Year |
Citation |
Score |
2024 |
Jha PK, Parate SK, Sada K, Yoshii K, Masese T, Nukala P, Sai Gautam G, Pralong V, Fichtner M, Barpanda P. A 3.2 V Binary Layered Oxide Cathode for Potassium-Ion Batteries. Small (Weinheim An Der Bergstrasse, Germany). e2402204. PMID 38778727 DOI: 10.1002/smll.202402204 |
0.374 |
|
2024 |
Pamidi V, Naranjo C, Fuchs S, Stein H, Diemant T, Li Y, Biskupek J, Kaiser U, Dinda S, Reupert A, Behara S, Hu Y, Trivedi S, Munnangi AR, Barpanda P, et al. Single-Crystal P2-NaMnNiO Cathode Material with Improved Cycling Stability for Sodium-Ion Batteries. Acs Applied Materials & Interfaces. PMID 38716923 DOI: 10.1021/acsami.3c15348 |
0.358 |
|
2024 |
Jha PK, Barpanda P. Role of Co Content on the Electrode Properties of P3-Type KMnCoO Potassium Insertion Materials. Inorganic Chemistry. 63: 7137-7145. PMID 38588508 DOI: 10.1021/acs.inorgchem.3c03747 |
0.355 |
|
2024 |
Xu R, Pamidi V, Tang Y, Fuchs S, Stein H, Dasari B, Zhao-Karger Z, Behara S, Hu Y, Trivedi S, Munnangi AR, Barpanda P, Fichtner M. Greener, Safer and Better Performing Aqueous Binder for Positive Electrode Manufacturing of Sodium Ion Batteries. Chemsuschem. e202301154. PMID 38179813 DOI: 10.1002/cssc.202301154 |
0.383 |
|
2023 |
Singh D, Hu Y, Meena SS, Vengarathody R, Fichtner M, Barpanda P. Iron-based fluorophosphate NaFePOF as a cathode for aqueous zinc-ion batteries. Chemical Communications (Cambridge, England). PMID 37934428 DOI: 10.1039/d3cc04940j |
0.315 |
|
2022 |
Jayanthi K, Chaupatnaik A, Barpanda P, Navrotsky A. Probing Capacity Trends in MLiTiO Lithium-Ion Battery Anodes Using Calorimetric Studies. Acs Omega. 7: 42482-42488. PMID 36440143 DOI: 10.1021/acsomega.2c05701 |
0.304 |
|
2022 |
Jha PK, Singh S, Shrivastava M, Barpanda P, Sai Gautam G. First principles investigation of anionic redox in bisulfate lithium battery cathodes. Physical Chemistry Chemical Physics : Pccp. PMID 36111680 DOI: 10.1039/d2cp00473a |
0.332 |
|
2022 |
Singh S, Neveu A, Jayanthi K, Das T, Chakraborty S, Navrotsky A, Pralong V, Barpanda P. Facile synthesis and phase stability of Cu-based NaCu(SO)·HO ( = 0-2) sulfate minerals as conversion type battery electrodes. Dalton Transactions (Cambridge, England : 2003). 51: 11169-11179. PMID 35801572 DOI: 10.1039/d2dt01830f |
0.384 |
|
2022 |
Vanam SP, Senthilkumar B, Amonpattaratkit P, Barpanda P. Manganese-Based Tunnel-Type Cathode Materials for Secondary Li-Ion and K-Ion Batteries. Inorganic Chemistry. 61: 3959-3969. PMID 35201758 DOI: 10.1021/acs.inorgchem.1c03609 |
0.345 |
|
2021 |
Singh S, Lochab S, Sharma L, Pralong V, Barpanda P. An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries. Physical Chemistry Chemical Physics : Pccp. 23: 18283-18299. PMID 34612373 DOI: 10.1039/d1cp01741a |
0.363 |
|
2020 |
Baby A, Singh D, Murugesan C, Barpanda P. The design of zinc-substituted cobalt (pyro)phosphates as efficient bifunctional electrocatalysts for zinc-air batteries. Chemical Communications (Cambridge, England). PMID 32578611 DOI: 10.1039/D0Cc01631D |
0.333 |
|
2020 |
Sada K, Barpanda P. P3-type layered KMnCoO: a novel cathode material for potassium-ion batteries. Chemical Communications (Cambridge, England). PMID 31984386 DOI: 10.1039/C9Cc06657H |
0.42 |
|
2020 |
Sharma L, Bothra N, Rai RK, Pati S, Barpanda P. Metal fluorophosphate polyanionic insertion hosts as efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions Journal of Materials Chemistry. DOI: 10.1039/D0Ta05880G |
0.408 |
|
2020 |
Sarkar S, Chaupatnaik A, Ramarao SD, Subbarao U, Barpanda P, Peter SC. Operando Sodiation Mechanistic Study of a New Antimony-Based Intermetallic CoSb as a High-Performance Sodium-Ion Battery Anode Journal of Physical Chemistry C. 124: 15757-15768. DOI: 10.1021/Acs.Jpcc.0C03556 |
0.456 |
|
2020 |
Senthilkumar B, Murugesan C, Sada K, Barpanda P. Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate Journal of Power Sources. 480: 228794. DOI: 10.1016/J.Jpowsour.2020.228794 |
0.501 |
|
2020 |
Senthilkumar B, Selvan RK, Barpanda P. Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3 Electrochemistry Communications. 110: 106617. DOI: 10.1016/J.Elecom.2019.106617 |
0.393 |
|
2020 |
Dwibedi D, Barpanda P, Yamada A. Alluaudite Battery Cathodes Small Methods. 4: 2000051. DOI: 10.1002/smtd.202000051 |
0.337 |
|
2020 |
Sharma L, Adiga SP, Alshareef HN, Barpanda P. Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries Advanced Energy Materials. 2001449. DOI: 10.1002/Aenm.202001449 |
0.322 |
|
2019 |
Gond R, Vanam SP, Barpanda P. NaMnPO polymorphs as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. Chemical Communications (Cambridge, England). PMID 31497828 DOI: 10.1039/C9Cc04680A |
0.329 |
|
2019 |
Senthilkumar B, Irshad A, Barpanda P. Cobalt and Nickel Phosphates as Multifunctional Air-Cathodes for Rechargeable Hybrid Sodium-air Battery Applications. Acs Applied Materials & Interfaces. PMID 31429545 DOI: 10.1021/Acsami.9B09090 |
0.404 |
|
2019 |
Gond R, Singh DK, Eswaramoorthy M, Barpanda P. Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie (International Ed. in English). PMID 30916371 DOI: 10.1002/Anie.201901813 |
0.402 |
|
2019 |
Sada K, Barpanda P. Layered Sodium Manganese Oxide Na2Mn3O7 as an Insertion Host for Aqueous Zinc-ion Batteries Mrs Advances. 4: 2651-2657. DOI: 10.1557/Adv.2019.297 |
0.439 |
|
2019 |
Sada K, Senthilkumar B, Barpanda P. Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries Journal of Materials Chemistry A. 7: 23981-23988. DOI: 10.1039/C9Ta05836B |
0.38 |
|
2019 |
Sharma L, Gond R, Senthilkumar B, Roy A, Barpanda P. Fluorophosphates as Efficient Bifunctional Electrocatalysts for Metal–Air Batteries Acs Catalysis. 10: 43-50. DOI: 10.1021/Acscatal.9B03686 |
0.411 |
|
2019 |
Dwibedi D, Gond R, Barpanda P. Alluaudite NaCoFe2(PO4)3 as a 2.9 V Cathode for Sodium-Ion Batteries Exhibiting Bifunctional Electrocatalytic Activity Chemistry of Materials. 31: 7501-7509. DOI: 10.1021/Acs.Chemmater.9B02220 |
0.511 |
|
2019 |
Gond R, Meena SS, Pralong V, Barpanda P. Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (0 ≤ x ≤ 1) pyrophosphate cathodes for sodium-ion batteries Journal of Solid State Chemistry. 277: 329-336. DOI: 10.1016/J.Jssc.2019.06.027 |
0.458 |
|
2019 |
Sharma L, Nakamoto K, Okada S, Barpanda P. Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries Journal of Power Sources. 429: 17-21. DOI: 10.1016/J.Jpowsour.2019.04.110 |
0.475 |
|
2019 |
Shinde GS, Nayak PD, Vanam SP, Jain SK, Pathak AD, Sanyal S, Balachandran J, Barpanda P. Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries Journal of Power Sources. 416: 50-55. DOI: 10.1016/J.Jpowsour.2019.01.061 |
0.47 |
|
2019 |
Vivekanantha M, Senthil C, Kesavan T, Partheeban T, Navaneethan M, Senthilkumar B, Barpanda P, Sasidharan M. Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties Electrochimica Acta. 317: 398-407. DOI: 10.1016/J.Electacta.2019.05.095 |
0.461 |
|
2019 |
Ramasamy HV, Senthilkumar B, Barpanda P, Lee Y. Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode Chemical Engineering Journal. 368: 235-243. DOI: 10.1016/J.Cej.2019.02.172 |
0.436 |
|
2018 |
Gond R, Rao RP, Pralong V, Lebedev OI, Adams S, Barpanda P. Cubic Sodium Cobalt Metaphosphate [NaCo(PO)] as a Cathode Material for Sodium Ion Batteries. Inorganic Chemistry. PMID 29756451 DOI: 10.1021/Acs.Inorgchem.8B00291 |
0.445 |
|
2018 |
Chaupatnaik A, Barpanda P. Diffusional and electrochemical investigation of combustion synthesized BaLi2Ti6O14 titanate anode for rechargeable batteries Journal of Materials Research. 34: 158-168. DOI: 10.1557/Jmr.2018.250 |
0.445 |
|
2018 |
Dwibedi D, Gond R, Sada K, Senthilkumar B, Barpanda P. Electrocatalytic Activity of Some Cobalt Based Sodium Phosphates in Alkaline Solution Mrs Advances. 3: 1215-1220. DOI: 10.1557/Adv.2018.136 |
0.41 |
|
2018 |
Dwibedi D, Barpanda P. Sodium Metal Sulphate Alluaudite Class of High Voltage Battery Insertion Materials Mrs Advances. 3: 1209-1214. DOI: 10.1557/Adv.2018.132 |
0.493 |
|
2018 |
Chaupatnaik A, Barpanda P. Swift Combustion Synthesis of PbLi2Ti6O14 Anode for Lithium-Ion Batteries: Diffusional and Electrochemical Investigation Journal of the Electrochemical Society. 166: A5122-A5130. DOI: 10.1149/2.0191903Jes |
0.415 |
|
2018 |
Thamodaran P, Kesavan T, Vivekanantha M, Senthilkumar B, Barpanda P, Sasidharan M. Operando Structural and Electrochemical Investigation of Li1.5V3O8 Nanorods in Li-ion Batteries Acs Applied Energy Materials. 2: 852-859. DOI: 10.1021/ACSAEM.8B01915 |
0.34 |
|
2018 |
Munirathnappa AK, Dwibedi D, Hester J, Barpanda P, Swain D, Narayana C, Sundaram NG. In Situ Neutron Diffraction Studies of LiCe(WO4)2 Polymorphs: Phase Transition and Structure–Property Correlation The Journal of Physical Chemistry C. 123: 1041-1049. DOI: 10.1021/Acs.Jpcc.8B09364 |
0.318 |
|
2018 |
Dwibedi D, Barpanda P. Solution-assisted Energy-savvy Synthesis of High-voltage Na2M2(SO4)3 (M = 3d metals) Alluaudite Family of Sodium Insertion Materials Materials Today: Proceedings. 5: 23439-23442. DOI: 10.1016/J.Matpr.2018.11.085 |
0.454 |
|
2018 |
Dwibedi D, Murugesan C, Leskes M, Barpanda P. Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel Materials Research Bulletin. 98: 219-224. DOI: 10.1016/J.Materresbull.2017.10.010 |
0.312 |
|
2018 |
Dayamani A, Shinde GS, Chaupatnaik A, Rao RP, Adams S, Barpanda P. Electrochemical and diffusional insights of combustion synthesized SrLi 2 Ti 6 O 14 negative insertion material for Li-ion Batteries Journal of Power Sources. 385: 122-129. DOI: 10.1016/J.Jpowsour.2018.03.021 |
0.489 |
|
2018 |
Dwibedi D, Jaschin PW, Gond R, Barpanda P. Revisiting the alluaudite NaMnFe2(PO4)3 sodium insertion material: Structural, diffusional and electrochemical insights Electrochimica Acta. 283: 850-857. DOI: 10.1016/J.Electacta.2018.06.178 |
0.477 |
|
2018 |
Rambabu A, Senthilkumar B, Dayamani A, Krupanidhi SB, Barpanda P. Preferentially oriented SrLi2Ti6O14 thin film anode for Li-ion micro-batteries fabricated by pulsed laser deposition Electrochimica Acta. 269: 212-216. DOI: 10.1016/J.Electacta.2018.02.164 |
0.351 |
|
2018 |
Murugesan C, Lochab S, Senthilkumar B, Barpanda P. Earth-Abundant Alkali Iron Phosphates (AFePO4
) as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution Chemcatchem. 10: 1122-1127. DOI: 10.1002/Cctc.201701423 |
0.379 |
|
2018 |
Barpanda P, Lander L, Nishimura S, Yamada A. Polyanionic Insertion Materials for Sodium-Ion Batteries Advanced Energy Materials. 8: 1703055. DOI: 10.1002/Aenm.201703055 |
0.431 |
|
2017 |
Rambabu A, Senthilkumar B, Sada K, Krupanidhi SB, Barpanda P. In-situ deposition of sodium titanate thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition. Journal of Colloid and Interface Science. 514: 117-121. PMID 29248813 DOI: 10.1016/J.Jcis.2017.12.023 |
0.307 |
|
2017 |
Sharma L, Nayak PK, de la Llave E, Chen H, Adams S, Aurbach D, Barpanda P. Electrochemical and Diffusional Investigation of Na2FeIIPO4F Fluorophosphate Sodium Insertion Material Obtained from FeIII Precursor. Acs Applied Materials & Interfaces. PMID 28920668 DOI: 10.1021/Acsami.7B10637 |
0.476 |
|
2017 |
Sada K, Senthilkumar B, Barpanda P. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries. Chemical Communications (Cambridge, England). PMID 28718485 DOI: 10.1039/C7Cc02791E |
0.454 |
|
2017 |
Gond R, Meena SS, Yusuf SM, Shukla V, Jena NK, Ahuja R, Okada S, Barpanda P. Enabling the Electrochemical Activity in Sodium Iron Metaphosphate [NaFe(PO3)3] Sodium Battery Insertion Material: Structural and Electrochemical Insights. Inorganic Chemistry. PMID 28462996 DOI: 10.1021/Acs.Inorgchem.7B00561 |
0.499 |
|
2017 |
Ghosh S, Mani AD, Kishore B, Munichandraiah N, Rao RP, Wong LL, Adams S, Barpanda P. Autocombustion Synthesis of Nanostructured Na2Ti6O13Negative Insertion Material for Na-Ion Batteries: Electrochemical and Diffusion Mechanism Journal of the Electrochemical Society. 164: A1881-A1886. DOI: 10.1149/2.0641709Jes |
0.434 |
|
2017 |
Baskar S, Murugesan C, Barpanda P. Highly Porous N-Doped Graphitic Carbon from Bio-Waste as Bifunctional Electrocatalyst for Hybrid Na-Air Battery Ecs Transactions. 80: 425-430. DOI: 10.1149/08010.0425ECST |
0.301 |
|
2017 |
Dwibedi D, Baskar S, Barpanda P. Sustainable Aqueous Synthesis and Electrochemical Insights on High-Voltage Sodium Alluaudite Insertion Materials Ecs Transactions. 80: 337-342. DOI: 10.1149/08010.0337ECST |
0.303 |
|
2017 |
Dwibedi D, Barpanda P. Alluaudite polyanionic frameworks for rechargeable sodium-ion batteries Acta Crystallographica Section a Foundations and Advances. 73: C899-C899. DOI: 10.1107/S2053273317086752 |
0.364 |
|
2017 |
Sharma L, Barpanda P. Fluorophosphate polyanionic frameworks for rechargeable batteries Acta Crystallographica Section a Foundations and Advances. 73: C900-C900. DOI: 10.1107/S2053273317086740 |
0.378 |
|
2017 |
Gond R, Barpanda P. Pyrophosphate family of polyanionic cathodes towards safe rechargeable batteries Acta Crystallographica Section a Foundations and Advances. 73: C901-C901. DOI: 10.1107/S2053273317086739 |
0.302 |
|
2017 |
Watcharatharapong T, T-Thienprasert J, Barpanda P, Ahuja R, Chakraborty S. Mechanistic study of Na-ion diffusion and small polaron formation in Kröhnkite Na2Fe(SO4)2·2H2O based cathode materials J. Mater. Chem. A. 5: 21726-21739. DOI: 10.1039/C7Ta04508E |
0.398 |
|
2017 |
Sharma L, Bhatia A, Assaud L, Franger S, Barpanda P. Ultra-rapid combustion synthesis of Na2FePO4F fluorophosphate host for Li-ion and Na-ion insertion Ionics. 24: 2187-2192. DOI: 10.1007/S11581-017-2376-3 |
0.496 |
|
2016 |
Dwibedi D, Gond R, Dayamani A, Araujo RB, Chakraborty S, Ahuja R, Barpanda P. Na2.32Co1.84(SO4)3 as a new member of the alluaudite family of high-voltage sodium battery cathodes. Dalton Transactions (Cambridge, England : 2003). PMID 27883133 DOI: 10.1039/C6Dt03767D |
0.464 |
|
2016 |
Araujo RB, Chakraborty S, Barpanda P, Ahuja R. Na2M2(SO4)3 (M = Fe, Mn, Co and Ni): towards high-voltage sodium battery applications. Physical Chemistry Chemical Physics : Pccp. PMID 26996444 DOI: 10.1039/C6Cp00070C |
0.421 |
|
2016 |
Dwibedi D, Ling CD, Araujo RB, Chakraborty S, Duraisamy S, Munichandraiah N, Ahuja R, Barpanda P. Ionothermal Synthesis of High-voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic and Magnetic Insights. Acs Applied Materials & Interfaces. PMID 26931644 DOI: 10.1021/Acsami.5B11302 |
0.462 |
|
2016 |
Barpanda P. Pursuit of Sustainable Iron-Based Sodium Battery Cathodes: Two Case Studies Chemistry of Materials. 28: 1006-1011. DOI: 10.1021/Acs.Chemmater.5B03926 |
0.453 |
|
2016 |
Ghosh S, Mitra S, Barpanda P. Sonochemical Synthesis of Nanostructured Spinel Li4Ti5O12 Negative Insertion Material for Li-ion and Na-ion Batteries Electrochimica Acta. 222: 898-903. DOI: 10.1016/J.Electacta.2016.11.055 |
0.454 |
|
2016 |
Duraisamy S, Penki TR, Kishore B, Barpanda P, Nayak PK, Aurbach D, Munichandraiah N. Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion batteries Journal of Solid State Electrochemistry. 1-9. DOI: 10.1007/S10008-016-3380-7 |
0.443 |
|
2015 |
Dwibedi D, Avdeev M, Barpanda P. Role of Fuel on Cation Disorder in Magnesium Aluminate (MgAl<inf>2</inf>O<inf>4</inf>) Spinel Prepared by Combustion Synthesis Journal of the American Ceramic Society. 98: 2908-2913. DOI: 10.1111/Jace.13705 |
0.31 |
|
2015 |
Dwibedi D, Barpanda P. Designing Novel Sulphate-based Ceramic Materials as Insertion Host Compounds for Secondary Batteries Transactions of the Indian Ceramic Society. 74: 191-194. DOI: 10.1080/0371750X.2015.1127183 |
0.475 |
|
2015 |
Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahuja R, Barpanda P. Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries Journal of Materials Chemistry A. 3: 18564-18571. DOI: 10.1039/C5Ta04527D |
0.474 |
|
2015 |
Kee Y, Dimov N, Staikov A, Barpanda P, Lu YC, Minami K, Okada S. Insight into the limited electrochemical activity of NaVP<inf>2</inf>O<inf>7</inf> Rsc Advances. 5: 64991-64996. DOI: 10.1039/C5Ra12158B |
0.432 |
|
2015 |
Ghosh S, Kee Y, Okada S, Barpanda P. Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries Journal of Power Sources. 296: 276-281. DOI: 10.1016/J.Jpowsour.2015.07.057 |
0.426 |
|
2015 |
Ming J, Barpanda P, Nishimura SI, Okubo M, Yamada A. An alluaudite Na2 + 2xFe2 - X(SO4)3(x = 0.2) derivative phase as insertion host for lithium battery Electrochemistry Communications. 51: 19-22. DOI: 10.1016/J.Elecom.2014.11.009 |
0.42 |
|
2015 |
Barpanda P, Dwibedi D, Ghosh S, Kee Y, Okada S. Lithium metal borate (LiMBO<inf>3</inf>) family of insertion materials for Li-ion batteries: a sneak peak Ionics. 21: 1801-1812. DOI: 10.1007/S11581-015-1463-6 |
0.453 |
|
2015 |
Barpanda P. Sulfate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights Israel Journal of Chemistry. 55: 537-557. DOI: 10.1002/Ijch.201400157 |
0.489 |
|
2014 |
Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nature Communications. 5: 4358. PMID 25030272 DOI: 10.1038/Ncomms5358 |
0.484 |
|
2014 |
Avdeev M, Ling CD, Tan TT, Li S, Oyama G, Yamada A, Barpanda P. Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F. Inorganic Chemistry. 53: 682-4. PMID 24369723 DOI: 10.1021/Ic402513D |
0.37 |
|
2014 |
Clark JM, Barpanda P, Yamada A, Islam MS. Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: Diffusion behaviour for high rate performance Journal of Materials Chemistry A. 2: 11807-11812. DOI: 10.1039/C4Ta02383H |
0.397 |
|
2014 |
Barpanda P, Oyama G, Ling CD, Yamada A. Kröhnkite-type Na2Fe(SO4)2· 2H2O as a novel 3.25 v insertion compound for Na-ion batteries Chemistry of Materials. 26: 1297-1299. DOI: 10.1021/Cm4033226 |
0.404 |
|
2014 |
Barpanda P, Liu G, Mohamed Z, Ling CD, Yamada A. Structural, magnetic and electrochemical investigation of novel binary Na2 - x(Fe1 - yMny)P2O7 (0 ≤ y ≤ 1) pyrophosphate compounds for rechargeable sodium-ion batteries Solid State Ionics. 268: 305-311. DOI: 10.1016/J.Ssi.2014.03.011 |
0.421 |
|
2014 |
Barpanda P, Liu G, Avdeev M, Yamada A. t-Na<inf>2</inf>(VO)P<inf>2</inf>O<inf>7</inf>: A 3.8V Pyrophosphate Insertion Material for Sodium-Ion Batteries Chemelectrochem. 1: 1488-1491. DOI: 10.1002/celc.201402095 |
0.376 |
|
2013 |
Barpanda P, Ling CD, Oyama G, Yamada A. Sodium manganese fluorosulfate with a triplite structure. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials. 69: 584-8. PMID 24253083 DOI: 10.1107/S2052519213024093 |
0.365 |
|
2013 |
Avdeev M, Mohamed Z, Ling CD, Lu J, Tamaru M, Yamada A, Barpanda P. Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorganic Chemistry. 52: 8685-93. PMID 23844797 DOI: 10.1021/Ic400870X |
0.314 |
|
2013 |
Barpanda P, Rousse G, Ye T, Ling CD, Mohamed Z, Klein Y, Yamada A. Neutron diffraction study of the Li-ion battery cathode Li2FeP2O7. Inorganic Chemistry. 52: 3334-41. PMID 23445242 DOI: 10.1021/Ic302816W |
0.339 |
|
2013 |
Barpanda P, Avdeev M, Ling CD, Lu J, Yamada A. Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. Inorganic Chemistry. 52: 395-401. PMID 23244781 DOI: 10.1021/Ic302191D |
0.376 |
|
2013 |
Barpanda P, Yamashita Y, Yamada Y, Yamada A. High-throughput solution combustion synthesis of high-capacity LiFeBO 3 cathode Journal of the Electrochemical Society. 160. DOI: 10.1149/2.015305Jes |
0.449 |
|
2013 |
Yamashita Y, Barpanda P, Yamada Y, Yamada A. Demonstration of co3+/co2+ electrochemical activity in licobo3 cathode at 4.0 v Ecs Electrochemistry Letters. 2. DOI: 10.1149/2.003308Eel |
0.49 |
|
2013 |
Barpanda P, Ati M, Melot BC, Chotard JN, Rousse G, Tarascon JM. Effect of both Mn and Zn partial substitution on the electrochemical performance of LiFeSO4F Ecs Transactions. 45: 227-233. DOI: 10.1149/04529.0227ecst |
0.423 |
|
2013 |
Barpanda P, Ye T, Avdeev M, Chung SC, Yamada A. A new polymorph of Na2MnP2O7 as a 3.6 v cathode material for sodium-ion batteries Journal of Materials Chemistry A. 1: 4194-4197. DOI: 10.1039/C3Ta10210F |
0.464 |
|
2013 |
Barpanda P, Lu J, Ye T, Kajiyama M, Chung SC, Yabuuchi N, Komaba S, Yamada A. A layer-structured Na<inf>2</inf>CoP<inf>2</inf>O<inf>7</inf> pyrophosphate cathode for sodium-ion batteries Rsc Advances. 3: 3857-3860. DOI: 10.1039/C3Ra23026K |
0.421 |
|
2013 |
Barpanda P, Liu G, Ling CD, Tamaru M, Avdeev M, Chung SC, Yamada Y, Yamada A. Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries Chemistry of Materials. 25: 3480-3487. DOI: 10.1021/Cm401657C |
0.426 |
|
2013 |
Ye T, Barpanda P, Nishimura SI, Furuta N, Chung SC, Yamada A. General observation of Fe3+/Fe2+ redox couple close to 4 v in partially substituted Li2FeP2O7 pyrophosphate solid-solution cathodes Chemistry of Materials. 25: 3623-3629. DOI: 10.1021/Cm401547Z |
0.41 |
|
2012 |
Chung SC, Barpanda P, Nishimura S, Yamada Y, Yamada A. Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study. Physical Chemistry Chemical Physics : Pccp. 14: 8678-82. PMID 22614065 DOI: 10.1039/C2Cp40489C |
0.44 |
|
2012 |
Barpanda P, Ye T, Lu J, Yamada Y, Chung SC, Nishimura S, Okubo M, Zhou H, Yamada A. Splash combustion synthesis and exploration of alkali metal pyrophosphate (A2MP2O7; A = Li, Na) cathodes Ecs Transactions. 50: 71-77. DOI: 10.1149/05024.0071ecst |
0.423 |
|
2012 |
Barpanda P, Yamashita Y, Chung SC, Yamada Y, Nishimura S, Yamada A. Revisiting the lithium iron borate (LiFeBO3) cathode system: Synthetic and electrochemical findings Ecs Transactions. 50: 21-26. DOI: 10.1149/05024.0021ecst |
0.361 |
|
2012 |
Tamaru M, Barpanda P, Yamada Y, Nishimura SI, Yamada A. Observation of the highest Mn3+/Mn2+ redox potential of 4.45 v in a Li2MnP2O7 pyrophosphate cathode Journal of Materials Chemistry. 22: 24526-24529. DOI: 10.1039/C2Jm35260E |
0.468 |
|
2012 |
Barpanda P, Ye T, Chung SC, Yamada Y, Nishimura SI, Yamada A. Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li 2FeP 2O 7) positive-electrode using Fe(iii) precursors Journal of Materials Chemistry. 22: 13455-13459. DOI: 10.1039/C2Jm32566G |
0.442 |
|
2012 |
Shimizu D, Nishimura SI, Barpanda P, Yamada A. Electrochemical redox mechanism in 3.5 v Li 2-xFeP 2O 7 (0 ≤ x ≤ 1) pyrophosphate cathode Chemistry of Materials. 24: 2598-2603. DOI: 10.1021/Cm301337Z |
0.452 |
|
2012 |
Furuta N, Nishimura SI, Barpanda P, Yamada A. Fe 3+/Fe 2+ redox couple approaching 4 v in Li 2-x(Fe 1-yMn y)P 2O 7 pyrophosphate cathodes Chemistry of Materials. 24: 1055-1061. DOI: 10.1021/Cm2032465 |
0.415 |
|
2012 |
Reynaud M, Barpanda P, Rousse G, Chotard JN, Melot BC, Recham N, Tarascon JM. Synthesis and crystal chemistry of the NaMSO 4F family (M = Mg, Fe, Co, Cu, Zn) Solid State Sciences. 14: 15-20. DOI: 10.1016/J.Solidstatesciences.2011.09.004 |
0.534 |
|
2012 |
Barpanda P, Ye T, Nishimura SI, Chung SC, Yamada Y, Okubo M, Zhou H, Yamada A. Sodium iron pyrophosphate: A novel 3.0 v iron-based cathode for sodium-ion batteries Electrochemistry Communications. 24: 116-119. DOI: 10.1016/J.Elecom.2012.08.028 |
0.469 |
|
2012 |
Barpanda P, Dedryvère R, Deschamps M, Delacourt C, Reynaud M, Yamada A, Tarascon JM. Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting Journal of Solid State Electrochemistry. 16: 1743-1751. DOI: 10.1007/S10008-011-1598-Y |
0.526 |
|
2012 |
Barpanda P, Nishimura SI, Yamada A. High-voltage pyrophosphate cathodes Advanced Energy Materials. 2: 841-859. DOI: 10.1002/Aenm.201100772 |
0.472 |
|
2011 |
Ati M, Melot BC, Rousse G, Chotard JN, Barpanda P, Tarascon JM. Structural and electrochemical diversity in LiFe(1-δ)Zn(δ)SO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angewandte Chemie (International Ed. in English). 50: 10574-7. PMID 21928451 DOI: 10.1002/Anie.201104648 |
0.559 |
|
2011 |
Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Materials. 10: 772-9. PMID 21857675 DOI: 10.1038/Nmat3093 |
0.559 |
|
2011 |
Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM. LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. Angewandte Chemie (International Ed. in English). 50: 2526-31. PMID 21370330 DOI: 10.1002/Anie.201006331 |
0.5 |
|
2011 |
Ati M, Sougrati MT, Recham N, Barpanda P, Reynaud M, Delacourt C, Armand M, Jumas JC, Tarascon JM. Synthesis of new fluorosulphate materials using different approaches Ecs Transactions. 35: 57-63. DOI: 10.1149/1.3655687 |
0.383 |
|
2011 |
Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM. Direct and modified ionothermal synthesis of LiMnPO 4 with tunable morphology for rechargeable Li-ion batteries Journal of Materials Chemistry. 21: 10143-10152. DOI: 10.1039/C0Jm04423G |
0.537 |
|
2011 |
Barpanda P, Fanchini G, Amatucci GG. Structure, surface morphology and electrochemical properties of brominated activated carbons Carbon. 49: 2538-2548. DOI: 10.1016/J.Carbon.2011.02.028 |
0.648 |
|
2011 |
Ati M, Melot BC, Rousse G, Chotard JN, Barpanda P, Tarascon JM. Structural and electrochemical diversity in LiFe1-δZn δSO4F solid solution: A Fe-Based 3.9 v positive-electrode material Angewandte Chemie - International Edition. 50: 10574-10577. DOI: 10.1002/anie.201104648 |
0.495 |
|
2010 |
Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorganic Chemistry. 49: 7401-13. PMID 20690749 DOI: 10.1021/Ic100583F |
0.528 |
|
2010 |
Barpanda P, Ati M, Recham N, Chotard JN, Walker W, Armand M, Tarascon JM. Crystal structure and electrochemical study of A(Fe 1-xM x)SO 4F (A = Li/Na; M = Co/Ni/Mn) fluorosulphates prepared by low temperature synthesis Ecs Transactions. 28: 1-9. DOI: 10.1149/1.3505820 |
0.463 |
|
2010 |
Ati M, Sougrati MT, Recham N, Barpanda P, Leriche JB, Courty M, Armand M, Jumas JC, Tarascon JM. Fluorosulfate positive electrodes for Li-ion batteries made via a solid-state dry process Journal of the Electrochemical Society. 157: A1007-A1015. DOI: 10.1149/1.3457435 |
0.553 |
|
2010 |
Barpanda P, Recham N, Djellab K, Boulineau A, Armand M, Tarascon JM. Ionothermal synthesis and electrochemical characterization of nanostructured lithium manganese phosphates Ecs Transactions. 25: 1-7. DOI: 10.1149/1.3301805 |
0.512 |
|
2010 |
Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM. Structure and electrochemical properties of novel mixed Li(Fe 1-xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis Journal of Materials Chemistry. 20: 1659-1668. DOI: 10.1039/B922063A |
0.597 |
|
2010 |
Tarascon JM, Recham N, Armand M, Chotard JN, Barpanda P, Walker W, Dupont L. Hunting for better Li-based electrode materials via low temperature inorganic synthesis Chemistry of Materials. 22: 724-739. DOI: 10.1021/Cm9030478 |
0.544 |
|
2010 |
Ati M, Dupont L, Recham N, Chotard JN, Walker WT, Davoisne C, Barpanda P, Sarou-Kanian V, Armand M, Tarascon JM. Synthesis, structural, and transport properties of novel bihydrated fluorosulphates NaMSO4F 2H2O (M=Fe, Co, and Ni) Chemistry of Materials. 22: 4062-4068. DOI: 10.1021/Cm1010482 |
0.554 |
|
2010 |
Barpanda P, Djellab K, Sadangi RK, Sahu AK, Roy D, Sun K. Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation Carbon. 48: 4178-4189. DOI: 10.1016/J.Carbon.2010.07.038 |
0.472 |
|
2009 |
Barpanda P, Li Y, Cosandey F, Rangan S, Bartynski RA, Amatucci GG. Fabrication, physical and electrochemical investigation of microporous carbon polyiodide nanocomposites Journal of the Electrochemical Society. 156. DOI: 10.1149/1.3212851 |
0.639 |
|
2008 |
Barpanda P, Amatucci GG. Structure and electrochemistry of carbon-bromine nanocomposite electrodes for electrochemical energy storage Materials Research Society Symposium Proceedings. 1127: 8-13. DOI: 10.1557/Proc-1127-T01-11 |
0.668 |
|
2008 |
Barpanda P, Fanchini G, Amatucci GG. Microporous carbon-halide nanocomposites electrodes for symmetric and asymmetric capacitor Materials Research Society Symposium Proceedings. 1100: 43-48. DOI: 10.1557/Proc-1100-Jj06-04 |
0.652 |
|
2008 |
Barpanda P, Fanchini G, Amatucci GG. Carbon-halide nanocomposites for asymmetric hybrid supercapacitors Materials Research Society Symposium Proceedings. 1056: 96-101. DOI: 10.1557/Proc-1056-Hh03-51 |
0.668 |
|
2008 |
Barpanda P, Fanchini G, Amatucci GG. Faradaic and non-faradaic reaction mechanisms in carbon-iodine nanocomposites electrodes for asymmetric hybrid supercapacitors Ecs Transactions. 13: 13-19. DOI: 10.1149/1.3039763 |
0.596 |
|
2008 |
Barpanda P, Fanchini G, Amatucci GG. Study of underlying electrochemical mechanisms in nanoscale amorphous carbon-iodine electrodes Ecs Transactions. 11: 113-118. DOI: 10.1149/1.2953512 |
0.603 |
|
2008 |
Barpanda P, Fanchini G, Amatucci GG. Nanostructured halide modified carbon electrodes for symmetric and asymmetric electrochemical supercapacitors Ecs Transactions. 6: 177-182. DOI: 10.1149/1.2943236 |
0.631 |
|
2007 |
Barpanda P, Fanchini G, Amatucci GG. Physical and electrochemical properties of iodine-modified activated carbons Journal of the Electrochemical Society. 154. DOI: 10.1149/1.2714313 |
0.664 |
|
2007 |
Barpanda P, Fanchini G, Amatucci GG. The physical and electrochemical characterization of vapor phase iodated activated carbons Electrochimica Acta. 52: 7136-7147. DOI: 10.1016/J.Electacta.2007.05.051 |
0.661 |
|
2007 |
Barpanda P. Fabrication, structure, and electrochemistry of iodated microporous carbons of low mesoporosity Electrochemical Society Interface. 16: 57-58. |
0.322 |
|
2006 |
Barpanda P, Amatucci GG. Activated carbons for high power energy storage: Below the surface of non-faradaic reactions Materials Research Society Symposium Proceedings. 973: 86-91. DOI: 10.1557/Proc-0973-Bb07-02 |
0.653 |
|
Show low-probability matches. |