Year |
Citation |
Score |
2013 |
Raghavachari K, Trucks GW, Pople JA, Head-Gordon M. Reprint of: A fifth-order perturbation comparison of electron correlation theories Chemical Physics Letters. 589: 37-40. DOI: 10.1016/J.Cplett.2013.08.064 |
0.586 |
|
2010 |
Pople JA. Structural studies using molecular orbital theory Bulletin Des SociéTéS Chimiques Belges. 85: 347-361. DOI: 10.1002/BSCB.19760850601 |
0.301 |
|
2009 |
Pople JA, Frisch MJ, Luke BT, Binkley JS. A moller-plesset study of the energies of AHn molecules (A = Li to F) International Journal of Quantum Chemistry. 24: 307-320. DOI: 10.1002/Qua.560240835 |
0.555 |
|
2009 |
Pople JA, Schlegel HB, Krishnan R, Defrees DJ, Binkley JS, Frisch MJ, Whiteside RA, Hout RF, Hehre WJ. Molecular orbital studies of vibrational frequencies International Journal of Quantum Chemistry. 20: 269-278. DOI: 10.1002/Qua.560200829 |
0.475 |
|
2009 |
Pople JA, Beveridge DL, Ostlund NS. Recent progress in approximate self-consistent-field theory International Journal of Quantum Chemistry. 1: 293-305. DOI: 10.1002/QUA.560010635 |
0.49 |
|
2006 |
Gomez ED, Das J, Chakraborty AK, Pople JA, Balsara NP. Effect of cross-linking on the structure and thermodynamics of lamellar block copolymers Macromolecules. 39: 4848-4859. DOI: 10.1021/Ma052323R |
0.302 |
|
2002 |
Curtiss LA, Redfern PC, Raghavachari K, Pople JA. Gaussian-3X (G3X) theory using coupled cluster and Brueckner energies Chemical Physics Letters. 359: 390-396. DOI: 10.1016/S0009-2614(02)00742-X |
0.459 |
|
2001 |
Curtiss LA, Redfern PC, Raghavachari K, Pople JA. Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets Journal of Chemical Physics. 114: 108-117. DOI: 10.1063/1.1321305 |
0.547 |
|
2001 |
Curtiss LA, Raghavachari K, Redfern PC, Kedziora GS, Pople JA. On Comparison of Experimental Thermochemical Data with G3 Theory The Journal of Physical Chemistry A. 105: 227-228. DOI: 10.1021/Jp0026585 |
0.53 |
|
2000 |
Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Assessment of Gaussian-3 and density functional theories for a larger experimental test set The Journal of Chemical Physics. 112: 7374-7383. DOI: 10.1063/1.481336 |
0.521 |
|
2000 |
Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Gaussian-3 theory using scaled energies The Journal of Chemical Physics. 112: 1125-1132. DOI: 10.1063/1.480668 |
0.523 |
|
1999 |
Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA. Gaussian-3 theory using reduced Mo/ller-Plesset order The Journal of Chemical Physics. 110: 4703-4709. DOI: 10.1063/1.478385 |
0.561 |
|
1999 |
Curtiss LA, Raghavachari K, Redfern PC, Baboul AG, Pople JA. Gaussian-3 theory using coupled cluster energies Chemical Physics Letters. 314: 101-107. DOI: 10.1016/S0009-2614(99)01126-4 |
0.445 |
|
1999 |
Curtiss LA, Redfern PC, Raghavachari K, Pople JA. Gaussian-3 theory: a variation based on third-order perturbation theory and an assessment of the contribution of core-related correlation Chemical Physics Letters. 313: 600-607. DOI: 10.1016/S0009-2614(99)01082-9 |
0.473 |
|
1998 |
Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA. Gaussian-3 (G3) theory for molecules containing first and second-row atoms The Journal of Chemical Physics. 109: 7764-7776. DOI: 10.1063/1.477422 |
0.595 |
|
1998 |
Curtiss LA, Redfern PC, Raghavachari K, Pople JA. Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities Journal of Chemical Physics. 109: 42-55. DOI: 10.1063/1.476538 |
0.569 |
|
1997 |
Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation The Journal of Chemical Physics. 106: 1063-1079. DOI: 10.1063/1.473182 |
0.567 |
|
1997 |
Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Investigation of the use of B3LYP zero-point energies and geometries in the calculation of enthalpies of formation Chemical Physics Letters. 270: 419-426. DOI: 10.1016/S0009-2614(97)00399-0 |
0.456 |
|
1996 |
Pople JA, Adamson RD, Gill PMW. Density Functional Partitions The Journal of Physical Chemistry. 100: 6348-6353. DOI: 10.1021/Jp963467Y |
0.356 |
|
1996 |
Handy NC, Pople JA, Shavitt I. Samuel Francis Boys Journal of Physical Chemistry. 100: 6007-6016. DOI: 10.1021/Jp963465D |
0.321 |
|
1995 |
Curtiss LA, Raghavachari K, Pople JA. Gaussian‐2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second‐order Mo/ller–Plesset zero‐point energies The Journal of Chemical Physics. 103: 4192-4200. DOI: 10.1063/1.470658 |
0.55 |
|
1995 |
Curtiss LA, Lucas DJ, Pople JA. Energies of C2H5O and C2H5O+ isomers Journal of Chemical Physics. 102: 3292-3300. DOI: 10.1063/1.468640 |
0.367 |
|
1994 |
Raghavachari K, Zhang B, Pople JA, Johnson BG, Gill PMW. Isomers of C24. Density functional studies including gradient corrections Chemical Physics Letters. 220: 385-390. DOI: 10.1016/0009-2614(94)00192-8 |
0.436 |
|
1994 |
Gill PM, Johnson BG, Pople JA. A simple yet powerful upper bound for Coulomb integrals Chemical Physics Letters. 217: 65-68. DOI: 10.1016/0009-2614(93)E1340-M |
0.577 |
|
1993 |
Gill PM, Pople JA. Exact exchange functional for the hydrogen atom. Physical Review. A. 47: 2383-2385. PMID 9909197 DOI: 10.1103/Physreva.47.2383 |
0.628 |
|
1993 |
Tozer DJ, Handy NC, Amos RD, Pople JA, Nobes RH, Xie Y, Schaefer HF. Theory and applications of spin-restricted open-shell møller-plesset theory Molecular Physics. 79: 777-793. DOI: 10.1080/00268979300101621 |
0.303 |
|
1993 |
Lucas DJ, Curtiss LA, Pople JA. Theoretical study of the silicon–oxygen hydrides SiOHn (n=0–4) and SiOH+n (n=0–5): Dissociation energies, ionization energies, enthalpies of formation, and proton affinities Journal of Chemical Physics. 99: 6697-6703. DOI: 10.1063/1.465837 |
0.352 |
|
1993 |
Curtiss LA, Raghavachari K, Pople JA. Gaussian‐2 theory using reduced Mo/ller–Plesset orders The Journal of Chemical Physics. 98: 1293-1298. DOI: 10.1063/1.464297 |
0.549 |
|
1993 |
Head-Gordon M, Pople JA. Reply to comment on "Internal rotation in conjugated molecules: substituted ethylenes and benzenes" The Journal of Physical Chemistry. 97: 10250-10250. DOI: 10.1021/J100141A057 |
0.461 |
|
1993 |
Head-Gordon M, Pople JA. Internal rotation in conjugated molecules: substituted ethylenes and benzenes The Journal of Physical Chemistry. 97: 1147-1151. DOI: 10.1021/J100108A008 |
0.527 |
|
1993 |
Curtiss LA, Raghavachari K, Pople JA. The accurate determination of enthalpies of formation Chemical Physics Letters. 214: 183-185. DOI: 10.1016/0009-2614(93)90078-F |
0.362 |
|
1993 |
Raghavachari K, Strout DL, Odom GK, Scuseria GE, Pople JA, Johnson BG, Gill PMW. Isomers of C20. Dramatic effect of gradient corrections in density functional theory Chemical Physics Letters. 214: 357-361. DOI: 10.1016/0009-2614(93)85650-D |
0.464 |
|
1993 |
Johnson BG, Gill PM, Pople JA, Fox DJ. Computing molecular electrostatic potentials with the PRISM algorithm Chemical Physics Letters. 206: 239-246. DOI: 10.1016/0009-2614(93)85547-2 |
0.607 |
|
1993 |
Pople JA, Scott AP, Wong MW, Radom L. Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6-31G* and MP2/6-31G* Harmonic Frequencies Israel Journal of Chemistry. 33: 345-350. DOI: 10.1002/Ijch.199300041 |
0.53 |
|
1992 |
Curtiss LA, Nobes RH, Pople JA, Radom L. Theoretical study of the organosulfur systems CSHn (n=0–4) and CSHn+ (n=0–5): Dissociation energies, ionization energies, and enthalpies of formationa) The Journal of Chemical Physics. 97: 6766-6773. DOI: 10.1063/1.463654 |
0.629 |
|
1992 |
Curtiss LA, Carpenter JE, Raghavachari K, Pople JA. Validity of additivity approximations used in GAUSSIAN‐2 theory The Journal of Chemical Physics. 96: 9030-9034. DOI: 10.1063/1.462261 |
0.548 |
|
1992 |
Foresman JB, Head-Gordon M, Pople JA, Frisch MJ. Toward a systematic molecular orbital theory for excited states The Journal of Physical Chemistry. 96: 135-149. DOI: 10.1021/J100180A030 |
0.645 |
|
1992 |
Gill PM, Johnson BG, Pople JA, Frisch MJ. The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets Chemical Physics Letters. 197: 499-505. DOI: 10.1016/0009-2614(92)85807-M |
0.748 |
|
1992 |
Gill PMW, Johnson BG, Pople JA, Frisch MJ. An investigation of the performance of a hybrid of Hartree-Fock and density functional theory International Journal of Quantum Chemistry. 44: 319-331. DOI: 10.1002/Qua.560440828 |
0.544 |
|
1991 |
Kobayashi R, Handy NC, Amos RD, Trucks GW, Frisch MJ, Pople JA. Gradient theory applied to the Brueckner doubles method The Journal of Chemical Physics. 95: 6723-6733. DOI: 10.1063/1.461544 |
0.572 |
|
1991 |
Curtiss LA, Pople JA. Theoretical study of methyl hypoflourite (CH3OF) and related compounds The Journal of Chemical Physics. 95: 7962-7964. DOI: 10.1063/1.461326 |
0.418 |
|
1991 |
Marsden CJ, Smith BJ, Pople JA, Schaefer HF, Radom L. Characterization of the bifurcated structure of the water dimer The Journal of Chemical Physics. 95: 1825-1828. DOI: 10.1063/1.461030 |
0.579 |
|
1991 |
Curtiss LA, Raghavachari K, Deutsch PW, Pople JA. Theoretical study of Si2Hn (n=0–6) and Si2H+n (n=0–7): Appearance potentials, ionization potentials, and enthalpies of formation The Journal of Chemical Physics. 95: 2433-2444. DOI: 10.1063/1.460948 |
0.542 |
|
1991 |
Curtiss LA, Kock LD, Pople JA. Energies of CH2OH, CH3O, and related compounds Journal of Chemical Physics. 95: 4040-4043. DOI: 10.1063/1.460759 |
0.383 |
|
1991 |
Curtiss LA, Raghavachari K, Trucks GW, Pople JA. Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds The Journal of Chemical Physics. 94: 7221-7230. DOI: 10.1063/1.460205 |
0.601 |
|
1991 |
Ma NL, Smith BJ, Pople JA, Radom L. Rearrangement and dissociative reactions of the methanol radical cation (CH3OH.bul.+): a comparison of theory and experiment Journal of the American Chemical Society. 113: 7903-7912. DOI: 10.1021/Ja00021A013 |
0.598 |
|
1991 |
Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA. Theoretical study of blocked glycine and alanine peptide analogs Journal of the American Chemical Society. 113: 5989-5997. DOI: 10.1021/Ja00016A010 |
0.558 |
|
1991 |
Knowles PJ, Andrews JS, Amos RD, Handy NC, Pople JA. Restricted Møller—Plesset theory for open-shell molecules Chemical Physics Letters. 186: 130-136. DOI: 10.1016/S0009-2614(91)85118-G |
0.304 |
|
1991 |
Nobes RH, Moncrieff D, Wong MW, Radom L, Gill PM, Pople JA. The structure and stability of the O2+2 dication: a dramatic failure of Møller—Plesset perturbation theory Chemical Physics Letters. 182: 216-224. DOI: 10.1016/0009-2614(91)80204-B |
0.739 |
|
1990 |
Raghavachari K, Head‐Gordon M, Pople JA. Reply to comment on: Coupled cluster approach or quadratic configuration interaction? The Journal of Chemical Physics. 93: 1486-1487. DOI: 10.1063/1.459112 |
0.426 |
|
1990 |
Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA. Gaussian‐1 theory of molecular energies for second‐row compounds The Journal of Chemical Physics. 93: 2537-2545. DOI: 10.1063/1.458892 |
0.598 |
|
1990 |
Smith BJ, Swanton DJ, Pople JA, Schaefer HF, Radom L. Transition structures for the interchange of hydrogen atoms within the water dimer The Journal of Chemical Physics. 92: 1240-1247. DOI: 10.1063/1.458133 |
0.616 |
|
1990 |
Raghavachari K, Pople JA, Replogle ES, Head-Gordon M. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order The Journal of Physical Chemistry. 94: 5579-5586. DOI: 10.1021/J100377A033 |
0.623 |
|
1990 |
Raghavachari K, Pople JA, Replogle ES, Head-Gordon M, Handy NC. Size-consistent Brueckner theory limited to double and triple substitutions Chemical Physics Letters. 167: 115-121. DOI: 10.1016/0009-2614(90)85081-M |
0.607 |
|
1990 |
Frisch MJ, Head-Gordon M, Pople JA. Semi-direct algorithms for the MP2 energy and gradient Chemical Physics Letters. 166: 281-289. DOI: 10.1016/0009-2614(90)80030-H |
0.551 |
|
1989 |
Curtiss LA, Pople JA. Further theoretical studies on B2H4 and B2H+4 The Journal of Chemical Physics. 91: 5118-5119. DOI: 10.1063/1.457605 |
0.404 |
|
1989 |
Curtiss LA, Pople JA. Theoretical study of the C–H bond dissociation energy of acetylene Journal of Chemical Physics. 91: 2420-2423. DOI: 10.1063/1.457000 |
0.418 |
|
1989 |
Curtiss LA, Pople JA. Theoretical study of the ionization of B2H5 The Journal of Chemical Physics. 91: 4189-4192. DOI: 10.1063/1.456796 |
0.396 |
|
1989 |
Curtiss LA, Pople JA. Theroretical study of B2H+3, B2H+2, and B2H+ The Journal of Chemical Physics. 91: 4809-4812. DOI: 10.1063/1.456719 |
0.39 |
|
1989 |
Curtiss LA, Pople JA. Basis set additivity in calculation of ionization potentials of AHn compounds The Journal of Chemical Physics. 90: 603-605. DOI: 10.1063/1.456689 |
0.324 |
|
1989 |
Pople JA, Head‐Gordon M, Raghavachari K. Quadratic configuration interaction: Reply to comment by Paldus, Cizek, and Jeziorski The Journal of Chemical Physics. 90: 4635-4636. DOI: 10.1063/1.456607 |
0.454 |
|
1989 |
Pople JA, Head‐Gordon M, Fox DJ, Raghavachari K, Curtiss LA. Gaussian‐1 theory: A general procedure for prediction of molecular energies The Journal of Chemical Physics. 90: 5622-5629. DOI: 10.1063/1.456415 |
0.6 |
|
1989 |
Curtiss LA, Pople JA. A theoretical study of the dissociation energy of BH using quadratic configuration interaction Journal of Chemical Physics. 90: 2522-2523. DOI: 10.1063/1.455945 |
0.349 |
|
1989 |
Pople JA, Curtiss LA. A theoretical study of the energy of hypofluorous acid, HOF The Journal of Chemical Physics. 90: 2833-2833. DOI: 10.1063/1.455934 |
0.359 |
|
1989 |
Curtiss LA, Pople JA. Theoretical study of B2H+4 and B2H4 Journal of Chemical Physics. 90: 4314-4319. DOI: 10.1063/1.455788 |
0.404 |
|
1989 |
Raghavachari K, Trucks GW, Pople JA, Head-Gordon M. A fifth-order perturbation comparison of electron correlation theories Chemical Physics Letters. 157: 479-483. DOI: 10.1016/S0009-2614(89)87395-6 |
0.587 |
|
1989 |
Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW. Size-consistent Brueckner theory limited to double substitutions Chemical Physics Letters. 164: 185-192. DOI: 10.1016/0009-2614(89)85013-4 |
0.598 |
|
1988 |
Curtiss LA, Pople JA. Theoretical study of B2H+5, B2H+6, and B2H6 Journal of Chemical Physics. 89: 4875-4879. DOI: 10.1063/1.455656 |
0.391 |
|
1988 |
Curtiss LA, Pople JA. A theoretical study of the energies of BHn compounds Journal of Chemical Physics. 89: 614-615. DOI: 10.1063/1.455457 |
0.421 |
|
1988 |
Gill PMW, Pople JA, Radom L, Nobes RH. Why does unrestricted Mo/ller–Plesset perturbation theory converge so slowly for spin‐contaminated wave functions? The Journal of Chemical Physics. 89: 7307-7314. DOI: 10.1063/1.455312 |
0.588 |
|
1988 |
Curtiss LA, Pople JA. Theoretical study of structures and energies of acetylene, ethylene, and vinyl radical and cation Journal of Chemical Physics. 88: 7405-7409. DOI: 10.1063/1.454303 |
0.436 |
|
1988 |
Head-Gordon M, Pople JA. Optimization of wave function and geometry in the finite basis Hartree-Fock method The Journal of Physical Chemistry. 92: 3063-3069. DOI: 10.1021/J100322A012 |
0.417 |
|
1988 |
Curtiss LA, Pople JA. Theoretical thermochemistry. 4. Ionization energies and proton affinities of AHn species (A = lithium to boron and sodium to aluminum): geometries and enthalpies of formation of their cations The Journal of Physical Chemistry. 92: 894-899. DOI: 10.1021/J100315A007 |
0.399 |
|
1988 |
Pople JA, Head-Gordon M, Raghavachari K. Corrections to correlations energies beyond fourth order moller-plesset (MP4) perturbation theory. Contributions of single, double, and triple substitutions International Journal of Quantum Chemistry. 34: 377-382. DOI: 10.1002/Qua.560340842 |
0.623 |
|
1987 |
Pople JA, Head‐Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies The Journal of Chemical Physics. 87: 5968-5975. DOI: 10.1063/1.453520 |
0.539 |
|
1987 |
Pople JA, Curtiss LA. Theoretical thermochemistry. 3. A modified procedure for ionization energies of AHn species The Journal of Physical Chemistry. 91: 3637-3639. DOI: 10.1021/J100297A034 |
0.34 |
|
1987 |
DeFrees DJ, Raghavachari K, Schlegel HB, Pople JA, Schleyer PvR. Binary association complexes of lithium monohydride, beryllium dihydride, and borane. Relative isomer stabilities and barrier heights for their interconversion: energy barriers in the dimerization reactions The Journal of Physical Chemistry. 91: 1857-1864. DOI: 10.1021/J100291A034 |
0.451 |
|
1987 |
Nobes RH, Pople JA, Radom L, Handy NC, Knowles PJ. Slow convergence of the møller-plesset perturbation series: the dissociation energy of hydrogen cyanide and the electron affinity of the cyano radical Chemical Physics Letters. 138: 481-485. DOI: 10.1016/0009-2614(87)80545-6 |
0.6 |
|
1986 |
Raghavachari K, Whiteside RA, Pople JA. Structures of small carbon clusters: Cyclic ground state of C6 The Journal of Chemical Physics. 85: 6623-6628. DOI: 10.1063/1.451444 |
0.539 |
|
1986 |
Luke BT, Pople JA, Krogh-Jespersen MB, Apeloig Y, Karni M, Chandrasekhar J, Schleyer PvR. A theoretical survey of unsaturated or multiply bonded and divalent silicon compounds. Comparison with carbon analogs Journal of the American Chemical Society. 108: 270-284. DOI: 10.1021/Ja00262A014 |
0.362 |
|
1986 |
Luke BT, Pople JA, Krogh-Jespersen MB, Apeloig Y, Chandrasekhar J, Schleyer PvR. A theoretical survey of singly bonded silicon compounds. Comparison of the structures and bond energies of silyl and methyl derivatives Journal of the American Chemical Society. 108: 260-269. DOI: 10.1021/Ja00262A013 |
0.372 |
|
1986 |
Luke BT, Pople JA, Krogh-Jespersen M-, Apeloig Y, Chandrasekhar J, Schleyer PVR. Theoretical Survey of Singly Bonded Silicon Compounds. Comparison of the Structures and Bond Energies of Silyl and Methyl Derivatives Cheminform. 17. DOI: 10.1002/Chin.198618003 |
0.319 |
|
1985 |
Curtiss LA, Pople JA. Theoretical investigation of Li and Be atom complexes with H2O The Journal of Chemical Physics. 82: 4230-4235. DOI: 10.1063/1.448838 |
0.383 |
|
1985 |
Frisch MJ, Pople JA, Del Bene JE. Molecular orbital study of the dimers (AHn)2 formed from ammonia, water, hydrogen fluoride, phosphine, hydrogen sulfide, and hydrogen chloride The Journal of Physical Chemistry. 89: 3664-3669. DOI: 10.1021/J100263A018 |
0.506 |
|
1985 |
Pople JA, Luke BT, Frisch MJ, Binkley JS. Theoretical thermochemistry. 1. Heats of formation of neutral AHn molecules (A = Li to Cl) The Journal of Physical Chemistry. 89: 2198-2203. DOI: 10.1021/J100257A013 |
0.533 |
|
1984 |
Frisch MJ, Pople JA, Binkley JS. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets The Journal of Chemical Physics. 80: 3265-3269. DOI: 10.1063/1.447079 |
0.547 |
|
1984 |
Schlegel HB, Binkley JS, Pople JA. First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials The Journal of Chemical Physics. 80: 1976-1981. DOI: 10.1063/1.446960 |
0.41 |
|
1983 |
Pople JA, Raghavachari K, Frisch MJ, Binkley JS, Schleyer PVR. Comprehensive theoretical study of isomers and rearrangement barriers of even-electron polyatomic molecules HmABHn (A, B = carbon, nitrogen, oxygen, and fluorine) Journal of the American Chemical Society. 105: 6389-6399. DOI: 10.1021/Ja00359A005 |
0.639 |
|
1983 |
Schleyer PvR, Wuerthwein EU, Kaufmann E, Clark T, Pople JA. Effectively hypervalent molecules. 2. Lithium carbide (CLi5), lithium carbide (CLi6), and the related effectively hypervalent first row molecules, CLi5-nHn and CLi6-nHn Journal of the American Chemical Society. 105: 5930-5932. DOI: 10.1021/Ja00356A045 |
0.344 |
|
1983 |
Kim KS, Schaefer HF, Radom L, Pople JA, Binkley JS. Vibrational frequencies of the cyanocarbene (HCCN) molecule. A near degeneracy between bent cyanocarbene and linear allene-related geometries Journal of the American Chemical Society. 105: 4148-4154. DOI: 10.1021/Ja00351A004 |
0.621 |
|
1983 |
DeFrees D, Ragavachari K, Schlegel H, Pople J. Additions and Corrections - Effect of Electron Correlation on Theoretical Equilibrium Geometries. 2. Comparison of Third-Order Perturbation and Configuration Interaction Results with Experiment Journal of the American Chemical Society. 105: 3745-3745. DOI: 10.1021/Ja00349A602 |
0.342 |
|
1983 |
Del Bene JE, Mettee HD, Frisch MJ, Luke BT, Pople JA. Ab initio computation of the enthalpies of some gas-phase hydration reactions The Journal of Physical Chemistry. 87: 3279-3282. DOI: 10.1021/J100240A020 |
0.411 |
|
1983 |
Del Bene JE, Frisch MJ, Raghavachari K, Pople JA, Schleyer PvR. A molecular orbital study of some lithium ion complexes The Journal of Physical Chemistry. 87: 73-78. DOI: 10.1021/J100224A018 |
0.596 |
|
1983 |
KIM KS, SCHAEFER HFI, RADOM L, POPLE JA, BINKLEY JS. ChemInform Abstract: VIBRATIONAL FREQUENCIES OF THE CYANOCARBENE (HCCN) MOLECULE. A NEAR DEGENERACY BETWEEN BENT CYANOCARBENE AND LINEAR ALLENE-RELATED GEOMETRIES Chemischer Informationsdienst. 14. DOI: 10.1002/chin.198340067 |
0.515 |
|
1982 |
Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements The Journal of Chemical Physics. 77: 3654-3665. DOI: 10.1063/1.444267 |
0.782 |
|
1982 |
DeFrees DJ, Raghavachari K, Schlegel HB, Pople JA. Effect of electron correlation of theoretical equilibrium geometries. 2. Comparison of third-order perturbation and configuration interaction results with experiment Journal of the American Chemical Society. 104: 5576-5580. DOI: 10.1021/Ja00385A002 |
0.617 |
|
1982 |
Pietro WJ, Francl MM, Hehre WJ, DeFrees DJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements Journal of the American Chemical Society. 104: 5039-5048. DOI: 10.1021/JA00383A007 |
0.568 |
|
1982 |
Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements Journal of the American Chemical Society. 104: 2797-2803. DOI: 10.1021/Ja00374A017 |
0.644 |
|
1982 |
PIETRO WJ, FRANCL MM, HEHRE WJ, DEFREES DJ, POPLE JA, BINKLEY JS. ChemInform Abstract: SELF-CONSISTENT MOLECULAR ORBITAL METHODS. 24. SUPPLEMENTED SMALL SPLIT-VALENCE BASIS SETS FOR SECOND-ROW ELEMENTS Chemischer Informationsdienst. 13. DOI: 10.1002/chin.198251072 |
0.573 |
|
1981 |
Jeffrey GA, Ruble JR, McMullan RK, DeFrees DJ, Pople JA. Neutron diffraction at 20 K and ab initio molecular-orbital studies of the structure of monofluoroacetamide Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 37: 1885-1890. DOI: 10.1107/S0567740881007486 |
0.309 |
|
1981 |
Jeffrey GA, Ruble JR, McMullan RK, DeFrees DJ, Pople JA. Neutron diffraction at 16 K and ab initio molecular-orbital studies of the structure of formamide oxime Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 37: 1381-1387. DOI: 10.1107/S0567740881005980 |
0.312 |
|
1981 |
Jeffrey GA, Ruble JR, McMullan RK, DeFrees DJ, Binkley JS, Pople JA. Ab initiomolecular orbital versus low-temperature neutron diffraction molecular structures for some organic molecules Acta Crystallographica Section a Foundations of Crystallography. 37: C80-C80. DOI: 10.1107/S0108767381097110 |
0.322 |
|
1981 |
Krishnan R, Frisch MJ, Whiteside RA, Pople JA, Schleyer PvR. The structure of CCH+ The Journal of Chemical Physics. 74: 4213-4214. DOI: 10.1063/1.441558 |
0.58 |
|
1981 |
Raghavachari K, Whiteside RA, Pople JA, Schleyer PVR. Molecular orbital theory of the electronic structure of organic molecules. 40. Structures and energies of C1-C3 carbocations including effects of electron correlation Journal of the American Chemical Society. 103: 5649-5657. DOI: 10.1021/Ja00409A004 |
0.564 |
|
1981 |
Kos AJ, Jemmis ED, Schleyer PvR, Gleiter R, Fischbach U, Pople JA. 1,2-Dilithioethane. A molecular orbital study Journal of the American Chemical Society. 103: 4996-5002. DOI: 10.1021/Ja00407A003 |
0.479 |
|
1981 |
Krogh-Jespersen K, Cremer D, Dill JD, Pople JA, Schleyer PR. Aromaticity in small rings containing boron and carbon, ((CH)2(BH)n, n = 1,2): comarisons with isoelectronic carbocations. The decisive roles of orbital mixing and nonbonded 1,3-interactions in the structures of four-membered rings Journal of the American Chemical Society. 103: 2589-2594. DOI: 10.1021/Ja00400A018 |
0.401 |
|
1981 |
DeFrees D, Krishnan R, Schlegel H, Pople J. A theoretical study of the fluorohydroxy boranes BFn(OH)3−n Inorganica Chimica Acta. 47: 19-23. DOI: 10.1016/S0020-1693(00)89301-9 |
0.399 |
|
1981 |
Raghavachari K, Pople JA. Calculation of one-electron properties using limited configuration interaction techniques International Journal of Quantum Chemistry. 20: 1067-1071. DOI: 10.1002/QUA.560200503 |
0.433 |
|
1981 |
KOS AJ, JEMMIS ED, SCHLEYER PVR, GLEITER R, FISCHBACH U, POPLE JA. ChemInform Abstract: 1,2-DILITHIOETHANE. A MO STUDY Chemischer Informationsdienst. 12. DOI: 10.1002/Chin.198149063 |
0.487 |
|
1981 |
FRISCH MJ, KRISHNAN R, POPLE JA. ChemInform Abstract: THE LOWEST SINGLET POTENTIAL SURFACE OF FORMALDEHYDE Chemischer Informationsdienst. 12. DOI: 10.1002/CHIN.198136066 |
0.409 |
|
1980 |
Jeffrey GA, Ruble JR, McMullan RK, DeFrees DJ, Binkley JS, Pople JA. Neutron diffraction at 23 K and ab initio molecular-orbital studies of the molecular structure of acetamide Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 36: 2292-2299. DOI: 10.1107/S0567740880008606 |
0.319 |
|
1980 |
Krishnan R, Schlegel HB, Pople JA. Derivative studies in configuration–interaction theory The Journal of Chemical Physics. 72: 4654-4655. DOI: 10.1063/1.439708 |
0.53 |
|
1980 |
Krishnan R, Frisch MJ, Pople JA. Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory The Journal of Chemical Physics. 72: 4244-4245. DOI: 10.1063/1.439657 |
0.6 |
|
1980 |
Krishnan R, Binkley JS, Seeger R, Pople JA. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions Journal of Chemical Physics. 72: 650-654. DOI: 10.1063/1.438955 |
0.389 |
|
1980 |
DeFrees D, Levi B, Pollack S, Hehre W, Binkley JS, Pople J. Additions and Corrections - Effect of Electron Correlation on Theoretical Equilibrium Geometries Journal of the American Chemical Society. 102: 2513-2513. DOI: 10.1021/Ja00527A602 |
0.73 |
|
1980 |
Binkley JS, Pople JA, Hehre WJ. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements Journal of the American Chemical Society. 102: 939-947. DOI: 10.1021/Ja00523A008 |
0.306 |
|
1980 |
Harding LB, Schlegel HB, Krishnan R, Pople JA. Moeller-Plesset study of the H4CO potential energy surface The Journal of Physical Chemistry. 84: 3394-3401. DOI: 10.1021/J100462A017 |
0.374 |
|
1979 |
Krogh-Jespersen K, Cremer D, Poppinger D, Pople JA, Schleyer PvR, Chandrasekhar J. Molecular orbital theory of the electronic structure of molecules. 39. Highly unusual structures of electron-deficient carbon compounds. Reversal of van't Hoff stereochemistry in BBC ring systems Journal of the American Chemical Society. 101: 4843-4851. DOI: 10.1021/Ja00511A011 |
0.556 |
|
1979 |
DeFrees DJ, Levi BA, Pollack SK, Hehre WJ, Binkley JS, Pople JA. Effect of electron correlation on theoretical equilibrium geometries Journal of the American Chemical Society. 101: 4085-4089. DOI: 10.1021/Ja00509A013 |
0.726 |
|
1978 |
Schleyer PVR, Jemmis ED, Pople JA. ‘CH3O+’ and CH2O+H: High barriers to isomerization Journal of the Chemical Society, Chemical Communications. 190-191. DOI: 10.1039/C39780000190 |
0.475 |
|
1978 |
Krogh-Jespersen K, Schleyer PvR, Pople JA, Cremer D. Nonplanar structures of cyclobutadiene dications Journal of the American Chemical Society. 100: 4301-4302. DOI: 10.1021/Ja00481A048 |
0.366 |
|
1978 |
Pople JA, Hehre WJ. Computation of electron repulsion integrals involving contracted Gaussian basis functions Journal of Computational Physics. 27: 161-168. DOI: 10.1016/0021-9991(78)90001-3 |
0.496 |
|
1978 |
TSE Y, NEWTON MD, VISHVESHWARA S, POPLE JA. ChemInform Abstract: AB INITIO STUDIES OF THE RELATIVE ENERGETICS OF GLYCINE AND ITS ZWITTERION Chemischer Informationsdienst. 9. DOI: 10.1002/Chin.197842062 |
0.373 |
|
1978 |
KROGH-JESPERSEN K, SCHLEYER PVR, POPLE JA, CREMER D. ChemInform Abstract: NONPLANAR STRUCTURES OF CYCLOBUTADIENE DICATIONS Chemischer Informationsdienst. 9. DOI: 10.1002/chin.197839066 |
0.385 |
|
1978 |
APELOIG Y, SCHLEYER PVR, POPLE JA. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF MOLECULES. 36. A THEORETICAL STUDY OF SEVERAL α-SUBSTITUTED VINYL CATIONS Chemischer Informationsdienst. 9. DOI: 10.1002/Chin.197801076 |
0.346 |
|
1977 |
Radom L, Binkley J, Pople J. The molecular structure of ammonia oxide (NH3O). An ab initio study Australian Journal of Chemistry. 30: 699. DOI: 10.1071/Ch9770699 |
0.612 |
|
1977 |
Seeger R, Pople JA. Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory The Journal of Chemical Physics. 66: 3045-3050. DOI: 10.1063/1.434318 |
0.37 |
|
1977 |
Binkley JS, Pople JA. Self‐consistent molecular orbital methods. XIX. Split‐valence Gaussian‐type basis sets for beryllium The Journal of Chemical Physics. 66: 879-880. DOI: 10.1063/1.433929 |
0.325 |
|
1977 |
Apeloig Y, Schleyer PvR, Pople JA. Molecular orbital theory of the electronic structure of molecules. 36. A theoretical study of several .alpha.-substituted vinyl cations The Journal of Organic Chemistry. 42: 3004-3011. DOI: 10.1021/Jo00438A012 |
0.407 |
|
1977 |
Seeger R, Krishnan R, Pople JA, Schleyer PvR. Molecular orbital theory of the electronic structure of molecules. 37. Transition states for internal rotation in allene Journal of the American Chemical Society. 99: 7103-7105. DOI: 10.1021/Ja00464A001 |
0.402 |
|
1977 |
Dill JD, Schleyer PvR, Binkley JS, Pople JA. Molecular orbital theory of the electronic structure of molecules. 34. Structures and energies of small compounds containing lithium or beryllium. Ionic, multicenter, and coordinate bonding Journal of the American Chemical Society. 99: 6159-6173. DOI: 10.1021/Ja00461A001 |
0.445 |
|
1977 |
Apeloig Y, Schleyer PvR, Pople JA. Molecular orbital theory of the electronic structure of molecules. 35. .beta.-Substituent effects on the stabilities of ethyl and vinyl cations. Comparison with isoelectronic methyl boranes. The relative importance of hyperconjugative and inductive effects Journal of the American Chemical Society. 99: 5901-5909. DOI: 10.1021/Ja00460A010 |
0.391 |
|
1977 |
Vishveshwara S, Pople JA. Molecular orbital theory of the electronic structures of organic compounds. 32. Conformations of glycine and related systems Journal of the American Chemical Society. 99: 2422-2426. DOI: 10.1021/Ja00450A004 |
0.398 |
|
1977 |
Apeloig Y, Schleyer PvR, Pople JA. Molecular orbital theory of the electronic structure of molecules. 33. The effect of .alpha.-electropositive substituents on the stabilities of carbenium ions Journal of the American Chemical Society. 99: 1291-1296. DOI: 10.1021/Ja00447A001 |
0.377 |
|
1977 |
Dill JD, Schleyer PvR, Pople JA. Molecular orbital theory of the electronic structure of molecules. 31. Substituent stabilization of the phenyl cation Journal of the American Chemical Society. 99: 1-8. DOI: 10.1021/ja00443a001 |
0.324 |
|
1977 |
Apeloig Y, Schleyer PVR, Pople JA. MO Theory of the Electronic Structure of Molecules. Part 35. β-Substituent Effects. on the Stabilities of Ethyl and Vinyl Cations. Comparison with Isoelectronic Methyl Boranes. The Relative Importance of Hyperconjugative and Inductive Cheminform. 8. DOI: 10.1002/Chin.197750054 |
0.377 |
|
1977 |
DILL JD, SCHLEYER PVR, BINKLEY JS, POPLE JA. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF MOLECULES. 34. STRUCTURES AND ENERGIES OF SMALL COMPOUNDS CONTAINING LITHIUM OR BERYLLIUM. IONIC, MULTICENTER, AND COORDINATE BONDING Chemischer Informationsdienst. 8: no-no. DOI: 10.1002/CHIN.197750010 |
0.342 |
|
1977 |
JEMMIS ED, POPPINGER D, SCHLEYER PVR, POPLE JA. ChemInform Abstract: THE CURIOUS STRUCTURE OF THE LITHIOCARBON C3LI4 Chemischer Informationsdienst. 8: no-no. DOI: 10.1002/CHIN.197747075 |
0.426 |
|
1977 |
DILL JD, SCHLEYER PVR, POPLE JA. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF MOLECULES. 31. SUBSTITUENT STABILIZATION OF THE PHENYL CATION Chemischer Informationsdienst. 8: no-no. DOI: 10.1002/CHIN.197714052 |
0.332 |
|
1977 |
CREMER D, BINKLEY JS, POPLE JA. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF ORGANIC COMPOUNDS. 25. ONFORMATIONS OF METHYL- AND FLUORO-SUBSTITUTED CYCLOPENTANES A D CYCLOHEXANES Chemischer Informationsdienst. 8: no-no. DOI: 10.1002/CHIN.197705067 |
0.5 |
|
1976 |
Seeger R, Pople JA. Self‐consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree–Fock equations The Journal of Chemical Physics. 65: 265-271. DOI: 10.1063/1.432764 |
0.309 |
|
1976 |
Collins JB, Schleyer PvR, Binkley JS, Pople JA. Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets Journal of Chemical Physics. 64: 5142-5151. DOI: 10.1063/1.432189 |
0.377 |
|
1976 |
Cremer D, Binkley JS, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. 25. Conformations of methyl- and fluoro-substituted cyclopentanes and cyclohexanes Journal of the American Chemical Society. 98: 6836-6839. DOI: 10.1021/Ja00438A011 |
0.567 |
|
1976 |
Dill JD, Schleyer PvR, Binkley JS, Seeger R, Pople JA, Haselbach E. Molecular orbital theory of the electronic structure of molecules. 30. Structure and energy of the phenyl cation Journal of the American Chemical Society. 98: 5428-5431. DOI: 10.1021/Ja00434A002 |
0.33 |
|
1976 |
Collins JB, Dill JD, Jemmis ED, Apeloig Y, Schleyer PvR, Seeger R, Pople JA. Stabilization of planar tetracoordinate carbon Journal of the American Chemical Society. 98: 5419-5427. DOI: 10.1021/Ja00434A001 |
0.392 |
|
1976 |
Hehre WJ, Pople JA, Lathan WA, Radom L, Wasserman E, Wasserman ZR. Molecular orbital theory of the electronic structure of organic compounds. 28. Geometries and energies of singlet and triplet states of the C3H2 hydrocarbons Journal of the American Chemical Society. 98: 4378-4383. DOI: 10.1021/Ja00431A005 |
0.649 |
|
1976 |
Collins JB, Schleyer PvR, Binkley JS, Pople JA, Radom L. Molecular orbital theory of the electronic structure of molecules. 29. The interaction of molecular hydrogen with simple Lewis acids Journal of the American Chemical Society. 98: 3436-3441. DOI: 10.1021/Ja00428A007 |
0.642 |
|
1976 |
Dill J, Schleyer P, Pople J. Additions and Corrections - Molecular Orbital Theory of the Electronic Structure of Organic Compounds. XXIV. Geometries and Energies of Small Boron Compounds. Comparisons with Carbocations. Journal of the American Chemical Society. 98: 2371-2371. DOI: 10.1021/Ja00424A603 |
0.729 |
|
1976 |
Dill JD, Schleyer PvR, Pople JA. Molecular orbital theory of the electronic structure of molecules. XXVII. Energies and conformations of XCH2Y systems involving lithium, beryllium, and boron Journal of the American Chemical Society. 98: 1663-1668. DOI: 10.1021/Ja00423A004 |
0.433 |
|
1976 |
Radom L, Hariharan PC, Pople JA, Schleyer PvR. Molecular orbital theory of the electronic structure of organic compounds. XXII. Structures and stabilities of C3H3+ and C3H+ cations Journal of the American Chemical Society. 98: 10-14. DOI: 10.1021/Ja00417A003 |
0.612 |
|
1976 |
DILL JD, SCHLEYER PVR, BINKLEY JS, SEEGER R, POPLE JA, HASELBACH E. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF MOLECULES. 30. STRUCTURE AND ENERGY OF THE PHENYL CATION Chemischer Informationsdienst. 7: no-no. DOI: 10.1002/Chin.197648067 |
0.337 |
|
1976 |
COLLINS JB, DILL JD, JEMMIS ED, APELOIG Y, SCHLEYER PVR, SEEGER R, POPLE JA. ChemInform Abstract: STABILIZATION OF PLANAR TETRACOORDINATE CARBON Chemischer Informationsdienst. 7: no-no. DOI: 10.1002/CHIN.197648066 |
0.404 |
|
1976 |
Dill JD, Allen LC, Topp WC, Pople JA. Systematic Study Of The Nine Hydrogen-Bonded Dimers Involving Ammonia, Water, And Hydrofluoric Acid Cheminform. 7. DOI: 10.1002/Chin.197608004 |
0.504 |
|
1975 |
Dill JD, Pople JA. Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron Journal of Chemical Physics. 62: 2921-2923. DOI: 10.1063/1.430801 |
0.331 |
|
1975 |
Pople JA, Seeger R. Electron density in Mo/ller–Plesset theory The Journal of Chemical Physics. 62: 4566-4566. DOI: 10.1063/1.430368 |
0.368 |
|
1975 |
Dill JD, Allen LC, Topp WC, Pople JA. Systematic study of the nine hydrogen-bonded dimers involving ammonia, water, and hydrofluoric acid Journal of the American Chemical Society. 97: 7220-7226. DOI: 10.1021/Ja00858A004 |
0.504 |
|
1975 |
Dill JD, Schleyer PvR, Pople JA. Molecular orbital theory of the electron structure of organic compounds. XXIV. Geometries and energies of small boron compounds. Comparisons with carbocations Journal of the American Chemical Society. 97: 3402-3409. DOI: 10.1021/Ja00845A021 |
0.409 |
|
1975 |
Cremer D, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. XXIII. Pseudorotation in saturated five-membered ring compounds Journal of the American Chemical Society. 97: 1358-1367. DOI: 10.1021/ja00839a012 |
0.482 |
|
1975 |
Cremer D, Pople JA. General definition of ring puckering coordinates Journal of the American Chemical Society. 97: 1354-1358. DOI: 10.1021/Ja00839A011 |
0.362 |
|
1975 |
Hehre WJ, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. XXVI. Geometries, energies and polarities of C4 hydrocarbons Journal of the American Chemical Society. 97: 6941-6955. DOI: 10.1021/Ja00750A005 |
0.42 |
|
1975 |
CREMER D, POPLE JA. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF ORGANIC COMPOUNDS PART 23, PSEUDOROTATION IN SATURATED FIVE-MEMBERED RING COMPOUNDS Chemischer Informationsdienst. 6. DOI: 10.1002/CHIN.197522111 |
0.486 |
|
1975 |
CREMER D, POPLE JA. ChemInform Abstract: A GENERAL DEFINITION OF RING PUCKERING COORDINATES Chemischer Informationsdienst. 6. DOI: 10.1002/chin.197522110 |
0.375 |
|
1975 |
CREMER D, BINKLEY JS, POPLE JA, HEHRE WJ. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF ORGANIC COMPOUNDS PART 21, ROTATIONAL POTENTIALS FOR GEMINAL METHYL GROUPS Chemischer Informationsdienst. 6. DOI: 10.1002/Chin.197502104 |
0.566 |
|
1974 |
Cremer D, Binkley JS, Pople JA, Hehre WJ. Molecular orbital theory of the electronic structure of organic compounds. XXI. Rotational potentials for germinal methyl groups Journal of the American Chemical Society. 96: 6900-6903. DOI: 10.1021/Ja00829A015 |
0.562 |
|
1974 |
Hariharan PC, Radom L, Pople JA, Schleyer PVR. Molecular orbital theory of the electronic structure of organic compounds. XX. Protonated cyclopropane cations with a polarized basis set Journal of the American Chemical Society. 96: 599-601. DOI: 10.1021/Ja00809A055 |
0.651 |
|
1974 |
HARIHARAN PC, RADOM L, POPLE JA, SCHLEYER PVR. ChemInform Abstract: MOLECULAR ORBITAL THEORY OF THE ELECTRONIC STRUCTURE OF ORGANIC COMPOUNDS PART 20, C3H7(+) CATIONS WITH A POLARIZED BASIS SET Chemischer Informationsdienst. 5. DOI: 10.1002/Chin.197414112 |
0.644 |
|
1973 |
Del Bene JE, Pople JA. Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular‐orbital basis sets The Journal of Chemical Physics. 58: 3605-3608. DOI: 10.1063/1.1679707 |
0.369 |
|
1973 |
Radom L, Hariharan PC, Pople JA, Schleyer PVR. Molecular orbital theory of the electronic structure of organic compounds. XIX. Geometries and energies of C3H5 cations. Energy relations among allyl, vinyl, and cyclopropyl cations Journal of the American Chemical Society. 95: 6531-6544. DOI: 10.1021/Ja00801A003 |
0.648 |
|
1973 |
Radom L, Lathan WA, Hehre WJ, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes Journal of the American Chemical Society. 95: 693-698. DOI: 10.1021/Ja00784A008 |
0.606 |
|
1973 |
RADOM L, LATHAN WA, HEHRE WJ, POPLE JA. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 17. MITT. INNERE ROTATION IN 1,2-DISUBSTITUIERTEN AETHANEN 18. MITT. KONFORM. UND STABILITAETEN TRISUBSTITUIERTER METHANE Chemischer Informationsdienst. 4. DOI: 10.1002/Chin.197316077 |
0.624 |
|
1972 |
Radom L, Lathan W, Hehre W, Pople J. Internal rotation in some organic molecules containing methyl, amino, hydroxyl, and formyl groups Australian Journal of Chemistry. 25: 1601. DOI: 10.1071/Ch9721601 |
0.691 |
|
1972 |
Hehre WJ, Ditchfield R, Pople JA. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules Journal of Chemical Physics. 56: 2257-2261. DOI: 10.1063/1.1677527 |
0.673 |
|
1972 |
Hehre WJ, Radom L, Pople JA. Inversion barriers in para-substituted anilines from ab initio molecular orbital theory Journal of the Chemical Society, Chemical Communications. 669-670. DOI: 10.1039/C39720000669 |
0.742 |
|
1972 |
Radom L, Hehre WJ, Pople JA, Carlson GL, Fateley WG. Torsional barriers in para-substituted phenols from ab initio molecular orbital theory and far infrared spectroscopy Journal of the Chemical Society, Chemical Communications. 308-309. DOI: 10.1039/C39720000308 |
0.739 |
|
1972 |
Hehre WJ, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. XV. Protonation of benzene Journal of the American Chemical Society. 94: 6901-6904. DOI: 10.1021/Ja00775A007 |
0.422 |
|
1972 |
Ditchfield R, Del Bene J, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. XIV. Equilibrium geometries and energies of low-lying excited states Journal of the American Chemical Society. 94: 4806-4811. DOI: 10.1021/Ja00769A002 |
0.686 |
|
1972 |
Ditchfield R, Del Bene JE, Pople JA. Molecular oribital theory of the electronic structure of organic compounds. IX. n .far..pi.* Transition energies in small molecules Journal of the American Chemical Society. 94: 703-707. DOI: 10.1021/Ja00758A003 |
0.681 |
|
1972 |
Radom L, Pople JA, Buss V, Schleyer PvR. Molecular orbital theory of the electronic structure of organic compounds. XI. Geometries and energies of C3H7+cations Journal of the American Chemical Society. 94: 311-321. DOI: 10.1021/Ja00757A001 |
0.652 |
|
1972 |
Radom L, Pople JA, Mock WL. Distortion of the double bond in ethylene Tetrahedron Letters. 13: 479-482. DOI: 10.1016/S0040-4039(01)84355-0 |
0.513 |
|
1972 |
Jeffrey GA, Pople JA, Radom L. The application of ab initio molecular orbital theory to the anomeric effect. A comparison of theoretical predictions and experimental data on conformations and bond lengths in some pyranoses and methyl pyranosides Carbohydrate Research. 25: 117-131. DOI: 10.1016/S0008-6215(00)82752-4 |
0.589 |
|
1972 |
Hehre WJ, Pople JA. Mo-Theorie Der Elektronenstruktur Organischer Verbindungen 15. Mitt. Protonierung Von Benzol Cheminform. 3. DOI: 10.1002/Chin.197250078 |
0.37 |
|
1972 |
HOFFMAN R, RADOM L, POPLE JA, R. SCHLEYER PV, HEHRE WJ, SALEM L. ChemInform Abstract: STARKER EINFLUSS DER HYPERKONJUGATION AUF DIE KONFORM. Chemischer Informationsdienst. 3: no-no. DOI: 10.1002/Chin.197245095 |
0.544 |
|
1972 |
RADOM L, POPLE JA, R. SCHLEYER PV. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 16. MITT. KONFORM. UND STABILITAETEN SUBSTITUIERTER AETHYL-, PROPYL- UND BUTYLKATIONEN Chemischer Informationsdienst. 3. DOI: 10.1002/Chin.197245091 |
0.624 |
|
1972 |
Ditchfield R, Bene JD, Pople JA. Mo-Theorie Der Elektronenstruktur Organischer Verbindungen 14. Mitt. Gleichgewichtsgeometrien Und Niedrige Angeregte Zustaende Cheminform. 3. DOI: 10.1002/Chin.197239083 |
0.659 |
|
1972 |
RADOM L, HEHRE WJ, POPLE JA. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR VON ORGANISCHEN VERBINDUNGEN 13. MITT. FOURIER-KOMPONENTEN-ANALYSE VON POTENTIALFUNKTIONEN DER INNEREN ROTATION IN GESAETTIGTEN MOLEKUELEN Chemischer Informationsdienst. 3: no-no. DOI: 10.1002/Chin.197226088 |
0.623 |
|
1972 |
HEHRE WJ, RADOM L, POPLE JA. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR VON ORGANISCHEN VERBINDUNGEN 12. MITT. KONFORM., STABILITAETEN UND LADUNGSVERTEILUNGEN VON 35 MONOSUBSTITUIERTEN BENZOLEN Chemischer Informationsdienst. 3: no-no. DOI: 10.1002/Chin.197221096 |
0.623 |
|
1972 |
Ditchfield R, Bene JED, Pople JA. Mo-Theorie Der Elektronenstruktur Von Organischen Verbindungen 9. Mitt. N-Pi(*)-Uebergangsenergien Kleiner Molekuele Cheminform. 3. DOI: 10.1002/Chin.197216085 |
0.64 |
|
1972 |
RADOM L, POPLE JA, BUSS V, R. SCHLEYER PV. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 11. MITT. GEOMETRIEN UND ENERGIEN VON C3H7(+)-KATIONEN Chemischer Informationsdienst. 3. DOI: 10.1002/Chin.197214084 |
0.598 |
|
1972 |
Lathan WA, Hehre WJ, Curtiss LA, Pople JA. Mo-Theorie Der Elektronenstruktur Organischer Verbindungen 10. Mitt. Systematische Untersuchung Der Geometrien Und Energien Von Ah(N)-Molekuelen Und -Kationen Cheminform. 3. DOI: 10.1002/Chin.197206077 |
0.338 |
|
1971 |
Bene JED, Ditchfield R, Pople JA. Self‐Consistent Molecular Orbital Methods. X. Molecular Orbital Studies of Excited States with Minimal and Extended Basis Sets The Journal of Chemical Physics. 55: 2236-2241. DOI: 10.1063/1.1676398 |
0.673 |
|
1971 |
Ditchfield R, Hehre WJ, Pople JA. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules Journal of Chemical Physics. 54: 724-728. DOI: 10.1063/1.1674902 |
0.657 |
|
1971 |
Radom L, Hehre WJ, Pople JA. Conformations and heats of formation of organic molecules by use of a minimal slater type basis Journal of the Chemical Society a: Inorganic, Physical, and Theoretical Chemistry. 2299-2303. DOI: 10.1039/J19710002299 |
0.737 |
|
1971 |
Lathan WA, Hehre WJ, Curtiss LA, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. X. Systematic study of geometries and energies of AHn molecules and cations Journal of the American Chemical Society. 93: 6377-6387. DOI: 10.1021/Ja00753A007 |
0.439 |
|
1971 |
Radom L, Lathan WA, Hehre WJ, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. VIII. Geometries, energies, and polarities of C3 hydrocarbons Journal of the American Chemical Society. 93: 5339-5342. DOI: 10.1021/ja00750a005 |
0.611 |
|
1971 |
Pople JA, Radom L, Buss V, Schleyer PvR. Structures and relative stabilities of C3H7+ cations Journal of the American Chemical Society. 93: 1813-1815. DOI: 10.1021/Ja00736A059 |
0.55 |
|
1971 |
Pople JA, Lathan WA, Hehre WJ. Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons Journal of the American Chemical Society. 93: 808-815. DOI: 10.1021/Ja00733A002 |
0.436 |
|
1971 |
Pople JA, Radom L, Hehre WJ. Molecular orbital theory of the electronic structure of organic compounds. VII. Systematic study of energies, conformations, and bond interactions Journal of the American Chemical Society. 93: 289-300. DOI: 10.1021/Ja00731A001 |
0.659 |
|
1971 |
RADOM L, LATHAN WA, HEHRE WJ, POPLE JA. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 8. MITT. GEOMETRIEN, ENERGIEN UND POLARITAETEN VON C3-KOHLENWASSERSTOFFEN Chemischer Informationsdienst. Organische Chemie. 2: no-no. DOI: 10.1002/Chin.197152106 |
0.603 |
|
1971 |
RADOM L, HEHRE WJ, POPLE JA. ChemInform Abstract: BESTIMMUNG DER KONFORMATIONEN UND BLDG.-WAERMEN ORGANISCHER MOLEKUELE DURCH VERWENDUNG EINER MINIMAL-BASIS VOM SLATER-TYP Chemischer Informationsdienst. Organische Chemie. 2: no-no. DOI: 10.1002/Chin.197146091 |
0.573 |
|
1971 |
RADOM L, POPLE JA, BUSS V, R. SCHLEYER PV. ChemInform Abstract: STRUKTUREN UND RELATIVE STABILITAETEN VON C3H7(+)-KATIONEN Chemischer Informationsdienst. Organische Chemie. 2: no-no. DOI: 10.1002/Chin.197126081 |
0.542 |
|
1971 |
RADOM L, HEHRE WJ, POPLE JA. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 7. MITT. SYSTEMATISCHE UNTERSUCHUNG VON ENERGIEN, KONFORMATIONEN UND BINDUNGSWECHSELWIRKUNGEN Chemischer Informationsdienst. Organische Chemie. 2: no-no. DOI: 10.1002/Chin.197114124 |
0.623 |
|
1971 |
Radom L, Pople JA, Buss V, Schleyer PVR. Rotationsbarrieren In Propyl-(1)-Kationen Cheminform. 2. DOI: 10.1002/Chin.197106092 |
0.534 |
|
1971 |
RADOM L, POPLE JA, BUSS V, R. SCHLEYER PV. ChemInform Abstract: ROTATIONSBARRIEREN DER ALKYLKATIONEN (I) UND (II) (AB INITIO-BERECHNUNG MIT STO-3G-BASISSAETZEN) Chemischer Informationsdienst. Organische Chemie. 2: no-no. DOI: 10.1002/Chin.197101154 |
0.556 |
|
1970 |
Hehre WJ, Ditchfield R, Pople JA. Self‐Consistent Molecular‐Orbital Methods. VIII. Molecular Studies with Least Energy Minimal Atomic Orbitals Journal of Chemical Physics. 53: 932-935. DOI: 10.1063/1.1674159 |
0.668 |
|
1970 |
Del Bene J, Pople JA. Theory of Molecular Interactions. I. Molecular Orbital Studies of Water Polymers Using a Minimal Slater‐Type Basis The Journal of Chemical Physics. 52: 4858-4866. DOI: 10.1063/1.1673723 |
0.364 |
|
1970 |
Newton MD, Lathan WA, Hehre WJ, Pople JA. Self‐Consistent Molecular Orbital Methods. V. Ab Initio Calculation of Equilibrium Geometries and Quadratic Force Constants The Journal of Chemical Physics. 52: 4064-4072. DOI: 10.1063/1.1673611 |
0.364 |
|
1970 |
Hehre WJ, Ditchfield R, Stewart RF, Pople JA. Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules Journal of Chemical Physics. 52: 2769-2773. DOI: 10.1063/1.1673374 |
0.664 |
|
1970 |
Ditchfield R, Hehre WJ, Pople JA. Self‐Consistent Molecular Orbital Methods. VI. Energy Optimized Gaussian Atomic Orbitals Journal of Chemical Physics. 52: 5001-5007. DOI: 10.1063/1.1672736 |
0.64 |
|
1970 |
Radom L, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater-type basis Journal of the American Chemical Society. 92: 4786-4795. DOI: 10.1021/Ja00719A005 |
0.604 |
|
1970 |
Hehre WJ, Pople JA. Molecular orbital theory of the electronic structure of organic compounds. III. Ab initio studies of charge distribution using a minimal Slater-type basis Journal of the American Chemical Society. 92: 2191-2197. DOI: 10.1021/Ja00711A001 |
0.396 |
|
1970 |
Williams JE, Buss V, Allen LC, Schleyer PvR, Lathan WA, Hehre WJ, Pople JA. Molecular orbital calculations on carbonium ions. III. Barriers in ethyl cations Journal of the American Chemical Society. 92: 2141-2143. DOI: 10.1021/Ja00710A062 |
0.546 |
|
1970 |
Lathan WA, Hehre WJ, Pople JA. Theoretical structures for protonated methane and protonated ethane Tetrahedron Letters. 11: 2699-2701. DOI: 10.1016/S0040-4039(01)98316-9 |
0.504 |
|
1970 |
Ditchfield R, Miller DP, Pople JA. Molecular orbital theory of carbon NMR chemical shifts Chemical Physics Letters. 6: 573-575. DOI: 10.1016/0009-2614(70)85229-0 |
0.625 |
|
1970 |
Ditchfield R, Hehre WJ, Pople JA, Radom L. Molecular orbital theory of bond separation Chemical Physics Letters. 5: 13-14. DOI: 10.1016/0009-2614(70)80116-6 |
0.804 |
|
1970 |
RADOM L, POPLE JA, HEHRE WJ, DITCHFIELD R. ChemInform Abstract: MO-THEORIE DER ELEKTRONENSTRUKTUR ORGANISCHER VERBINDUNGEN 4. MITT. INNERE ROTATION IN KOHLENWASSERSTOFFEN MITTELS EINER MINIMAL-BASIS VOM SLATER-TYP 5. MITT. MO-THEORIE DER BINDUNGSTRENNUNG Chemischer Informationsdienst. Organische Chemie. 1: no-no. DOI: 10.1002/Chin.197044100 |
0.752 |
|
1970 |
Williams JEJ, Buss V, Allen LC, Schleyer PVR, Lathan WA, Hehre WJ, Pople JA. Mo-Berechnungen An Carboniumionen 3. Mitt. Barrieren In Aethylkationen Cheminform. 1. DOI: 10.1002/Chin.197027155 |
0.476 |
|
1969 |
Newton MD, Lathan WA, Hehre WJ, Pople JA. Self‐Consistent Molecular‐Orbital Methods. III. Comparison of Gaussian Expansion and PDDO Methods Using Minimal STO Basis Sets The Journal of Chemical Physics. 51: 3927-3932. DOI: 10.1063/1.1672611 |
0.354 |
|
1968 |
Gordon MS, Pople JA. Approximate Self‐Consistent Molecular‐Orbital Theory. VI. INDO Calculated Equilibrium Geometries The Journal of Chemical Physics. 49: 4643-4650. DOI: 10.1063/1.1669925 |
0.538 |
|
1968 |
Beveridge DL, Dobosh PA, Pople JA. Molecular‐Orbital Theory of Geometry and Hyperfine Coupling Constants of Fluorinated Methyl Radicals The Journal of Chemical Physics. 48: 4802-4803. DOI: 10.1063/1.1668077 |
0.515 |
|
1968 |
Pople JA, Beveridge DL, Dobosh PA. Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species Journal of the American Chemical Society. 90: 4201-4209. DOI: 10.1021/JA01018A003 |
0.538 |
|
1967 |
Pople JA, Gordon M. Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. Journal of the American Chemical Society. 89: 4253-61. PMID 26270792 DOI: 10.1021/Ja00993A001 |
0.563 |
|
1967 |
Pople JA, Beveridge DL, Dobosh PA. Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap The Journal of Chemical Physics. 47: 2026-2033. DOI: 10.1063/1.1712233 |
0.507 |
|
1965 |
Pople J, Santry D. A molecular orbital theory of hydrocarbons Molecular Physics. 9: 311-318. DOI: 10.1080/00268976500100441 |
0.303 |
|
1965 |
Pople J, Santry D. A molecular orbital theory of hydrocarbons Molecular Physics. 9: 301-310. DOI: 10.1080/00268976500100431 |
0.303 |
|
1964 |
Pople J, Santry D. A molecular orbital theory of hydrocarbons Molecular Physics. 7: 269-286. DOI: 10.1080/00268976300101031 |
0.303 |
|
1960 |
Pople JA, Schneider WG, Bernstein HJ, Ingram DJE. High‐resolution Nuclear Magnetic Resonance Physics Today. 13: 46-48. DOI: 10.1063/1.3056967 |
0.571 |
|
1958 |
Abraham RJ, Pople JA, Bernstein HJ. THE ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA: IV. FOUR NUCLEI: AB3 Canadian Journal of Chemistry. 36: 1302-1307. DOI: 10.1139/V58-191 |
0.445 |
|
1958 |
Schneider WG, Bernstein HJ, Pople JA. ANALYSIS OF THE NUCLEAR MAGNETIC RESONANCE SPECTRA OF PYRIDINE AND SOME DEUTERATED PYRIDINES Annals of the New York Academy of Sciences. 70: 806-816. DOI: 10.1111/j.1749-6632.1958.tb35432.x |
0.585 |
|
1958 |
Schneider WG, Bernstein HJ, Pople JA. Proton magnetic resonance chemical shift of free (Gaseous) and associated (Liquid) hydride molecules The Journal of Chemical Physics. 28: 601-607. |
0.6 |
|
1958 |
Schneider WG, Bernstein HJ, Pople JA. The proton magnetic resonance spectra of azulene and acepleiadylene Journal of the American Chemical Society. 80: 3497-3502. |
0.583 |
|
1957 |
Schneider WG, Bernstein HJ, Pople JA. THE ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA: III. PYRIDINE AND DEUTERATED PYRIDINES Canadian Journal of Chemistry. 35: 1487-1495. DOI: 10.1139/v57-196 |
0.626 |
|
1957 |
Pople JA, Schneider WG, Bernstein HJ. THE ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA: II. TWO PAIRS OF TWO EQUIVALENT NUCLEI Canadian Journal of Chemistry. 35: 1060-1072. DOI: 10.1139/v57-143 |
0.617 |
|
1957 |
Bernstein HJ, Pople JA, Schneider WG. THE ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA: I. SYSTEMS OF TWO AND THREE NUCLEI Canadian Journal of Chemistry. 35: 67-83. DOI: 10.1139/v57-011 |
0.604 |
|
1957 |
Buckingham AD, Pople JA. Electric Quadrupole Moments and Dielectric Constants The Journal of Chemical Physics. 27: 820-821. DOI: 10.1063/1.1743847 |
0.393 |
|
1957 |
Buckingham AD, Pople JA. The polarization of a hydrogen atom in combined electric and magnetic fields Mathematical Proceedings of the Cambridge Philosophical Society. 53: 262-264. DOI: 10.1017/S0305004100032230 |
0.424 |
|
1957 |
Bernstein HJ, Schneider WG, Pople JA. Proton magnetic resonance spectrum of naphthalene The Journal of Chemical Physics. 26: 957-958. |
0.578 |
|
1956 |
Buckingham AD, Pople JA. A Theory of Magnetic Double Refraction Proceedings of the Physical Society. Section B. 69: 1133-1138. DOI: 10.1088/0370-1301/69/11/311 |
0.482 |
|
1955 |
Buckingham AD, Pople JA. Theoretical Studies of the Kerr Effect I: Deviations from a Linear Polarization Law Proceedings of the Physical Society. Section A. 68: 905-909. DOI: 10.1088/0370-1298/68/10/307 |
0.425 |
|
1955 |
Buckingham AD, Pople JA. The statistical mechanics of imperfect polar gases. Part 2.—Dielectric polarization Trans. Faraday Soc.. 51: 1179-1183. DOI: 10.1039/TF9555101179 |
0.394 |
|
Show low-probability matches. |