Year |
Citation |
Score |
2022 |
Talbot JJ, Head-Gordon M, Miller WH, Cotton SJ. Dynamic signatures of electronically nonadiabatic coupling in sodium hydride: a rigorous test for the symmetric quasi-classical model applied to realistic, electronic states in the adiabatic representation. Physical Chemistry Chemical Physics : Pccp. PMID 35156112 DOI: 10.1039/d1cp04090a |
0.755 |
|
2019 |
Cotton SJ, Miller WH. Trajectory-adjusted electronic zero point energy in classical Meyer-Miller vibronic dynamics: Symmetrical quasiclassical application to photodissociation. The Journal of Chemical Physics. 150: 194110. PMID 31117780 DOI: 10.1063/1.5094458 |
0.753 |
|
2019 |
Cotton SJ, Miller WH. A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states. The Journal of Chemical Physics. 150: 104101. PMID 30876359 DOI: 10.1063/1.5087160 |
0.743 |
|
2018 |
Liang R, Cotton SJ, Binder R, Hegger R, Burghardt I, Miller WH. The symmetrical quasi-classical approach to electronically nonadiabatic dynamics applied to ultrafast exciton migration processes in semiconducting polymers. The Journal of Chemical Physics. 149: 044101. PMID 30068189 DOI: 10.1063/1.5037815 |
0.76 |
|
2017 |
Cotton SJ, Liang R, Miller WH. On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics. The Journal of Chemical Physics. 147: 064112. PMID 28810754 DOI: 10.1063/1.4995301 |
0.756 |
|
2016 |
Althorpe SC, Beniwal V, Bolhuis PG, Brandão J, Clary DC, Ellis J, Fang W, Glowacki DR, Hele TJ, Jónsson H, Kästner J, Makri N, Manolopoulos DE, McKemmish LK, Menzl G, ... ... Miller WH, et al. Fundamentals: general discussion. Faraday Discussions. PMID 27942654 DOI: 10.1039/C6Fd90077A |
0.756 |
|
2016 |
Althorpe SC, Ananth N, Angulo G, Astumian RD, Beniwal V, Blumberger J, Bolhuis PG, Ensing B, Glowacki DR, Habershon S, Hammes-Schiffer S, Hele TJ, Makri N, Manolopoulos DE, McKemmish LK, ... ... Miller WH, et al. Non-adiabatic reactions: general discussion. Faraday Discussions. PMID 27929583 DOI: 10.1039/C6Fd90078J |
0.765 |
|
2016 |
Miller WH, Cotton SJ. Classical molecular dynamics simulation of electronically non-adiabatic processes. Faraday Discussions. PMID 27828549 DOI: 10.1039/C6Fd00181E |
0.762 |
|
2016 |
Cotton SJ, Miller WH. A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling. The Journal of Chemical Physics. 145: 144108. PMID 27782507 DOI: 10.1063/1.4963914 |
0.743 |
|
2016 |
Miller WH, Cotton SJ. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix. The Journal of Chemical Physics. 145: 081102. PMID 27586896 DOI: 10.1063/1.4961551 |
0.751 |
|
2016 |
Adamson P, Ader C, Andrews M, Anfimov N, Anghel I, Arms K, Arrieta-Diaz E, Aurisano A, Ayres DS, Backhouse C, Baird M, Bambah BA, Bays K, Bernstein R, Betancourt M, ... ... Miller WH, et al. First Measurement of Electron Neutrino Appearance in NOvA. Physical Review Letters. 116: 151806. PMID 27127961 DOI: 10.1103/Physrevlett.116.151806 |
0.462 |
|
2016 |
Cotton SJ, Miller WH. The Symmetrical Quasi-Classical Model for Electronically Non-Adiabatic Processes Applied to Energy Transfer Dynamics in Site-Exciton Models of Light-Harvesting Complexes. Journal of Chemical Theory and Computation. PMID 26761191 DOI: 10.1021/Acs.Jctc.5B01178 |
0.758 |
|
2015 |
Cotton SJ, Miller WH. A Symmetrical Quasi-Classical Spin-Mapping Model for the Electronic Degrees of Freedom in Non-Adiabatic Processes. The Journal of Physical Chemistry. A. PMID 26299361 DOI: 10.1021/Acs.Jpca.5B05906 |
0.753 |
|
2015 |
Miller WH, Cotton SJ. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics. The Journal of Chemical Physics. 142: 131103. PMID 25854221 DOI: 10.1063/1.4916945 |
0.75 |
|
2014 |
Cotton SJ, Igumenshchev K, Miller WH. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: application to electron transfer. The Journal of Chemical Physics. 141: 084104. PMID 25173002 DOI: 10.1063/1.4893345 |
0.775 |
|
2014 |
Li B, Miller WH, Levy TJ, Rabani E. Classical mapping for Hubbard operators: application to the double-Anderson model. The Journal of Chemical Physics. 140: 204106. PMID 24880265 DOI: 10.1063/1.4878736 |
0.437 |
|
2014 |
Li B, Wilner EY, Thoss M, Rabani E, Miller WH. A quasi-classical mapping approach to vibrationally coupled electron transport in molecular junctions. The Journal of Chemical Physics. 140: 104110. PMID 24628155 DOI: 10.1063/1.4867789 |
0.644 |
|
2013 |
Cotton SJ, Miller WH. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: application to electronically non-adiabatic processes. The Journal of Chemical Physics. 139: 234112. PMID 24359357 DOI: 10.1063/1.4845235 |
0.775 |
|
2013 |
Li B, Levy TJ, Swenson DW, Rabani E, Miller WH. A Cartesian quasi-classical model to nonequilibrium quantum transport: the Anderson impurity model. The Journal of Chemical Physics. 138: 104110. PMID 23514468 DOI: 10.1063/1.4793747 |
0.722 |
|
2013 |
Cotton SJ, Miller WH. Symmetrical windowing for quantum states in quasi-classical trajectory simulations. The Journal of Physical Chemistry. A. 117: 7190-4. PMID 23432081 DOI: 10.1021/Jp401078U |
0.773 |
|
2013 |
Tao G, Miller WH. Time-dependent importance sampling in semi-classical initial value representation calculations for time correlation functions. III. A state-resolved implementation to electronically non-adiabatic dynamics Molecular Physics. 111: 1987-1993. DOI: 10.1080/00268976.2013.776712 |
0.692 |
|
2012 |
Li B, Miller WH. A Cartesian classical second-quantized many-electron Hamiltonian, for use with the semiclassical initial value representation. The Journal of Chemical Physics. 137: 154107. PMID 23083148 DOI: 10.1063/1.4757935 |
0.477 |
|
2012 |
Tao G, Miller WH. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation. The Journal of Chemical Physics. 137: 124105. PMID 23020322 DOI: 10.1063/1.4752206 |
0.692 |
|
2012 |
Miller WH. Perspective: Quantum or classical coherence? The Journal of Chemical Physics. 136: 210901. PMID 22697519 DOI: 10.1063/1.4727849 |
0.435 |
|
2011 |
Liu J, Miller WH, Fanourgakis GS, Xantheas SS, Imoto S, Saito S. Insights in quantum dynamical effects in the infrared spectroscopy of liquid water from a semiclassical study with an ab initio-based flexible and polarizable force field. The Journal of Chemical Physics. 135: 244503. PMID 22225165 DOI: 10.1063/1.3670960 |
0.48 |
|
2011 |
Liu J, Alder BJ, Miller WH. A semiclassical study of the thermal conductivity of low temperature liquids. The Journal of Chemical Physics. 135: 114105. PMID 21950848 DOI: 10.1063/1.3639107 |
0.506 |
|
2011 |
Tao G, Miller WH. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. The Journal of Chemical Physics. 135: 024104. PMID 21766922 DOI: 10.1063/1.3600656 |
0.655 |
|
2011 |
Swenson DW, Levy T, Cohen G, Rabani E, Miller WH. Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: the resonant level model. The Journal of Chemical Physics. 134: 164103. PMID 21528946 DOI: 10.1063/1.3583366 |
0.736 |
|
2011 |
Tatchen J, Pollak E, Tao G, Miller WH. Renormalization of the frozen Gaussian approximation to the quantum propagator. The Journal of Chemical Physics. 134: 134104. PMID 21476740 DOI: 10.1063/1.3573566 |
0.756 |
|
2011 |
Liu J, Miller WH. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions. The Journal of Chemical Physics. 134: 104102. PMID 21405151 DOI: 10.1063/1.3555274 |
0.534 |
|
2011 |
Liu J, Miller WH. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. I. Theories. The Journal of Chemical Physics. 134: 104101. PMID 21405150 DOI: 10.1063/1.3555273 |
0.534 |
|
2011 |
Lambrecht DS, Brandhorst K, Miller WH, McCurdy CW, Head-Gordon M. A kinetic energy fitting metric for resolution of the identity second-order Møller-Plesset perturbation theory. The Journal of Physical Chemistry. A. 115: 2794-801. PMID 21391690 DOI: 10.1021/Jp108218W |
0.551 |
|
2010 |
Wong KF, Sonnenberg JL, Paesani F, Yamamoto T, Vaní?ek J, Zhang W, Schlegel HB, Case DA, Cheatham TE, Miller WH, Voth GA. Proton Transfer Studied Using a Combined Ab Initio Reactive Potential Energy Surface with Quantum Path Integral Methodology. Journal of Chemical Theory and Computation. 6: 2566-2580. PMID 21116485 DOI: 10.1021/Ct900579K |
0.763 |
|
2010 |
Kaledin AL, McCurdy CW, Miller WH. A semiclassical correction for quantum mechanical energy levels. The Journal of Chemical Physics. 133: 054101. PMID 20707520 DOI: 10.1063/1.3464318 |
0.613 |
|
2010 |
Miller WH. Semiclassical methods in chemical physics. Science (New York, N.Y.). 233: 171-7. PMID 17737288 DOI: 10.1126/Science.233.4760.171 |
0.463 |
|
2010 |
Miller WH, Tao G. Semiclassical description of electronic excitation population transfer in a model photosynthetic system Journal of Physical Chemistry Letters. 1: 891-894. DOI: 10.1021/Jz1000825 |
0.696 |
|
2009 |
Tao G, Miller WH. Gaussian approximation for the structure function in semiclassical forward-backward initial value representations of time correlation functions. The Journal of Chemical Physics. 131: 224107. PMID 20001024 DOI: 10.1063/1.3271241 |
0.705 |
|
2009 |
Liu J, Miller WH, Paesani F, Zhang W, Case DA. Quantum dynamical effects in liquid water: A semiclassical study on the diffusion and the infrared absorption spectrum. The Journal of Chemical Physics. 131: 164509. PMID 19894958 DOI: 10.1063/1.3254372 |
0.662 |
|
2009 |
Liu J, Miller WH. A simple model for the treatment of imaginary frequencies in chemical reaction rates and molecular liquids. The Journal of Chemical Physics. 131: 074113. PMID 19708738 DOI: 10.1063/1.3202438 |
0.529 |
|
2009 |
Tao G, Miller WH. Semiclassical description of vibrational quantum coherence in a three dimensional I(2)Ar(n) (n < or = 6) cluster: a forward-backward initial value representation implementation. The Journal of Chemical Physics. 130: 184108. PMID 19449909 DOI: 10.1063/1.3132224 |
0.7 |
|
2009 |
Miller WH. Electronically nonadiabatic dynamics via semiclassical initial value methods. The Journal of Physical Chemistry. A. 113: 1405-15. PMID 19170628 DOI: 10.1021/Jp809907P |
0.442 |
|
2008 |
Liu J, Miller WH. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation. The Journal of Chemical Physics. 129: 124111. PMID 19045010 DOI: 10.1063/1.2981065 |
0.459 |
|
2008 |
Liu J, Miller WH. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen. The Journal of Chemical Physics. 128: 144511. PMID 18412463 DOI: 10.1063/1.2889945 |
0.47 |
|
2007 |
Liu J, Miller WH. Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems. The Journal of Chemical Physics. 127: 114506. PMID 17887856 DOI: 10.1063/1.2774990 |
0.529 |
|
2007 |
VanÃcek J, Miller WH. Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: application to the intramolecular hydrogen transfer in pentadiene. The Journal of Chemical Physics. 127: 114309. PMID 17887839 DOI: 10.1063/1.2768930 |
0.41 |
|
2007 |
Ananth N, Venkataraman C, Miller WH. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation. The Journal of Chemical Physics. 127: 084114. PMID 17764236 DOI: 10.1063/1.2759932 |
0.81 |
|
2007 |
Liu J, Miller WH. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation. The Journal of Chemical Physics. 126: 234110. PMID 17600407 DOI: 10.1063/1.2743023 |
0.516 |
|
2007 |
Venkataraman C, Miller WH. Chemical reaction rates using the semiclassical Van Vleck initial value representation. The Journal of Chemical Physics. 126: 094104. PMID 17362101 DOI: 10.1063/1.2567200 |
0.682 |
|
2006 |
Liu J, Miller WH. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions. The Journal of Chemical Physics. 125: 224104. PMID 17176131 DOI: 10.1063/1.2395941 |
0.483 |
|
2006 |
Miller WH. Including quantum effects in the dynamics of complex (i.e., large) molecular systems. The Journal of Chemical Physics. 125: 132305. PMID 17029424 DOI: 10.1063/1.2211608 |
0.413 |
|
2006 |
Li Y, Miller WH. Using a family of dividing surfaces normal to the minimum energy path for quantum instanton rate constants. The Journal of Chemical Physics. 125: 64104. PMID 16942270 DOI: 10.1063/1.2220567 |
0.588 |
|
2006 |
Yang S, Yamamoto T, Miller WH. Path-integral virial estimator for reaction-rate calculation based on the quantum instanton approximation. The Journal of Chemical Physics. 124: 084102. PMID 16512703 DOI: 10.1063/1.2171693 |
0.593 |
|
2006 |
Small MS, Predescu C, Miller WH. Quantifying the extent of recrossing flux for quantum systems Chemical Physics. 322: 151-159. DOI: 10.1016/J.Chemphys.2005.07.036 |
0.744 |
|
2005 |
Predescu C, Miller WH. Optimal choice of dividing surface for the computation of quantum reaction rates. The Journal of Physical Chemistry. B. 109: 6491-9. PMID 16851728 DOI: 10.1021/Jp040593Q |
0.664 |
|
2005 |
Vanícek J, Miller WH, Castillo JF, Aoiz FJ. Quantum-instanton evaluation of the kinetic isotope effects. The Journal of Chemical Physics. 123: 054108. PMID 16108632 DOI: 10.1063/1.1946740 |
0.664 |
|
2005 |
Miller WH. Quantum dynamics of complex molecular systems. Proceedings of the National Academy of Sciences of the United States of America. 102: 6660-4. PMID 15870209 DOI: 10.1073/Pnas.0408043102 |
0.391 |
|
2005 |
Ceotto M, Yang S, Miller WH. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero. The Journal of Chemical Physics. 122: 44109. PMID 15740237 DOI: 10.1063/1.1839177 |
0.746 |
|
2005 |
Yamamoto T, Miller WH. Path integral evaluation of the quantum instanton rate constant for proton transfer in a polar solvent. The Journal of Chemical Physics. 122: 44106. PMID 15740234 DOI: 10.1063/1.1832598 |
0.472 |
|
2005 |
Li Y, Miller WH. Different time slices for different degrees of freedom in Feynman path integration Molecular Physics. 103: 203-208. DOI: 10.1080/00268970512331316193 |
0.511 |
|
2004 |
Zhao Y, Yamamoto T, Miller WH. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space. The Journal of Chemical Physics. 120: 3100-7. PMID 15268462 DOI: 10.1063/1.1641006 |
0.435 |
|
2004 |
Yamamoto T, Miller WH. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation. The Journal of Chemical Physics. 120: 3086-99. PMID 15268461 DOI: 10.1063/1.1641005 |
0.475 |
|
2004 |
Ceotto M, Miller WH. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions. The Journal of Chemical Physics. 120: 6356-62. PMID 15267524 DOI: 10.1063/1.1666064 |
0.729 |
|
2004 |
Venkataraman C, Miller WH. The Quantum Instanton (QI) Model for Chemical Reaction Rates: The "Simplest" QI with One Dividing Surface Journal of Physical Chemistry A. 108: 3035-3039. DOI: 10.1021/Jp031112Q |
0.701 |
|
2003 |
Kaledin AL, Miller WH. Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels. II. Application to H2CO, NH3, CH4, CH2D2 Journal of Chemical Physics. 119: 3078-3084. DOI: 10.1063/1.1589477 |
0.389 |
|
2003 |
Miller WH, Zhao Y, Ceotto M, Yang S. Quantum instanton approximation for thermal rate constants of chemical reactions Journal of Chemical Physics. 119: 1329-1342. DOI: 10.1063/1.1580110 |
0.756 |
|
2003 |
Kaledin AL, Miller WH. Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels The Journal of Chemical Physics. 118: 7174. DOI: 10.1063/1.1562158 |
0.454 |
|
2003 |
Yamamoto T, Miller WH. Semiclassical calculation of thermal rate constants in full Cartesian space: The benchmark reaction D+H2 → DH + H Journal of Chemical Physics. 118: 2135-2152. DOI: 10.1063/1.1533081 |
0.431 |
|
2002 |
Guallar V, Gherman BF, Miller WH, Lippard SJ, Friesner RA. Dynamics of alkane hydroxylation at the non-heme diiron center in methane monooxygenase. Journal of the American Chemical Society. 124: 3377-84. PMID 11916423 DOI: 10.1021/Ja0167248 |
0.376 |
|
2002 |
Guallar V, Harris DL, Batista VS, Miller WH. Proton-transfer dynamics in the activation of cytochrome P450eryF. Journal of the American Chemical Society. 124: 1430-7. PMID 11841312 DOI: 10.1021/Ja016474V |
0.502 |
|
2002 |
Miller WH. An alternate derivation of the Herman-Kluk (coherent state) semiclassical initial value representation of the time evolution operator Molecular Physics. 100: 397-400. DOI: 10.1080/00268970110069029 |
0.331 |
|
2002 |
Zhao Y, Miller WH. Semiclassical initial value representation for the Boltzmann operator in thermal rate constants Journal of Chemical Physics. 117: 9605-9610. DOI: 10.1063/1.1517044 |
0.33 |
|
2002 |
Sun SX, Miller WH. Statistical sampling of semiclassical distributions: Calculating quantum mechanical effects using Metropolis Monte Carlo Journal of Chemical Physics. 117: 5522-5528. DOI: 10.1063/1.1501130 |
0.355 |
|
2002 |
Makri N, Miller WH. Coherent state semiclassical initial value representation for the Boltzmann operator in thermal correlation functions Journal of Chemical Physics. 116: 9207-9212. DOI: 10.1063/1.1472518 |
0.723 |
|
2002 |
Yamamoto T, Wang H, Miller WH. Combining semiclassical time evolution and quantum boltzmann operator to evaluate reactive flux correlation function for thermal rate constants of complex systems Journal of Chemical Physics. 116: 7335-7349. DOI: 10.1063/1.1464539 |
0.434 |
|
2002 |
Miller WH. On the relation between the semiclassical initial value representation and an exact quantum expansion in time-dependent coherent states Journal of Physical Chemistry B. 106: 8132-8135. DOI: 10.1021/Jp020500+ |
0.369 |
|
2001 |
Wang H, Manolopoulos DE, Miller WH. Generalized Filinov transformation of the semiclassical initial value representation Journal of Chemical Physics. 115: 6317-6326. DOI: 10.1063/1.1402992 |
0.314 |
|
2001 |
Thoss M, Wang H, Miller WH. Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density Journal of Chemical Physics. 115: 2991-3005. DOI: 10.1063/1.1385562 |
0.627 |
|
2001 |
Wang H, Thoss M, Miller WH. Systematic convergence in the dynamical hybrid approach for complex systems: A numerically exact methodology Journal of Chemical Physics. 115: 2979-2990. DOI: 10.1063/1.1385561 |
0.66 |
|
2001 |
Thoss M, Wang H, Miller WH. Generalized forward-backward initial value representation for the calculation of correlation functions in complex systems Journal of Chemical Physics. 114: 9220-9235. DOI: 10.1063/1.1359242 |
0.662 |
|
2001 |
Gelabert R, Giménez X, Thoss M, Wang H, Miller WH. Semiclassical description of diffraction and its quenching by the forward-backward version of the initial value representation Journal of Chemical Physics. 114: 2572-2579. DOI: 10.1063/1.1337803 |
0.639 |
|
2001 |
Wang H, Thoss M, Sorge KL, Gelabert R, Giménez X, Miller WH. Semiclassical description of quantum coherence effects and their quenching: A forward-backward initial value representation study Journal of Chemical Physics. 114: 2562-2571. DOI: 10.1063/1.1337802 |
0.8 |
|
2001 |
Xing J, Coronado EA, Miller WH. Some new classical and semiclassical models for describing tunneling processes with real-valued classical trajectories Journal of Physical Chemistry B. 105: 6574-6578. DOI: 10.1021/Jp0046086 |
0.578 |
|
2001 |
Miller WH. The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations Journal of Physical Chemistry A. 105: 2942-2955. DOI: 10.1021/Jp003712K |
0.424 |
|
2001 |
Coronado EA, Xing J, Miller WH. Ultrafast non-adiabatic dynamics of systems with multiple surface crossings: A test of the Meyer-Miller Hamiltonian with semiclassical initial value representation methods Chemical Physics Letters. 349: 521-529. DOI: 10.1016/S0009-2614(01)01242-8 |
0.629 |
|
2000 |
Thoss M, Miller WH, Stock G. Semiclassical description of nonadiabatic quantum dynamics: Application to the S1-S2 conical intersection in pyrazine Journal of Chemical Physics. 112: 10282-10292. DOI: 10.1063/1.481668 |
0.676 |
|
2000 |
Coronado EA, Batista VS, Miller WH. Nonadiabatic photodissociation dynamics of ICN in the à continuum: A semiclassical initial value representation study Journal of Chemical Physics. 112: 5566-5575. DOI: 10.1063/1.481130 |
0.616 |
|
2000 |
Coronado EA, Batista VS, Miller WH. Nonadiabatic photodissociation dynamics ofICNin the à continuum: A semiclassical initial value representation study The Journal of Chemical Physics. 112: 5566-5575. DOI: 10.1063/1.481130 |
0.436 |
|
2000 |
Wang H, Thoss M, Miller WH. Forward-backward initial value representation for the calculation of thermal rate constants for reactions in complex molecular systems Journal of Chemical Physics. 112: 47-55. DOI: 10.1063/1.480560 |
0.666 |
|
2000 |
Guallar V, Batista VS, Miller WH. Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-(2′-hydroxyphenyl)-oxazole Journal of Chemical Physics. 113: 9510-9522. DOI: 10.1063/1.1321049 |
0.581 |
|
2000 |
Gelabert R, Giménez X, Thoss M, Wang H, Miller WH. A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator Journal of Physical Chemistry A. 104: 10321-10327. DOI: 10.1021/Jp0012451 |
0.563 |
|
2000 |
Miller WH. Using classical mechanics in a quantum framework. Perspective on "semiclassical description of scattering" Theoretical Chemistry Accounts. 103: 236-237. DOI: 10.1007/S002140050023 |
0.41 |
|
1999 |
Skinner DE, Miller WH. Application of the forward-backward initial value representation to molecular energy transfer Journal of Chemical Physics. 111: 10787-10793. DOI: 10.1063/1.480444 |
0.692 |
|
1999 |
Sun X, Miller WH. Erratum: “Forward–backward initial value representation for semiclassical time correlation functions” [J. Chem. Phys. 110, 6635 (1999)] The Journal of Chemical Physics. 111: 1788-1788. DOI: 10.1063/1.479444 |
0.302 |
|
1999 |
Guallar V, Batista VS, Miller WH. Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers Journal of Chemical Physics. 110: 9922-9936. DOI: 10.1063/1.478866 |
0.597 |
|
1999 |
Guallar V, Batista VS, Miller WH. Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers The Journal of Chemical Physics. 110: 9922-9936. DOI: 10.1063/1.478866 |
0.436 |
|
1999 |
Sun X, Miller WH. Forward-backward initial value representation for semiclassical time correlation functions Journal of Chemical Physics. 110: 6635-6644. DOI: 10.1063/1.478571 |
0.343 |
|
1999 |
Wang H, Song X, Chandler D, Miller WH. Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density Journal of Chemical Physics. 110: 4828-4840. DOI: 10.1063/1.478388 |
0.555 |
|
1999 |
Wang H, Song X, Chandler D, Miller WH. Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density The Journal of Chemical Physics. 110: 4828-4840. DOI: 10.1063/1.478388 |
0.399 |
|
1999 |
Zanni MT, Batista VS, Greenblatt BJ, Miller WH, Neumark DM. Femtosecond photoelectron spectroscopy of the I- 2 anion: Characterization of the Ã′ 2Πg,1/2 excited state Journal of Chemical Physics. 110: 3748-3755. DOI: 10.1063/1.478264 |
0.507 |
|
1999 |
Batista VS, Zanni MT, Greenblatt BJ, Neumark DM, Miller WH. Femtosecond photoelectron spectroscopy of the I- 2 anion: A semiclassical molecular dynamics simulation method Journal of Chemical Physics. 110: 3736-3747. DOI: 10.1063/1.478263 |
0.571 |
|
1999 |
Guo Y, Thompson DL, Miller WH. Thermal and microcanonical rates of unimolecular reactions from an energy diffusion theory approach Journal of Physical Chemistry A. 103: 10308-10311. DOI: 10.1021/Jp991592E |
0.38 |
|
1999 |
Miller WH. Generalization of the Linearized Approximation to the Semiclassical Initial Value Representation for Reactive Flux Correlation Functions Journal of Physical Chemistry A. 103: 9384-9387. DOI: 10.1021/Jp9915275 |
0.49 |
|
1999 |
Wang H, Miller WH. Analytic continuation of real-time correlation functions to obtain thermal rate constants for chemical reaction Chemical Physics Letters. 307: 463-468. DOI: 10.1016/S0009-2614(99)00546-1 |
0.37 |
|
1999 |
Skinner DE, Miller WH. Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering Chemical Physics Letters. 300: 20-26. DOI: 10.1016/S0009-2614(98)01290-1 |
0.722 |
|
1998 |
Sun X, Wang H, Miller WH. Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation Journal of Chemical Physics. 109: 7064-7074. DOI: 10.1063/1.477389 |
0.436 |
|
1998 |
Sun X, Wang H, Miller WH. On the semiclassical description of quantum coherence in thermal rate constants Journal of Chemical Physics. 109: 4190-4200. DOI: 10.1063/1.477025 |
0.482 |
|
1998 |
Germann TC, Miller WH. Quantum mechanical calculation of resonance tunneling in acetylene isomerization via the vinylidene intermediate Journal of Chemical Physics. 109: 94-101. DOI: 10.1063/1.476544 |
0.4 |
|
1998 |
Wang H, Sun X, Miller WH. Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems Journal of Chemical Physics. 108: 9726-9736. DOI: 10.1063/1.476447 |
0.472 |
|
1998 |
Sun X, Miller WH. Semiclassical initial value representation for rotational degrees of freedom: The tunneling dynamics of HCI dimer Journal of Chemical Physics. 108: 8870-8877. DOI: 10.1063/1.476333 |
0.475 |
|
1998 |
Batista VS, Miller WH. Semiclassical molecular dynamics simulations of ultrafast photodissociation dynamics associated with the Chappuis band of ozone The Journal of Chemical Physics. 108: 498-510. DOI: 10.1063/1.475413 |
0.551 |
|
1998 |
Viel A, Leforestier C, Miller WH. Quantum mechanical calculation of the rate constant for the reaction H+O2→OH+O The Journal of Chemical Physics. 108: 3489-3497. DOI: 10.1063/1.466940 |
0.433 |
|
1998 |
Miller WH. Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates Faraday Discussions. 110: 1-21. DOI: 10.1039/A805196H |
0.505 |
|
1998 |
Wang H, Thompson WH, Miller WH. “Direct” Calculation of Thermal Rate Constants for the F + H2 → HF + F Reaction Journal of Physical Chemistry A. 102: 9372-9379. DOI: 10.1021/Jp981461Y |
0.577 |
|
1998 |
Skinner DE, Germann TC, Miller WH. Quantum Mechanical Rate Constants for O + OH ⇌ H + O2for Total Angular MomentumJ> 0 The Journal of Physical Chemistry A. 102: 3828-3834. DOI: 10.1021/Jp980872B |
0.711 |
|
1998 |
Miller WH. “Direct” and “Correct” Calculation of Canonical and Microcanonical Rate Constants for Chemical Reactions Journal of Physical Chemistry A. 102: 793-806. DOI: 10.1021/Jp973208O |
0.481 |
|
1998 |
Wang H, Thompson WH, Miller WH. "Direct" calculation of thermal rate constants for the F + H2 → HF + F reaction Journal of Physical Chemistry A. 102: 9372-9379. |
0.469 |
|
1997 |
Wang H, Thompson WH, Miller WH. Thermal rate constant calculation using flux–flux autocorrelation functions: Application to Cl+H2→HCl+H reaction The Journal of Chemical Physics. 107: 7194-7201. DOI: 10.1063/1.474959 |
0.588 |
|
1997 |
Thompson WH, Miller WH. Erratum: “On the ‘direct’ calculation of thermal rate constants. II. The flux-flux autocorrelation function with absorbing potentials, with application to the O+HCl→OH+Cl reaction” [J. Chem. Phys. 106, 142 (1997)] The Journal of Chemical Physics. 107: 2164-2165. DOI: 10.1063/1.474568 |
0.537 |
|
1997 |
Thompson WH, Miller WH. On the "direct" calculation of thermal rate constants. II. The flux-flux autocorrelation function with absorbing potentials, with application to the O+HCl→OH+Cl reaction Journal of Chemical Physics. 106: 142-150. DOI: 10.1063/1.474109 |
0.615 |
|
1997 |
Peskin U, Reisler H, Miller WH. Response to “Comment on ’On the relation between unimolecular reaction rates and overlapping resonances’ ” [J. Chem. Phys. 106, 4810 (1997)] The Journal of Chemical Physics. 106: 4812-4814. DOI: 10.1063/1.473990 |
0.644 |
|
1997 |
Sun X, Miller WH. Semiclassical initial value representation for electronically nonadiabatic molecular dynamics The Journal of Chemical Physics. 106: 6346-6353. DOI: 10.1063/1.473624 |
0.393 |
|
1997 |
Sun X, Miller WH. Mixed semiclassical–classical approaches to the dynamics of complex molecular systems The Journal of Chemical Physics. 106: 916-927. DOI: 10.1063/1.473171 |
0.429 |
|
1997 |
Miller WH. Quantum and semiclassical Green's functions in chemical reaction dynamics Journal of the Chemical Society, Faraday Transactions. 93: 685-690. DOI: 10.1039/A606858H |
0.464 |
|
1997 |
Germann TC, Miller WH. Quantum Mechanical Pressure-Dependent Reaction and Recombination Rates for O + OH → H + O2, HO2 The Journal of Physical Chemistry A. 101: 6358-6367. DOI: 10.1021/Jp9703622 |
0.399 |
|
1997 |
Vorobeichik I, Moiseyev N, Miller WH. On the reflection probability in elastic scattering processes as obtained via the absorbing boundary conditions-discrete variable representation (ABC-DVR) Green function formalism Chemical Physics Letters. 275: 491-493. DOI: 10.1016/S0009-2614(97)00781-1 |
0.52 |
|
1997 |
Poirier B, Miller WH. Optimized preconditioners for Green function evaluation in quantum reactive scattering calculations Chemical Physics Letters. 265: 77-83. DOI: 10.1016/S0009-2614(96)01408-X |
0.397 |
|
1996 |
Miller WH. Comment on ‘‘Comparison of positive flux operators for transition state theory using a solvable model’’ [J. Chem. Phys. 104, 7015 (1996)] Journal of Chemical Physics. 105: 6090-6090. DOI: 10.1063/1.472937 |
0.366 |
|
1996 |
Thompson WH, Karlsson HO, Miller WH. Theoretical calculation of photodetachment intensities for H3O− The Journal of Chemical Physics. 105: 5387-5396. DOI: 10.1063/1.472380 |
0.565 |
|
1996 |
Mandelshtam VA, Taylor HS, Miller WH. Collisional recombination reaction H+O2+M→HO2+M: Quantum mechanical study using filter diagonalization Journal of Chemical Physics. 105: 496-503. DOI: 10.1063/1.471903 |
0.448 |
|
1996 |
Gezelter JD, Miller WH. Dynamics of the photodissociation of triplet ketene The Journal of Chemical Physics. 104: 3546-3554. DOI: 10.1063/1.471059 |
0.723 |
|
1996 |
Spath BW, Miller WH. Semiclassical calculation of cumulative reaction probabilities The Journal of Chemical Physics. 104: 95-99. DOI: 10.1063/1.470878 |
0.429 |
|
1996 |
Spath BW, Miller WH. Semiclassical calculation of Franck-Condon intensities for reactive systems Chemical Physics Letters. 262: 486-494. DOI: 10.1016/0009-2614(96)01112-8 |
0.367 |
|
1996 |
Lehr L, Miller WH. A classical approach to dissociative electron attachment DA: application to temperature effects in the DA cross section of CF3Cl Chemical Physics Letters. 250: 515-522. DOI: 10.1016/0009-2614(96)00037-1 |
0.319 |
|
1995 |
Gezelter JD, Miller WH. Resonant features in the energy dependence of the rate of ketene isomerization The Journal of Chemical Physics. 103: 7868-7876. DOI: 10.1063/1.470204 |
0.711 |
|
1995 |
Peskin U, Miller WH, Edlund Å. Quantum time evolution in time‐dependent fields and time‐independent reactive‐scattering calculations via an efficient Fourier grid preconditioner The Journal of Chemical Physics. 103: 10030-10041. DOI: 10.1063/1.469906 |
0.648 |
|
1995 |
Thompson WH, Miller WH. On the ‘‘direct’’ calculation of thermal rate constants The Journal of Chemical Physics. 102: 7409-7417. DOI: 10.1063/1.469053 |
0.593 |
|
1995 |
Peskin U, Miller WH, Reisler H. Final state-selected spectra in unimolecular reactions: A transition-state-based random matrix model for overlapping resonances The Journal of Chemical Physics. 102: 8874-8886. DOI: 10.1063/1.468941 |
0.655 |
|
1995 |
Peskin U, Miller WH. Reactive scattering theory for molecular transitions in time‐dependent fields The Journal of Chemical Physics. 102: 4084-4092. DOI: 10.1063/1.468536 |
0.668 |
|
1995 |
Miller WH. Quantum mechanical theory of collisional recombination rates. Part 2.—Beyond the strong collision approximation Faraday Discuss.. 102: 53-63. DOI: 10.1039/Fd9950200053 |
0.42 |
|
1995 |
Miller WH. Quantum Mechanical Theory of Collisional Recombination Rates The Journal of Physical Chemistry. 99: 12387-12390. DOI: 10.1021/J100033A005 |
0.401 |
|
1994 |
Thompson WH, Miller WH. Initial state‐selected reaction probabilities for OH+H2→H+H2O and photodetachment intensities for HOH−2 The Journal of Chemical Physics. 101: 8620-8627. DOI: 10.1063/1.468057 |
0.591 |
|
1994 |
Peskin U, Reisler H, Miller WH. On the relation between unimolecular reaction rates and overlapping resonances The Journal of Chemical Physics. 101: 9672-9680. DOI: 10.1063/1.467932 |
0.628 |
|
1994 |
Manthe U, Seideman T, Miller WH. Quantum mechanical calculations of the rate constant for the H2+OH→H+H2O reaction: Full‐dimensional results and comparison to reduced dimensionality models The Journal of Chemical Physics. 101: 4759-4768. DOI: 10.1063/1.467398 |
0.659 |
|
1994 |
Auerbach SM, Miller WH. Efficient polynomial expansion of the scattering Green’s function: Application to the D+H2(v=1) rate constant The Journal of Chemical Physics. 100: 1103-1112. DOI: 10.1063/1.466642 |
0.628 |
|
1994 |
Saalfrank P, Miller WH. Quantum-mechanical rates for gas-surface processes Surface Science. 303: 206-230. DOI: 10.1016/0039-6028(94)90634-3 |
0.599 |
|
1994 |
Keshavamurthy S, Miller WH. Semi-classical correction for quantum-mechanical scattering Chemical Physics Letters. 218: 189-194. DOI: 10.1016/0009-2614(93)E1485-Y |
0.757 |
|
1993 |
Manthe U, Seideman T, Miller WH. Full‐dimensional quantum mechanical calculation of the rate constant for the H2+OH→H2O+H reaction The Journal of Chemical Physics. 99: 10078-10081. DOI: 10.1063/1.465514 |
0.648 |
|
1993 |
Hernandez R, Miller WH, Moore CB, Polik WF. A random matrix/transition state theory for the probability distribution of state‐specific unimolecular decay rates: Generalization to include total angular momentum conservation and other dynamical symmetries The Journal of Chemical Physics. 99: 950-962. DOI: 10.1063/1.465360 |
0.662 |
|
1993 |
Stock G, Miller WH. Classical formulation of the spectroscopy of nonadiabatic excited‐state dynamics The Journal of Chemical Physics. 99: 1545-1555. DOI: 10.1063/1.465323 |
0.41 |
|
1993 |
Manthe U, Miller WH. The cumulative reaction probability as eigenvalue problem The Journal of Chemical Physics. 99: 3411-3419. DOI: 10.1063/1.465151 |
0.62 |
|
1993 |
Auerbach SM, Miller WH. Quantum mechanical reaction probabilities with a power series Green’s function The Journal of Chemical Physics. 98: 6917-6928. DOI: 10.1063/1.464759 |
0.655 |
|
1993 |
Saalfrank P, Miller WH. Time‐independent quantum dynamics for diatom–surface scattering The Journal of Chemical Physics. 98: 9040-9052. DOI: 10.1063/1.464464 |
0.61 |
|
1993 |
Miller WH. Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates Accounts of Chemical Research. 26: 174-181. DOI: 10.1021/Ar00028A007 |
0.461 |
|
1993 |
Hernandez R, Miller WH. Semiclassical transition state theory. A new perspective Chemical Physics Letters. 214: 129-136. DOI: 10.1016/0009-2614(93)90071-8 |
0.66 |
|
1993 |
Thompson WH, Miller WH. State-specific reaction probabilities from a DVR-ABC Green function Chemical Physics Letters. 206: 123-129. DOI: 10.1016/0009-2614(93)85528-V |
0.583 |
|
1993 |
Keshavamurthy S, Miller WH. A semiclassical model to incorporate multidimensional tunneling in classical trajectory simulations using locally conserved actions Chemical Physics Letters. 205: 96-101. DOI: 10.1016/0009-2614(93)85173-L |
0.736 |
|
1993 |
Belyaev AK, Colbert DT, Groenenboom GC, Miller WH. State-to-state reaction probabilities for H- + H2, D2 collisions Chemical Physics Letters. 209: 309-314. DOI: 10.1016/0009-2614(93)80023-I |
0.367 |
|
1992 |
Seideman T, Miller WH. Quantum mechanical reaction probabilities via a discrete variable representation‐absorbing boundary condition Green’s function The Journal of Chemical Physics. 97: 2499-2514. DOI: 10.1063/1.463088 |
0.415 |
|
1992 |
Seideman T, Miller WH. Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions The Journal of Chemical Physics. 96: 4412-4422. DOI: 10.1063/1.462832 |
0.403 |
|
1992 |
Chang Y, Minichino C, Miller WH. Classical trajectory studies of the molecular dissociation dynamics of formaldehyde: H2CO→H2+CO The Journal of Chemical Physics. 96: 4341-4355. DOI: 10.1063/1.462826 |
0.386 |
|
1992 |
Colbert DT, Miller WH. A novel discrete variable representation for quantum mechanical reactive scattering via the Sâmatrix Kohn method Journal of Chemical Physics. 96: 1982-1991. DOI: 10.1063/1.462100 |
0.46 |
|
1992 |
Sewell TD, Thompson DL, Gezelter JD, Miller WH. Some problems of correcting the zero-point energy problem in classical trajectories Chemical Physics Letters. 193: 512-517. DOI: 10.1016/0009-2614(92)85841-W |
0.686 |
|
1992 |
Stock G, Miller WH. A classical model for time- and frequency-resolved spectroscopy of nonadiabatic excited-state dynamics Chemical Physics Letters. 197: 396-404. DOI: 10.1016/0009-2614(92)85791-8 |
0.445 |
|
1992 |
Cohen MJ, Handy NC, Hernandez R, Miller WH. Cumulative reaction probabilities for H+H2→H2+H from a knowledge of the anharmonic force field Chemical Physics Letters. 192: 407-416. DOI: 10.1016/0009-2614(92)85491-R |
0.669 |
|
1991 |
Seideman T, Miller WH. Transition state theory, Siegert eigenstates, and quantum mechanical reaction rates The Journal of Chemical Physics. 95: 1768-1780. DOI: 10.1063/1.461025 |
0.448 |
|
1991 |
Harris RA, Grayce CJ, Makri N, Miller WH. Comment on: A corrected exponential power series expansion of the position matrix elements of the time evolution operator for a system in the presence of a vector potential The Journal of Chemical Physics. 94: 4682-4683. DOI: 10.1063/1.460580 |
0.717 |
|
1991 |
Yeager DL, Miller WH. Complex log derivative method for nonreactive coupled-channel scattering calculations Journal of Physical Chemistry. 95: 8212-8215. DOI: 10.1021/J100174A037 |
0.303 |
|
1991 |
Uzer T, Miller W. Theories of intramolecular vibrational energy transfer Physics Reports. 199: 73-146. DOI: 10.1016/0370-1573(91)90140-H |
0.311 |
|
1991 |
Zhang JZH, Miller WH, Weaver A, Neumark D. Quantum reactive scattering calculations of Franck-Condon factors for the photodetachment of H2F- and D2F- and comparisons with experiment Chemical Physics Letters. 182: 283-289. DOI: 10.1016/0009-2614(91)80216-K |
0.346 |
|
1990 |
Miller WH. Recent Advances in Quantum Mechanical Reactive Scattering Theory, Including Comparison of Recent Experiments with Rigorous Calculations of State-to-State Cross Sections for the H/D+H2→H2/HD+H Reactions Annual Review of Physical Chemistry. 41: 245-281. DOI: 10.1146/Annurev.Pc.41.100190.001333 |
0.423 |
|
1990 |
Moore CB, Zheng QK, Choi YS, Green WH, Kim SK, Mahoney AJ, Miller WH, Pibel CD, Polik WF, Teal P. The high-resolution spectroscopy of dissociating molecules Philosophical Transactions - Royal Society. Mathematical, Physical and Engineering Sciences. 332: 297-307. DOI: 10.1098/Rsta.1990.0116 |
0.334 |
|
1990 |
Continetti RE, Zhang JZH, Miller WH. Comment on: Resonance structure in the energy dependence of state-to-state differential scattering cross sections for the D+H2(v,j) →HD(v′,j′)+H reaction The Journal of Chemical Physics. 93: 5356-5357. DOI: 10.1063/1.459658 |
0.395 |
|
1990 |
Miller WH, Hernandez R, Moore CB, Polik WF. A transition state theory‐based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde The Journal of Chemical Physics. 93: 5657-5666. DOI: 10.1063/1.459636 |
0.644 |
|
1990 |
Zhang JZH, Miller WH. Photodissociation and continuum resonance Raman cross sections and general Franck–Condon intensities from S‐matrix Kohn scattering calculations with application to the photoelectron spectrum of H2F−+hν→H2+F, HF+H + e− The Journal of Chemical Physics. 92: 1811-1818. DOI: 10.1063/1.458063 |
0.358 |
|
1990 |
Polik WF, Guyer DR, Miller WH, Moore CB. Eigenstate‐resolved unimolecular reaction dynamics: Ergodic character ofS0formaldehyde at the dissociation threshold The Journal of Chemical Physics. 92: 3471-3484. DOI: 10.1063/1.457858 |
0.408 |
|
1990 |
Auerbach SM, Zhang JZH, Miller WH. Comparison of quantum scattering calculations for the H + H2 reaction using the LSTH and DMBE potentials Journal of the Chemical Society, Faraday Transactions. 86: 1701. DOI: 10.1039/Ft9908601701 |
0.657 |
|
1990 |
Zhang JZH, Miller WH. Quasi-adiabatic basis functions for the S-matrix Kohn variational approach to quantum reactive scattering The Journal of Physical Chemistry. 94: 7785-7789. DOI: 10.1021/J100383A009 |
0.392 |
|
1990 |
Zhang JZH, Yeager DL, Miller WH. 3D quantum scattering calculations of the reaction He + H+ 2 → HeH+ + H for total angular momentum J = 0 Chemical Physics Letters. 173: 489-495. DOI: 10.1016/0009-2614(90)87241-I |
0.434 |
|
1990 |
Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willetts A. Ab initio calculation of anharmonic constants for a transition state, with application to semiclassical transition state tunneling probabilities Chemical Physics Letters. 172: 62-68. DOI: 10.1016/0009-2614(90)87217-F |
0.677 |
|
1990 |
Moreno M, Miller WH. On the tautomerization reaction 2-pyridone ⇌ 2-hydroxypyridine: an ab initio study Chemical Physics Letters. 171: 475-479. DOI: 10.1016/0009-2614(90)85249-C |
0.371 |
|
1989 |
Zhang JZH, Miller WH. Quantum reactive scattering via the S‐matrix version of the Kohn variational principle: Differential and integral cross sections for D+H2 →HD+H The Journal of Chemical Physics. 91: 1528-1547. DOI: 10.1063/1.457650 |
0.41 |
|
1989 |
Yang W, Peet AC, Miller WH. A collocation approach for quantum scattering based on the S‐matrix version of the Kohn variational principle The Journal of Chemical Physics. 91: 7537-7542. DOI: 10.1063/1.457277 |
0.563 |
|
1989 |
Voth GA, Chandler D, Miller WH. Rigorous formulation of quantum transition state theory and its dynamical corrections The Journal of Chemical Physics. 91: 7749-7760. DOI: 10.1063/1.457242 |
0.726 |
|
1989 |
Miller WH, Hase WL, Darling CL. A simple model for correcting the zero point energy problem in classical trajectory simulations of polyatomic molecules The Journal of Chemical Physics. 91: 2863-2868. DOI: 10.1063/1.456956 |
0.344 |
|
1989 |
Yang W, Miller WH. Block Lanczos approach combined with matrix continued fraction for the S‐matrix Kohn variational principle in quantum scattering The Journal of Chemical Physics. 91: 3504-3508. DOI: 10.1063/1.456880 |
0.545 |
|
1989 |
Makri N, Miller WH. A semiclassical tunneling model for use in classical trajectory simulations The Journal of Chemical Physics. 91: 4026-4036. DOI: 10.1063/1.456833 |
0.73 |
|
1989 |
Zhang JZH, Miller WH. Reply to Comment on: Accurate three‐dimensional quantum scattering calculations for F+H2→HF+H The Journal of Chemical Physics. 90: 7610-7610. DOI: 10.1063/1.456198 |
0.413 |
|
1989 |
Makri N, Miller WH. Exponential power series expansion for the quantum time evolution operator The Journal of Chemical Physics. 90: 904-911. DOI: 10.1063/1.456116 |
0.726 |
|
1989 |
Voth GA, Chandler D, Miller WH. Time correlation function and path integral analysis of quantum rate constants The Journal of Physical Chemistry. 93: 7009-7015. DOI: 10.1021/J100356A025 |
0.646 |
|
1989 |
Zhang JZ, Miller WH. Differential cross section (angular distribution) for the reaction H+H2(v=j=0)→H2(v′, ODD j′)+H in the energy range 0.90-1.35 eV Chemical Physics Letters. 159: 130-133. DOI: 10.1016/0009-2614(89)87395-6 |
0.347 |
|
1989 |
Gaucher LF, Miller WH. On the Absence of Anomalous Singularities in theS-Matrix Version of the Kohn Variational Principle for Quantum Scattering Israel Journal of Chemistry. 29: 349-354. DOI: 10.1002/Ijch.198900045 |
0.375 |
|
1988 |
Miller WH, Ruf BA, Chang Y. A diabatic reaction path Hamiltonian The Journal of Chemical Physics. 89: 6298-6304. DOI: 10.1063/1.455395 |
0.366 |
|
1988 |
Makri N, Miller WH. Monte Carlo path integration for the real time propagator The Journal of Chemical Physics. 89: 2170-2177. DOI: 10.1063/1.455061 |
0.703 |
|
1988 |
Polik WF, Moore CB, Miller WH. Quantum interference among competing unimolecular decay channels: AsymmetricS0D2CO decay profiles The Journal of Chemical Physics. 89: 3584-3591. DOI: 10.1063/1.454928 |
0.358 |
|
1988 |
Zhang JZH, Chu SI, Miller WH. Quantum scattering via the S‐matrix version of the Kohn variational principle Journal of Chemical Physics. 88: 6233-6239. DOI: 10.1063/1.454462 |
0.369 |
|
1988 |
Zhang JZH, Miller WH. Accurate three‐dimensional quantum scattering calculations for F+H2→HF+H The Journal of Chemical Physics. 88: 4549-4550. DOI: 10.1063/1.453763 |
0.412 |
|
1988 |
Ruf BA, Miller WH. A new (cartesian) reaction-path model for dynamics in polyatomic systems, with application to H-atom transfer in malonaldehyde Journal of the Chemical Society, Faraday Transactions 2. 84: 1523. DOI: 10.1039/F29888401523 |
0.384 |
|
1988 |
Miller WH. Effect of fluctuations in state-specific unimolecular rate constants on the pressure dependence of the average unimolecular reaction rate The Journal of Physical Chemistry. 92: 4261-4263. DOI: 10.1021/J100326A003 |
0.362 |
|
1988 |
Zhang JZ, Miller WH. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: Integral cross sections For H+H2(ν1=j1=0)→H2(ν2=1, j2= 1, 3) + H in the energy range Etotal = 0.9–1.4 eV Chemical Physics Letters. 153: 465-470. DOI: 10.1016/0009-2614(88)85244-8 |
0.382 |
|
1988 |
Peet AC, Miller WH. A pointwise representation of the s-matrix Kohn variational principle for quantum scattering Chemical Physics Letters. 149: 257-264. DOI: 10.1016/0009-2614(88)85023-1 |
0.368 |
|
1988 |
Makri N, Miller WH. Correct short time propagator for Feynman path integration by power series expansion in Δt Chemical Physics Letters. 151: 1-8. DOI: 10.1016/0009-2614(88)80058-7 |
0.683 |
|
1987 |
Makri N, Miller WH. Time-dependent self-consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments The Journal of Chemical Physics. 87: 5781-5787. DOI: 10.1063/1.453501 |
0.716 |
|
1987 |
Chang J, Miller WH. Monte Carlo path integration in real time via complex coordinates The Journal of Chemical Physics. 87: 1648-1652. DOI: 10.1063/1.453227 |
0.334 |
|
1987 |
Miller WH, Jansen op de Haar BMDD. A new basis set method for quantum scattering calculations The Journal of Chemical Physics. 86: 6213-6220. DOI: 10.1063/1.452459 |
0.385 |
|
1987 |
Makri N, Miller WH. Basis set methods for describing the quantum mechanics of a ‘‘system’’ interacting with a harmonic bath Journal of Chemical Physics. 86: 1451-1457. DOI: 10.1063/1.452234 |
0.737 |
|
1987 |
Tromp JW, Miller WH. The reactive flux correlation function for collinear reactions H + H<inf>2</inf>, Cl + HCl and F + H<inf>2</inf> Faraday Discussions of the Chemical Society. 84: 441-453. DOI: 10.1039/Dc9878400441 |
0.444 |
|
1987 |
Chang YT, Yamaguchi Y, Miller WH, Schaefer HF. An analysis of the infrared and Raman spectra of the formic acid dimer (HCOOH)2 Journal of the American Chemical Society. 109: 7245-7253. DOI: 10.1021/Ja00258A001 |
0.371 |
|
1987 |
Miller WH. Tunneling and state specificity in unimolecular reactions Chemical Reviews. 87: 19-27. DOI: 10.1021/Cr00077A002 |
0.317 |
|
1987 |
Zhang JZ, Miller WH. New method for quantum reactive scattering, with applications to the 3-D H+H2 reaction Chemical Physics Letters. 140: 329-337. DOI: 10.1016/0009-2614(87)80742-X |
0.416 |
|
1987 |
Makri N, Miller WH. Monte carlo integration with oscillatory integrands: implications for feynman path integration in real time Chemical Physics Letters. 139: 10-14. DOI: 10.1016/0009-2614(87)80142-2 |
0.7 |
|
1987 |
Makri N, Miller WH. Basis set methods for describing the quantum mechanics of a "system" interacting with a harmonic bath The Journal of Chemical Physics. 86: 1451-1457. |
0.697 |
|
1986 |
Miller WH. Comment on ‘‘Probability oscillations in single pass curve crossings: Semiclassical predictions of nonmonotonic dependence on crossing velocity’’ The Journal of Chemical Physics. 85: 3703-3704. DOI: 10.1063/1.450941 |
0.325 |
|
1986 |
Miller WH, White KA. Classical models for electronic degrees of freedom: The second‐quantized many‐electron Hamiltonian Journal of Chemical Physics. 84: 5059-5066. DOI: 10.1063/1.450655 |
0.373 |
|
1986 |
Tromp JW, Miller WH. New approach to quantum mechanical transition-state theory The Journal of Physical Chemistry. 90: 3482-3485. DOI: 10.1021/J100407A006 |
0.448 |
|
1986 |
Hermann MR, Miller WH. Quantum mechanical reactive scattering via exchange kernels: comparison of grid versus basis set expansion of the exchange interaction Chemical Physics. 109: 163-172. DOI: 10.1016/0301-0104(86)87049-5 |
0.401 |
|
1986 |
Handy NC, Lee TJ, Miller WH. Spin-orbit and diagonal born-oppenheimer corrections for the reaction F + H2 → HF + H Chemical Physics Letters. 125: 12-18. DOI: 10.1016/0009-2614(86)85146-6 |
0.334 |
|
1986 |
Carrington T, Miller WH. Reaction surface description of intramolecular hydrogen atom transfer in malonaldehyde The Journal of Chemical Physics. 84: 4364-4370. DOI: 10.1002/Chin.198631101 |
0.66 |
|
1985 |
Dardi PS, Shi S, Miller WH. Quantum mechanical reactive scattering via exchange kernels: Infinite order exchange on a grid The Journal of Chemical Physics. 83: 575-583. DOI: 10.1063/1.449524 |
0.443 |
|
1985 |
Yamashita K, Miller WH. ‘‘Direct’’ calculation of quantum mechanical rate constants via path integral methods: Application to the reaction path Hamiltonian, with numerical test for the H+H2reaction in 3D The Journal of Chemical Physics. 82: 5475-5484. DOI: 10.1063/1.448582 |
0.435 |
|
1985 |
Jaquet R, Miller WH. Quantum mechanical rate constants via path integrals: diffusion of hydrogen atoms on a tungsten(100) surface The Journal of Physical Chemistry. 89: 2139-2144. DOI: 10.1021/J100257A003 |
0.421 |
|
1985 |
Frisch MJ, Liu B, Binkley J, Schaefer HF, Miller WH. Further theoretical examination of the F + H2 entrance channel barrier Chemical Physics Letters. 114: 1-5. DOI: 10.1016/0009-2614(85)85042-9 |
0.323 |
|
1984 |
Pollak E, Miller WH. New Physical Interpretation for Time in Scattering Theory Physical Review Letters. 53: 115-118. DOI: 10.1103/Physrevlett.53.115 |
0.544 |
|
1984 |
Carrington T, Miller WH. Reaction surface Hamiltonian for the dynamics of reactions in polyatomic systems The Journal of Chemical Physics. 81: 3942-3950. DOI: 10.1063/1.448187 |
0.675 |
|
1984 |
Miller WH. Calculation of semiclassical eigenvalues with one arbitrary trajectory The Journal of Chemical Physics. 81: 3573-3575. DOI: 10.1063/1.448103 |
0.361 |
|
1984 |
Schatz GC, Hubbard LM, Dardi PS, Miller WH. Coupled channel distorted wave calculations for the three‐dimensional H+H2 reaction The Journal of Chemical Physics. 81: 231-240. DOI: 10.1063/1.447367 |
0.393 |
|
1984 |
Carrington T, Hubbard LM, Schaefer HF, Miller WH. Vinylidene: Potential energy surface and unimolecular reaction dynamics The Journal of Chemical Physics. 80: 4347-4354. DOI: 10.1063/1.447266 |
0.719 |
|
1984 |
Hubbard LM, Miller WH. Application of the semiclassical perturbation approximation to scattering from surfaces. Generalization to include phonon inelasticity The Journal of Chemical Physics. 80: 5827-5831. DOI: 10.1063/1.446609 |
0.348 |
|
1984 |
Ali DP, Miller WH. Classical models for electronic degrees of freedom: Quenching of Br*(2P1/2) by collision with H2 in three dimensions Chemical Physics Letters. 103: 470-474. DOI: 10.1016/0009-2614(84)85279-3 |
0.387 |
|
1984 |
Ali DP, Miller WH. Geminate recombination of iodine atoms in solution: A generalized langevin treatment including the effect of electronically inelastic transitions Chemical Physics Letters. 105: 501-505. DOI: 10.1016/0009-2614(84)80099-8 |
0.345 |
|
1983 |
Miller WH. On the Question of Mode-Specificity in Unimolecular Reaction Dynamics Laser Chemistry. 2: 243-252. DOI: 10.1155/Lc.2.243 |
0.372 |
|
1983 |
Schwartz SD, Miller WH. System‐bath decomposition of the reaction path Hamiltonian. II. Rotationally inelastic reactive scattering of H+H2 in three dimensions The Journal of Chemical Physics. 79: 3759-3764. DOI: 10.1063/1.446308 |
0.586 |
|
1983 |
Miller WH, Schwartz SD, Tromp JW. Quantum mechanical rate constants for bimolecular reactions The Journal of Chemical Physics. 79: 4889-4898. DOI: 10.1063/1.445581 |
0.624 |
|
1983 |
Hiller C, Manz J, Miller WH, Römelt J. Oscillating reactivity of collinear symmetric heavy+light–heavy atom reactions The Journal of Chemical Physics. 78: 3850-3856. DOI: 10.1063/1.445162 |
0.468 |
|
1983 |
Hubbard LM, Shi S, Miller WH. Multichannel distorted wave Born approximation for reactive scattering The Journal of Chemical Physics. 78: 2381-2387. DOI: 10.1063/1.445039 |
0.335 |
|
1983 |
Hubbard LM, Miller WH. Application of the semiclassical perturbation (SCP) approximation to diffraction and rotationally inelastic scattering of atoms and molecules from surfaces The Journal of Chemical Physics. 78: 1801-1807. DOI: 10.1063/1.444976 |
0.388 |
|
1983 |
Ali DP, Miller WH. Effect of electronic transition dynamics on iodine atom recombination in liquids The Journal of Chemical Physics. 78: 6640-6645. DOI: 10.1063/1.444662 |
0.35 |
|
1983 |
Waite BA, Gray SK, Miller WH. Mode specificity in the unimolecular dissociation of formaldehyde (H2CO→H2+CO), a two‐mode model The Journal of Chemical Physics. 78: 259-265. DOI: 10.1063/1.444550 |
0.544 |
|
1983 |
Bicerano J, Schaefer HF, Miller WH. Structure and tunneling dynamics of malonaldehyde. A theoretical study Journal of the American Chemical Society. 105: 2550-2553. DOI: 10.1021/Ja00347A005 |
0.382 |
|
1983 |
Miller WH. Dynamical effects of symmetry along a reaction path: mode specificity in the unimolecular dissociation of formaldehyde Journal of the American Chemical Society. 105: 216-220. DOI: 10.1021/Ja00340A012 |
0.399 |
|
1983 |
Miller WH. Reaction Path Dynamics For Polyatomic Systems The Journal of Physical Chemistry. 87: 3811-3819. DOI: 10.1021/J100243A007 |
0.415 |
|
1983 |
Miller WH. Symmetry-adapted transition-state theory: nonzero total angular momentum The Journal of Physical Chemistry. 87: 2731-2733. DOI: 10.1021/J100238A010 |
0.343 |
|
1983 |
Miller WH. Symmetry-adapted transition-state theory and a unified treatment of multiple transition states The Journal of Physical Chemistry. 87: 21-22. DOI: 10.1021/J100224A007 |
0.33 |
|
1982 |
Miller WH, Schwartz S. System‐bath decomposition of the reaction path Hamiltonian for polyatomic scattering: Quantum perturbative treatment The Journal of Chemical Physics. 77: 2378-2382. DOI: 10.1063/1.444159 |
0.59 |
|
1982 |
Waite BA, Miller WH. A semiclassical multichannel branching model for describing state‐specific unimolecular decomposition and other dynamical processes in polyatomic molecular systems The Journal of Chemical Physics. 76: 2412-2422. DOI: 10.1063/1.443270 |
0.407 |
|
1982 |
Miller WH. Effect of reaction path curvature and dimensionality on the accuracy of classical transition state theory The Journal of Chemical Physics. 76: 4904-4908. DOI: 10.1063/1.442835 |
0.414 |
|
1982 |
Cerjan CJ, Shi S, Miller WH. Applications of a simple dynamical model to the reaction path Hamiltonian: tunneling corrections to rate constants, product state distributions, line widths of local mode overtones, and mode specificity in unimolecular decomposition The Journal of Physical Chemistry. 86: 2244-2251. DOI: 10.1021/J100209A020 |
0.395 |
|
1982 |
Gray S, Miller W. Classical model for electronic degrees of freedom: charge transfer in Na + I collisions Chemical Physics Letters. 93: 341-344. DOI: 10.1016/0009-2614(82)83705-6 |
0.521 |
|
1981 |
Cerjan CJ, Miller WH. On finding transition states The Journal of Chemical Physics. 75: 2800-2806. DOI: 10.1063/1.442352 |
0.333 |
|
1981 |
Miller WH, Shi S. Unified semiclassical perturbation and infinite order sudden approximation, with application to the reaction path Hamiltonian model The Journal of Chemical Physics. 75: 2258-2264. DOI: 10.1063/1.442286 |
0.408 |
|
1981 |
Waite BA, Miller WH. Mode specificity in unimolecular reaction dynamics: The Henon–Heiles potential energy surface The Journal of Chemical Physics. 74: 3910-3915. DOI: 10.1063/1.441567 |
0.403 |
|
1981 |
Miller WH, Orel AE. Classical trajectory models for electronically nonadiabatic collision processes: A classical valence bond model for electronic degrees of freedom Journal of Chemical Physics. 74: 6075-6082. DOI: 10.1063/1.441050 |
0.354 |
|
1981 |
Gray SK, Miller WH, Yamaguchi Y, Schaefer HF. Tunneling in the unimolecular decomposition of formaldehyde: a more quantitative study Journal of the American Chemical Society. 103: 1900-1904. DOI: 10.1021/Ja00398A004 |
0.474 |
|
1981 |
Orel AE, Ali DP, Miller WH. Classical Model For Electronically Non-Adiabatic Collision Processes: Resonance Effects In Electronic-Vibrational Energy Transfer Chemical Physics Letters. 79: 137-141. DOI: 10.1016/0009-2614(81)85305-5 |
0.366 |
|
1981 |
Osamura Y, Schaefer HF, Gray SK, Miller WH. Vinylidene: a very shallow minimum on the C2H2 potential energy surface Journal of the American Chemical Society. 103: 1904-1907. DOI: 10.1002/Chin.198129158 |
0.445 |
|
1981 |
GRAY SK, MILLER WH, YAMAGUCHI Y, SCHAEFER HFI. ChemInform Abstract: TUNNELING IN THE UNIMOLECULAR DECOMPOSITION OF FORMALDEHYDE: A MORE QUANTITATIVE STUDY Chemischer Informationsdienst. 12. DOI: 10.1002/chin.198129133 |
0.403 |
|
1980 |
Waite BA, Miller WH. Model studies of mode specificity in unimolecular reaction dynamics The Journal of Chemical Physics. 73: 3713-3721. DOI: 10.1063/1.440744 |
0.386 |
|
1980 |
McCurdy CW, Miller WH. Progress In The Application Of Classical S-Matrix Theory To Inelastic Collision Processes Journal of Chemical Physics. 73: 3191-3197. DOI: 10.1063/1.440558 |
0.615 |
|
1980 |
Gray SK, Miller WH, Yamaguchi Y, Schaefer HF. Reaction path Hamiltonian: Tunneling effects in the unimolecular isomerization HNC→HCN The Journal of Chemical Physics. 73: 2733-2750. DOI: 10.1063/1.440494 |
0.557 |
|
1980 |
Orel AE, Miller WH. Classical model for laser‐induced nonadiabatic collision processes Journal of Chemical Physics. 73: 241-246. DOI: 10.1063/1.439923 |
0.42 |
|
1980 |
Orel AE, Miller WH. Collision induced absorption spectra for gas phase chemical reactions in a high power IR laser field Journal of Chemical Physics. 72: 5139-5144. DOI: 10.1063/1.439747 |
0.33 |
|
1980 |
Meyer H, Miller WH. Analysis and extension of some recently proposed classical models for electronic degrees of freedom The Journal of Chemical Physics. 72: 2272-2281. DOI: 10.1063/1.439462 |
0.65 |
|
1980 |
Miller WH, Handy NC, Adams JE. Reaction path Hamiltonian for polyatomic molecules The Journal of Chemical Physics. 72: 99-112. DOI: 10.1063/1.438959 |
0.622 |
|
1979 |
Bandrauk AD, Miller WH. Analysis of the generalized Stueckelberg method of non-adiabatic transitions Molecular Physics. 38: 1893-1907. DOI: 10.1080/00268977900102931 |
0.393 |
|
1979 |
Stratt RM, Handy NC, Miller WH. On the quantum mechanical implications of classical ergodicity The Journal of Chemical Physics. 71: 3311-3322. DOI: 10.1063/1.438772 |
0.754 |
|
1979 |
Meyer H, Miller WH. Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F∗+H2→F+H2 The Journal of Chemical Physics. 71: 2156. DOI: 10.1063/1.438598 |
0.654 |
|
1979 |
Orel AE, Miller WH. Infrared laser enhancement of chemical reactions via collision induced absorption Journal of Chemical Physics. 70: 4393-4399. DOI: 10.1063/1.438013 |
0.341 |
|
1979 |
Meyera) H, Miller WH. A classical analog for electronic degrees of freedom in nonadiabatic collision processes The Journal of Chemical Physics. 70: 3214-3223. DOI: 10.1063/1.437910 |
0.414 |
|
1979 |
McCurdy CW, Meyer HD, Miller WH. Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(2P 1/2)+H+,Xe→F(2P3/2)+H +,Xe The Journal of Chemical Physics. 70: 3177-3187. DOI: 10.1063/1.437905 |
0.613 |
|
1979 |
Miller WH. Tunneling corrections to unimolecular rate constants, with application to formaldehyde Journal of the American Chemical Society. 101: 6810-6814. DOI: 10.1021/Ja00517A004 |
0.352 |
|
1979 |
Adams JE, Miller WH. Expansion of exchange kernels for reactive scattering The Journal of Physical Chemistry. 83: 1505-1508. DOI: 10.1021/J100474A028 |
0.56 |
|
1979 |
Miller WH. Periodic orbit description of tunneling in symmetric and asymmetric double-well potentials The Journal of Physical Chemistry. 83: 960-963. DOI: 10.1021/J100471A015 |
0.32 |
|
1979 |
Adams JE, Miller WH. A unified model for diffractive and inelastic scattering of a light atom from a solid surface Surface Science. 85: 77-93. DOI: 10.1016/0039-6028(79)90234-6 |
0.53 |
|
1979 |
Isaacson A, Miller W. Calculation of Siegert eigenvalues for molecular systems: results for He(21,3S)+ H Chemical Physics Letters. 62: 374-377. DOI: 10.1016/0009-2614(79)80200-6 |
0.335 |
|
1978 |
Miller WH, Smith FT. Semiclassical perturbation theory of electron-molecule collisions Physical Review A. 17: 939-953. DOI: 10.1103/Physreva.17.939 |
0.404 |
|
1978 |
Green S, Garrison BJ, Lester WAJ, Miller WH. Collisional excitation of interstellar formaldehyde The Astrophysical Journal Supplement Series. 37: 321. DOI: 10.1086/190531 |
0.534 |
|
1978 |
Raczkowski AW, Lester WA, Miller WH. Vibrational relaxation in the para-H2–4He system: Comparison of coupled-channel, coupled-states, and effective potential methods The Journal of Chemical Physics. 69: 2692. DOI: 10.1063/1.436862 |
0.35 |
|
1978 |
Miller WH. A classical/semiclassical theory for the interaction of infrared radiation with molecular systems The Journal of Chemical Physics. 69: 2188-2195. DOI: 10.1063/1.436793 |
0.373 |
|
1978 |
Miller WH, McCurdy CW. Classical trajectory model for electronically nonadiabatic collision phenomena. a classical analog for electronic degrees of freedom The Journal of Chemical Physics. 69: 5163-5173. DOI: 10.1063/1.436463 |
0.597 |
|
1978 |
Garrett BC, Miller WH. Quantum mechanical reactive scattering via exchange kernels: Application to the collinear H+H2 reaction Journal of Chemical Physics. 68: 4051-4055. DOI: 10.1063/1.436306 |
0.457 |
|
1978 |
Miller WH. Resonance effects in the semiclassical theory of electronically nonadiabatic collision processes The Journal of Chemical Physics. 68: 4431-4434. DOI: 10.1063/1.435524 |
0.411 |
|
1978 |
Miller WH, Skuse BM. On the possibility of direct solution of the classical Liouville equation for inelastic molecular collisions; the reduced Liouville equation The Journal of Chemical Physics. 68: 295. DOI: 10.1063/1.435496 |
0.368 |
|
1978 |
Isaacson AD, McCurdy CW, Miller WH. On possibility of calculating Siegert eigenvalues for autoionizing electronic states Chemical Physics. 34: 311-317. DOI: 10.1016/0301-0104(78)85174-X |
0.506 |
|
1977 |
McCurdy CW, Miller WH. Interference effects in rotational state distributions: Propensity and inverse propensity The Journal of Chemical Physics. 67: 463-468. DOI: 10.1063/1.434890 |
0.549 |
|
1977 |
Adams JE, Miller WH. Semiclassical eigenvalues for potential functions defined on a finite interval The Journal of Chemical Physics. 67: 5775-5778. DOI: 10.1063/1.434837 |
0.577 |
|
1977 |
Stratt RM, Miller WH. A phase space sampling approach to equilibrium semiclassical statistical mechanics The Journal of Chemical Physics. 67: 5894-5903. DOI: 10.1063/1.434796 |
0.751 |
|
1977 |
Isaacson AD, Hickman AP, Miller WH. Penning ionization of H2by He*: Calculation of anomalous structure in the singlet interaction potential The Journal of Chemical Physics. 67: 370-371. DOI: 10.1063/1.434535 |
0.303 |
|
1977 |
Hickman AP, Isaacson AD, Miller WH. Penning ionization of H2 by He(2 3S): Quantum mechanical scattering calculations within the rigid‐rotor approximation The Journal of Chemical Physics. 66: 1492-1495. DOI: 10.1063/1.434112 |
0.415 |
|
1977 |
Hickman AP, Isaacson AD, Miller WH. Feshbach projection operator calculation of the potential energy surfaces and autoionization lifetimes for He(2 3S) –H and He(2 3S) –H2 The Journal of Chemical Physics. 66: 1483-1491. DOI: 10.1063/1.434111 |
0.37 |
|
1977 |
Miller WH. Semi-classical theory for non-separable systems:. Construction of “good” action-angle variables for reaction rate constants Faraday Discuss. Chem. Soc.. 62: 40-46. DOI: 10.1039/Dc9776200040 |
0.377 |
|
1977 |
Handy NC, Colwell SM, Miller WH. Semi-classical methods for vibrational energy levels of triatomic molecules Faraday Discussions of the Chemical Society. 62: 29. DOI: 10.1039/Dc9776200029 |
0.362 |
|
1977 |
Schaefer HF, Miller WH. Large scale scientific computation via minicomputer Computers & Chemistry. 1: 85-90. DOI: 10.1016/0097-8485(77)80004-1 |
0.312 |
|
1976 |
Masel RI, Merrill RP, Miller WH. Atomic scattering from a sinusoidal hard wall: Comparison of approximate methods with exact quantum results The Journal of Chemical Physics. 65: 2690-2699. DOI: 10.1063/1.433412 |
0.596 |
|
1976 |
Miller WH. Unified statistical model for ’’complex’’ and ’’direct’’ reaction mechanisms Journal of Chemical Physics. 65: 2216-2223. DOI: 10.1063/1.433379 |
0.373 |
|
1976 |
Garrison BJ, Lester WA, Miller WH. Coupled‐channel study of rotational excitation of a rigid asymmetric top by atom impact: (H2CO,He) at interstellar temperatures The Journal of Chemical Physics. 65: 2193-2200. DOI: 10.1063/1.433375 |
0.564 |
|
1976 |
Miller WH. On the existence of semiclassical eigenvalues for irregular spectra The Journal of Chemical Physics. 64: 2880-2883. DOI: 10.1063/1.432590 |
0.369 |
|
1976 |
Chapman S, Garrett BC, Miller WH. Semiclassical eigenvalues for nonseparable systems: Nonperturbative solution of the Hamilton–Jacobi equation in action‐angle variables The Journal of Chemical Physics. 64: 502-509. DOI: 10.1063/1.432266 |
0.672 |
|
1976 |
Miller WH. Importance of nonseparability in quantum mechanical transition-state theory Accounts of Chemical Research. 9: 306-312. DOI: 10.1021/Ar50104A005 |
0.411 |
|
1976 |
Hickman AP, Isaacson AD, Miller WH. Calculations of autoionization states of He and H− Chemical Physics Letters. 37: 63-66. DOI: 10.1016/0009-2614(76)80162-5 |
0.344 |
|
1975 |
Masel RI, Merrill RP, Miller WH. SEMICLASSICAL THEORIES AND QUANTUM HARDWELL CALCULATION OF ATOM SURFACE SCATTERING. J Vac Sci Technol. 13: 355-359. DOI: 10.1116/1.568879 |
0.599 |
|
1975 |
Smith FT, Huestis DL, Mukherjee D, Miller WH. Semiclassical Perturbation Scattering by a Rigid Dipole Physical Review Letters. 35: 1073-1076. DOI: 10.1103/Physrevlett.35.1073 |
0.433 |
|
1975 |
Masel RI, Merrill RP, Miller WH. Quantum scattering from a sinusoidal hard wall: Atomic diffraction from solid surfaces Physical Review B. 12: 5545-5551. DOI: 10.1103/Physrevb.12.5545 |
0.57 |
|
1975 |
Garrison BJ, Lester WAJ, Miller WH, Green S. Cooling of the 6-centimeter and 2-centimeter doublets of interstellar H2CO by collision - an accurate quantum-mechanical calculation The Astrophysical Journal. 200: L175. DOI: 10.1086/181925 |
0.596 |
|
1975 |
Zahr GE, Miller WH. Semiclassical theory of diffraction in elastic scattering Molecular Physics. 30: 951-958. DOI: 10.1080/00268977500102471 |
0.32 |
|
1975 |
Masel RI, Merrill RP, Miller WH. A semiclassical model for atomic scattering from solid surfaces-He and Ne scattering from W(112) The Journal of Chemical Physics. 45-56. DOI: 10.1063/1.431947 |
0.532 |
|
1975 |
Chapman S, Garrett BC, Miller WH. Semiclassical transition state theory for nonseparable systems: Application to the collinear H+H2 reaction The Journal of Chemical Physics. 63: 2710-2716. DOI: 10.1063/1.431620 |
0.726 |
|
1975 |
Porter RN, Raff LM, Miller WH. Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator The Journal of Chemical Physics. 63: 2214-2218. DOI: 10.1063/1.431603 |
0.395 |
|
1975 |
Miller WH. Path integral representation of the reaction rate constant in quantum mechanical transition state theory The Journal of Chemical Physics. 63: 1166-1172. DOI: 10.1063/1.431444 |
0.444 |
|
1975 |
Miller WH. Semiclassical quantization of nonseparable systems: A new look at periodic orbit theory The Journal of Chemical Physics. 63: 996-999. DOI: 10.1063/1.431410 |
0.406 |
|
1975 |
Miller WH. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems The Journal of Chemical Physics. 62: 1899-1906. DOI: 10.1063/1.430676 |
0.46 |
|
1975 |
Zahr GE, Preston RK, Miller WH. Theoretical treatment of quenching in O(1D) + N2 collisions The Journal of Chemical Physics. 62: 1127-1135. DOI: 10.1063/1.430556 |
0.655 |
|
1975 |
Chapman S, Hornstein SM, Miller WH. Accuracy of transition state theory for the threshold of chemical reactions with activation energy. Collinear and three-dimensional atomic hydrogen + molecular hydrogen Journal of the American Chemical Society. 97: 892-894. DOI: 10.1021/Ja00837A035 |
0.517 |
|
1975 |
CHAPMAN S, HORNSTEIN SM, MILLER WH. ChemInform Abstract: ACCURACY OF TRANSITION STATE THEORY FOR THE THRESHOLD OF CHEMICAL REACTIONS WITH ACTIVATION ENERGY, COLLINEAR AND THREE-DIMENSIONAL H+H2 Chemischer Informationsdienst. 6: no-no. DOI: 10.1002/Chin.197519034 |
0.536 |
|
1974 |
Miller WH. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants The Journal of Chemical Physics. 61: 1823-1834. DOI: 10.1063/1.1682181 |
0.469 |
|
1974 |
Raczkowski AW, Miller WH. Classical S‐matrix calculation for vibrationally inelastic transitions in three dimensional collisions of Li+with H2 The Journal of Chemical Physics. 61: 5413-5420. DOI: 10.1063/1.1681896 |
0.442 |
|
1974 |
Preston RK, Sloane C, Miller WH. Semiclassical theory of collisionally induced fine‐structure transitions in fluorine atoms The Journal of Chemical Physics. 60: 4961-4969. DOI: 10.1063/1.1681009 |
0.351 |
|
1974 |
Masel RI, Merrill RP, Miller WH. Semiclassical trajectory calculations of helium scattering from W(112) Surface Science. 46: 681-688. DOI: 10.1016/0039-6028(74)90334-3 |
0.541 |
|
1974 |
Augustin SD, Miller WH. Classical trajectory study of rotational excitation in low energy HeCO and HeH2 collisions Chemical Physics Letters. 28: 149-152. DOI: 10.1016/0009-2614(74)80039-4 |
0.459 |
|
1973 |
Garrison BJ, Miller WH, Schaefer HF. Penning and associative ionization of triplet metastable helium atoms The Journal of Chemical Physics. 59: 3193-3198. DOI: 10.1063/1.1680460 |
0.516 |
|
1973 |
Miller WH. Improved classical path approximation for the Boltzmann density matrix The Journal of Chemical Physics. 58: 1664-1667. DOI: 10.1063/1.1679410 |
0.354 |
|
1973 |
Doll JD, George TF, Miller WH. Complex‐valued classical trajectories for reactive tunneling in three‐dimensional collisions of H and H2 The Journal of Chemical Physics. 58: 1343-1351. DOI: 10.1063/1.1679366 |
0.655 |
|
1973 |
Barg GD, Fremerey H, Toennies JP, Balint-Kurti GG, Johnson BR, Pattengill MD, Polanyi JC, Marcus RA, Gilbert RG, George TF, Bosanac S, Simons JP, Freed KF, Miller WH, Schreiber JL, et al. General discussion Faraday Discussions of the Chemical Society. 55: 59-79. DOI: 10.1039/Dc9735500059 |
0.538 |
|
1972 |
George TF, Miller WH. ClassicalS‐Matrix Theory of Reactive Tunneling: Linear H+H2 Collisions The Journal of Chemical Physics. 57: 2458-2467. DOI: 10.1063/1.1678610 |
0.398 |
|
1972 |
Doll JD, Miller WH. ClassicalS‐Matrix for Vibrational Excitation of H2by Collision with He in Three Dimensions The Journal of Chemical Physics. 57: 5019-5026. DOI: 10.1063/1.1678182 |
0.67 |
|
1972 |
Doll JD, Miller WH. Classical‐Limit Quantization of Nonseparable Systems: Multidimensional WKB Perturbation Theory The Journal of Chemical Physics. 57: 4428-4434. DOI: 10.1063/1.1678085 |
0.637 |
|
1972 |
Miller WH, Slocomb CA, Schaefer HF. Molecular Autoionization Lifetimes and Cross Sections for Penning Ionization: Numerical Results for He* (1s2s 3S) + H(1s 2S) The Journal of Chemical Physics. 56: 1347-1358. DOI: 10.1063/1.1677369 |
0.326 |
|
1972 |
Miller WH. Classical Limit of Fredholm Theory for Elastic and Inelastic Scattering; Inability of Phase Space Integrals to Describe Inelastic Transitions The Journal of Chemical Physics. 56: 745-748. DOI: 10.1063/1.1677225 |
0.377 |
|
1972 |
George TF, Miller WH. Complex‐Valued Classical Trajectories for Linear Reactive Collisions of H + H2 below the Classical Threshold The Journal of Chemical Physics. 56: 5722-5723. DOI: 10.1063/1.1677094 |
0.31 |
|
1972 |
Miller WH, George TF. Analytic Continuation of Classical Mechanics for Classically Forbidden Collision Processes The Journal of Chemical Physics. 56: 5668-5681. DOI: 10.1063/1.1677086 |
0.433 |
|
1972 |
Miller WH, George TF. Semiclassical Theory of Electronic Transitions in Low Energy Atomic and Molecular Collisions Involving Several Nuclear Degrees of Freedom The Journal of Chemical Physics. 56: 5637-5652. DOI: 10.1063/1.1677083 |
0.438 |
|
1972 |
Wolken G, Miller WH, Karplus M. Theoretical Studies of H + H2 Rotationally Inelastic Scattering The Journal of Chemical Physics. 56: 4930-4946. DOI: 10.1063/1.1676971 |
0.37 |
|
1972 |
Miller WH. Classical‐Limit Green's Function (Fixed‐Energy Propagator) and Classical Quantization of Nonseparable Systems The Journal of Chemical Physics. 56: 38-45. DOI: 10.1063/1.1676877 |
0.408 |
|
1972 |
Hornstein SM, Miller WH. Quantum corrections (within the classical path approximation) to the boltzmann density matrix Chemical Physics Letters. 13: 298-300. DOI: 10.1016/0009-2614(72)85068-1 |
0.401 |
|
1971 |
Schaefer HF, Miller WH. Curve Crossing of theB3Σu− and 3Π u States of O2and Its Relation to Predissociation in the Schumann—Runge Bands The Journal of Chemical Physics. 55: 4107-4113. DOI: 10.1063/1.1676708 |
0.349 |
|
1971 |
Rankin CC, Miller WH. Classical S Matrix for Linear Reactive Collisions of H+Cl2 Journal of Chemical Physics. 55: 3150-3156. DOI: 10.1063/1.1676561 |
0.431 |
|
1971 |
Miller WH. Classical Path Approximation for the Boltzmann Density Matrix The Journal of Chemical Physics. 55: 3146-3149. DOI: 10.1063/1.1676560 |
0.407 |
|
1971 |
Slocomb CA, Miller WH, Schaefer HF. Collisional Quenching of Metastable Hydrogen Atoms The Journal of Chemical Physics. 55: 926-932. DOI: 10.1063/1.1676163 |
0.308 |
|
1971 |
Miller WH. Classical S Matrix for Rotational Excitation; Quenching of Quantum Effects in Molecular Collisions The Journal of Chemical Physics. 54: 5386-5397. DOI: 10.1063/1.1674839 |
0.47 |
|
1971 |
Miller W. Simple error bound for coupled-channel scattering calculations Chemical Physics Letters. 11: 535-538. DOI: 10.1016/0009-2614(71)80404-9 |
0.333 |
|
1971 |
Miller W. Molecular ramsauer-townsend effect in very low energy 4He-4He scattering Chemical Physics Letters. 10: 7-9. DOI: 10.1016/0009-2614(71)80142-2 |
0.309 |
|
1970 |
Miller WH. Classical S Matrix: Numerical Application to Inelastic Collisions The Journal of Chemical Physics. 53: 3578-3587. DOI: 10.1063/1.1674535 |
0.476 |
|
1970 |
Miller WH. Semiclassical Theory of Atom–Diatom Collisions: Path Integrals and the Classical S Matrix The Journal of Chemical Physics. 53: 1949-1959. DOI: 10.1063/1.1674275 |
0.397 |
|
1970 |
Miller WH, Schaefer HF. Theoretical Treatment of Penning Ionization—He(1s2s 1S, 3S) + H(1s 2S) Journal of Chemical Physics. 53: 1421-1427. DOI: 10.1063/1.1674191 |
0.314 |
|
1970 |
Miller WH. Theory of Penning Ionization. I. Atoms The Journal of Chemical Physics. 52: 3563. DOI: 10.1063/1.1673523 |
0.424 |
|
1970 |
Miller WH. Study of the Statistical Model for Molecular Collisions The Journal of Chemical Physics. 52: 543-551. DOI: 10.1063/1.1673020 |
0.355 |
|
1970 |
Miller WH. The classical S-matrix: a more detailed study of classically forbidden transitions in inelastic collissions☆ Chemical Physics Letters. 7: 431-435. DOI: 10.1016/0009-2614(70)80326-8 |
0.447 |
|
1970 |
Miller W. Computation of autoionization lifetimes via a “golden rule” - like formula Chemical Physics Letters. 4: 627-631. DOI: 10.1016/0009-2614(70)80102-6 |
0.333 |
|
1969 |
Miller WH. WKB Solution of Inversion Problems for Potential Scattering The Journal of Chemical Physics. 51: 3631-3638. DOI: 10.1063/1.1672572 |
0.327 |
|
1969 |
Miller WH. Possibility of Extracting Anisotropy Parameters from the M Dependence of Total Cross-Section Measurements Journal of Chemical Physics. 50: 3410-3415. DOI: 10.1063/1.1671564 |
0.313 |
|
1969 |
Miller WH. Improved Equation for Lower Bounds to Eigenvalues; Bounds for the Second‐Order Perturbation Energy The Journal of Chemical Physics. 50: 2758-2762. DOI: 10.1063/1.1671442 |
0.309 |
|
1969 |
Miller WH. Final‐State Interactions in Collisions of an Atom and a Diatomic Molecule The Journal of Chemical Physics. 50: 931-934. DOI: 10.1063/1.1671146 |
0.314 |
|
1969 |
Miller WH. Coupled Equations and the Minimum Principle for Collisions of an Atom and a Diatomic Molecule, Including Rearrangements The Journal of Chemical Physics. 50: 407-418. DOI: 10.1063/1.1670812 |
0.328 |
|
1968 |
Miller WH. Distorted‐Wave Theory for Collisions of an Atom and a Diatomic Molecule The Journal of Chemical Physics. 49: 2373-2381. DOI: 10.1063/1.1670410 |
0.362 |
|
1968 |
Miller WH. Semiclassical Treatment of Multiple Turning‐Point Problems—Phase Shifts and Eigenvalues The Journal of Chemical Physics. 48: 1651-1658. DOI: 10.1063/1.1668891 |
0.352 |
|
1968 |
Miller WH. Uniform Semiclassical Approximations for Elastic Scattering and Eigenvalue Problems The Journal of Chemical Physics. 48: 464-467. DOI: 10.1063/1.1667946 |
0.408 |
|
Show low-probability matches. |