548 |
|
2010 |
Debnath R, Greiner MT, Kramer IJ, Fischer A, Tang J, Barkhouse DAR, Wang X, Levina L, Lu ZH, Sargent EH. Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts Applied Physics Letters. 97. DOI: 10.1063/1.3463037 |
0.362 |
|
2010 |
Kim Y, Chung E, Wang X, Erramilli S, So PT. Sub-Diffraction Limited Wide Field Imaging and Microfabrication Based on Surface Plasmons Biophysical Journal. 98: 180a. DOI: 10.1016/J.Bpj.2009.12.964 |
0.56 |
|
2008 |
Yanik AA, Wang X, Erramilli S, Hong MK, Altug H. Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays Applied Physics Letters. 93. DOI: 10.1063/1.2973165 |
0.567 |
|
2008 |
Wang X, Chen Y, Gibney KA, Erramilli S, Mohanty P. Silicon-based nanochannel glucose sensor Applied Physics Letters. 92. DOI: 10.1063/1.2832648 |
0.57 |
|
2008 |
Chen Y, Wang X, Hong M, Erramilli S, Mohanty P. Surface-modified silicon nano-channel for urea sensing Sensors and Actuators, B: Chemical. 133: 593-598. DOI: 10.1016/J.Snb.2008.03.033 |
0.598 |
|
2007 |
Amsden JJ, Kralj JM, Chieffo LR, Wang X, Erramilli S, Spudich EN, Spudich JL, Ziegler LD, Rothschild KJ. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction. The Journal of Physical Chemistry. B. 111: 11824-31. PMID 17880126 DOI: 10.1021/Jp073490R |
0.544 |
|
2007 |
Chen Y, Wang X, Hong MK, Erramilli S, Mohanty P, Rosenberg C. Nanoscale field effect transistor for biomolecular signal amplification Applied Physics Letters. 91. DOI: 10.1063/1.2822445 |
0.593 |
|
2006 |
Chen Y, Wang X, Erramilli S, Mohanty P, Kalinowski A. Silicon-based nanoelectronic field-effect pH sensor with local gate control Applied Physics Letters. 89. DOI: 10.1063/1.2392828 |
0.582 |
|
Show low-probability matches. |