Year |
Citation |
Score |
2023 |
Pang YJ, Li XC, Siegbahn PEM, Chen GJ, Tan HW. Theoretical Study of the Catalytic Mechanism of the Cu-Only Superoxide Dismutase. The Journal of Physical Chemistry. B. PMID 37196177 DOI: 10.1021/acs.jpcb.3c02175 |
0.306 |
|
2020 |
Siegbahn PEM, Liao RZ. Energetics for Proton Reduction in FeFe Hydrogenase. The Journal of Physical Chemistry. A. PMID 33275428 DOI: 10.1021/acs.jpca.0c08705 |
0.665 |
|
2019 |
Liao RZ, Siegbahn PEM. Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase. Inorganic Chemistry. PMID 31141352 DOI: 10.1021/acs.inorgchem.9b00644 |
0.665 |
|
2019 |
Li YY, Gimbert C, Llobet A, Siegbahn PEM, Liao RZ. Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear Ru2Mn Complex. Chemsuschem. PMID 30604589 DOI: 10.1002/Cssc.201802395 |
0.717 |
|
2019 |
Siegbahn PEM, Chen S, Liao R. Theoretical Studies of Nickel-Dependent Enzymes Inorganics. 7: 95. DOI: 10.3390/INORGANICS7080095 |
0.661 |
|
2018 |
Yang XX, Mao QY, An XT, Li XC, Siegbahn PEM, Chen GJ, Tan HW. Theoretical study of the mechanism of the manganese catalase KatB. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. PMID 30519754 DOI: 10.1007/s00775-018-1631-z |
0.363 |
|
2018 |
Kärkäs MD, Li YY, Siegbahn PEM, Liao RZ, Åkermark B. Metal-Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorganic Chemistry. PMID 30133266 DOI: 10.1021/Acs.Inorgchem.8B01527 |
0.692 |
|
2018 |
Liao R, Masaoka S, Siegbahn PEM. Metal Oxidation States for the O–O Bond Formation in the Water Oxidation Catalyzed by a Pentanuclear Iron Complex Acs Catalysis. 8: 11671-11678. DOI: 10.1021/acscatal.8b02791 |
0.678 |
|
2018 |
Wei W, Siegbahn PEM, Liao R. Mechanism of the Dinuclear Iron Enzyme
p
‐Aminobenzoate N‐oxygenase from Density Functional Calculations Chemcatchem. 11: 601-613. DOI: 10.1002/cctc.201801072 |
0.643 |
|
2017 |
Liao RZ, Siegbahn P. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. Chemsuschem. PMID 28875583 DOI: 10.1002/cssc.201701374 |
0.703 |
|
2017 |
Wei WJ, Siegbahn PE, Liao RZ. Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB. Inorganic Chemistry. PMID 28277674 DOI: 10.1021/acs.inorgchem.6b03177 |
0.702 |
|
2017 |
Liao R, Siegbahn PE. Possible water association and oxidation mechanisms for a recently synthesized Mn4Ca-complex Journal of Catalysis. 354: 169-181. DOI: 10.1016/j.jcat.2017.07.016 |
0.668 |
|
2017 |
Liao R, Siegbahn PEM. Cover Feature: Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis (ChemSusChem 22/2017) Chemsuschem. 10: 4225-4225. DOI: 10.1002/cssc.201702128 |
0.664 |
|
2016 |
Abdel-Magied AF, Shatskiy A, Liao RZ, Laine TM, Arafa WA, Siegbahn PE, Kärkäs MD, Åkermark B, Johnston EV. Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst. Chemsuschem. PMID 27966290 DOI: 10.1002/Cssc.201601171 |
0.684 |
|
2016 |
Li Y, Ye K, Siegbahn PE, Liao RZ. Mechanism of Water Oxidation Catalysed by a Mononuclear Manganese Complex [Py2N(tBu)2Mn(H2O)2]2. Chemsuschem. PMID 27925413 DOI: 10.1002/cssc.201601538 |
0.716 |
|
2016 |
Liao RZ, Chen SL, Siegbahn PE. Unraveling the Mechanism and Regioselectivity of the B12-Dependent Reductive Dehalogenase PceA. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 27459105 DOI: 10.1002/chem.201601575 |
0.679 |
|
2016 |
Das B, Lee BL, Karlsson EA, Åkermark T, Shatskiy A, Demeshko S, Liao RZ, Laine TM, Haukka M, Zeglio E, Abdel-Magied AF, Siegbahn PE, Meyer F, Kärkäs MD, Johnston EV, et al. Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework. Dalton Transactions (Cambridge, England : 2003). PMID 27265239 DOI: 10.1039/C6Dt01554A |
0.659 |
|
2016 |
Blomberg MR, Siegbahn PE. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR). Journal of Computational Chemistry. PMID 27130561 DOI: 10.1002/jcc.24396 |
0.322 |
|
2016 |
Liao R, Kärkäs MD, Laine TM, Åkermark B, Siegbahn PEM. On the mechanism of water oxidation catalyzed by a dinuclear ruthenium complex: a quantum chemical study Catalysis Science & Technology. 6: 5031-5041. DOI: 10.1039/C6Cy00083E |
0.691 |
|
2016 |
Kärkäs MD, Liao RZ, Laine TM, Åkermark T, Ghanem S, Siegbahn PEM, Åkermark B. Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: Mechanistic insight through structure-activity relationships and quantum chemical calculations Catalysis Science and Technology. 6: 1306-1319. DOI: 10.1039/C5Cy01704A |
0.705 |
|
2015 |
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chemical Science. 6: 2754-2764. PMID 28706665 DOI: 10.1039/C5Sc00313J |
0.684 |
|
2015 |
Liao RZ, Siegbahn PE. Phosphate Hydrolysis by the Fe2-Ca3-Dependent Alkaline Phosphatase PhoX: Mechanistic Insights from DFT calculations. Inorganic Chemistry. PMID 26651528 DOI: 10.1021/Acs.Inorgchem.5B02268 |
0.665 |
|
2015 |
Li X, Siegbahn PE. Water Oxidation for Simplified Models of the Oxygen-Evolving Complex in Photosystem II. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 26559803 DOI: 10.1002/chem.201501593 |
0.317 |
|
2015 |
Rabten W, Kärkäs MD, Åkermark T, Chen H, Liao RZ, Tinnis F, Sun J, Siegbahn PE, Andersson PG, Åkermark B. Catalytic water oxidation by a molecular ruthenium complex: unexpected generation of a single-site water oxidation catalyst. Inorganic Chemistry. 54: 4611-20. PMID 25945608 DOI: 10.1021/Ic502755C |
0.695 |
|
2015 |
Liao RZ, Wang M, Sun L, Siegbahn PE. The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Transactions (Cambridge, England : 2003). 44: 9736-9. PMID 25928325 DOI: 10.1039/C5Dt01008J |
0.657 |
|
2015 |
Laine TM, Kärkäs MD, Liao RZ, Siegbahn PE, Åkermark B. A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 25925847 DOI: 10.1002/Chem.201406613 |
0.69 |
|
2015 |
Li X, Siegbahn PE, Ryde U. Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II. Proceedings of the National Academy of Sciences of the United States of America. 112: 3979-84. PMID 25775575 DOI: 10.1073/Pnas.1422058112 |
0.497 |
|
2015 |
Su XJ, Gao M, Jiao L, Liao RZ, Siegbahn PE, Cheng JP, Zhang MT. Electrocatalytic water oxidation by a dinuclear copper complex in a neutral aqueous solution. Angewandte Chemie (International Ed. in English). 54: 4909-14. PMID 25678035 DOI: 10.1002/Anie.201411625 |
0.695 |
|
2015 |
Laine TM, Kärkäs MD, Liao RZ, Åkermark T, Lee BL, Karlsson EA, Siegbahn PE, Åkermark B. Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex. Chemical Communications (Cambridge, England). 51: 1862-5. PMID 25525645 DOI: 10.1039/C4Cc08606F |
0.665 |
|
2015 |
Liao RZ, Kärkäs MD, Lee BL, Åkermark B, Siegbahn PE. Photosystem II like water oxidation mechanism in a bioinspired tetranuclear manganese complex. Inorganic Chemistry. 54: 342-51. PMID 25486382 DOI: 10.1021/Ic5024983 |
0.709 |
|
2015 |
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB Chemical Science. 6: 2754-2764. DOI: 10.1039/c5sc00313j |
0.612 |
|
2015 |
Liao RZ, Chen SL, Siegbahn PEM. Which Oxidation State Initiates Dehalogenation in the B12-Dependent Enzyme NpRdhA: CoII, CoI, or Co0? Acs Catalysis. 5: 7350-7358. DOI: 10.1021/Acscatal.5B01502 |
0.673 |
|
2015 |
Laine TM, Kärkäs MD, Liao R, Siegbahn PEM, Åkermark B. Inside Cover: A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions (Chem. Eur. J. 28/2015) Chemistry - a European Journal. 21: 9918-9918. DOI: 10.1002/Chem.201590123 |
0.676 |
|
2014 |
Liao RZ, Siegbahn PE. Mechanism for OO bond formation in a biomimetic tetranuclear manganese cluster - A density functional theory study. Journal of Photochemistry and Photobiology. B, Biology. PMID 25534173 DOI: 10.1016/J.Jphotobiol.2014.12.005 |
0.708 |
|
2014 |
Arafa WA, Kärkäs MD, Lee BL, Åkermark T, Liao RZ, Berends HM, Messinger J, Siegbahn PE, Åkermark B. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Physical Chemistry Chemical Physics : Pccp. 16: 11950-64. PMID 24554036 DOI: 10.1039/C3Cp54800G |
0.691 |
|
2014 |
Blomberg MR, Borowski T, Himo F, Liao RZ, Siegbahn PE. Quantum chemical studies of mechanisms for metalloenzymes. Chemical Reviews. 114: 3601-58. PMID 24410477 DOI: 10.1021/Cr400388T |
0.754 |
|
2014 |
Liao RZ, Siegbahn PEM. Which oxidation state leads to O-O bond formation in CpIr(bpy)Cl-catalyzed water oxidation, Ir(V), Ir(VI), or Ir(VII)? Acs Catalysis. 4: 3937-3949. DOI: 10.1021/Cs501160X |
0.708 |
|
2014 |
Liao RZ, Li XC, Siegbahn PEM. Reaction mechanism of water oxidation catalyzed by iron tetraamido macrocyclic ligand complexes - A DFT study European Journal of Inorganic Chemistry. 728-741. DOI: 10.1002/Ejic.201300710 |
0.706 |
|
2014 |
Karlsson EA, Lee BL, Liao RZ, Åkermark T, Kärkäs MD, Becerril VS, Siegbahn PEM, Zou X, Abrahamsson M, Åkermark B. Synthesis and electron-transfer processes in a new family of ligands for coupled Ru-Mn2 complexes Chempluschem. 79: 936-950. DOI: 10.1002/Cplu.201402006 |
0.683 |
|
2013 |
Li X, Siegbahn PEM. Water oxidation mechanism for synthetic Co-oxides with small nuclearity Journal of the American Chemical Society. 135: 13804-13813. PMID 23968287 DOI: 10.1021/ja4053448 |
0.309 |
|
2013 |
Liu YF, Yu JG, Siegbahn PEM, Blomberg MRA. Theoretical study of the oxidation of phenolates by the [Cu 2O2(N,N'-di-tert-butylethylenediamine)2] 2+ complex Chemistry - a European Journal. 19: 1942-1954. PMID 23292840 DOI: 10.1002/chem.201203052 |
0.337 |
|
2012 |
Blomberg MRA, Siegbahn PEM. Mechanism for N2O generation in bacterial nitric oxide reductase: A quantum chemical study Biochemistry. 51: 5173-5186. PMID 22680334 DOI: 10.1021/bi300496e |
0.335 |
|
2012 |
Blomberg MRA, Siegbahn PEM. Mechanism for N2O generation in bacterial nitric oxide reductase: A quantum chemical study Biochemistry. 51: 5173-5186. PMID 22680334 DOI: 10.1021/bi300496e |
0.335 |
|
2012 |
Ertem MZ, Cramer CJ, Himo F, Siegbahn PE. N-O bond cleavage mechanism(s) in nitrous oxide reductase. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 17: 687-98. PMID 22434248 DOI: 10.1007/S00775-012-0888-X |
0.674 |
|
2012 |
Ertem MZ, Cramer CJ, Himo F, Siegbahn PE. N-O bond cleavage mechanism(s) in nitrous oxide reductase. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 17: 687-98. PMID 22434248 DOI: 10.1007/S00775-012-0888-X |
0.674 |
|
2012 |
Siegbahn PEM. Mechanisms for proton release during water oxidation in the S 2 to S 3 and S 3 to S 4 transitions in photosystem II Physical Chemistry Chemical Physics. 14: 4849-4856. PMID 22278436 DOI: 10.1039/c2cp00034b |
0.308 |
|
2011 |
Li X, Chen G, Schinzel S, Siegbahn PEM. A comparison between artificial and natural water oxidation Dalton Transactions. 40: 11296-11307. PMID 21960259 DOI: 10.1039/c1dt11323b |
0.33 |
|
2011 |
Siegbahn PEM, Himo F. The quantum chemical cluster approach for modeling enzyme reactions Wiley Interdisciplinary Reviews: Computational Molecular Science. 1: 323-336. DOI: 10.1002/Wcms.13 |
0.65 |
|
2011 |
Robb M, Siegbahn P, Lindh R. Foreword International Journal of Quantum Chemistry. 111: 3255. DOI: 10.1002/Qua.23105 |
0.528 |
|
2011 |
Siegbahn P, lindh R. Björn O. Roos: 1937-2010 mentor, colleague, innovator International Journal of Quantum Chemistry. DOI: 10.1002/Qua.23104 |
0.52 |
|
2010 |
Georgiev V, Noack H, Borowski T, Blomberg MR, Siegbahn PE. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases. The Journal of Physical Chemistry. B. 114: 5878-85. PMID 20387788 DOI: 10.1021/jp911217j |
0.322 |
|
2009 |
Siegbahn PEM. Structures and energetics for O2 formation in photosystem II Accounts of Chemical Research. 42: 1871-1880. PMID 19856959 DOI: 10.1021/ar900117k |
0.333 |
|
2009 |
Siegbahn PEM, Himo F. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions Journal of Biological Inorganic Chemistry. 14: 643-651. PMID 19437047 DOI: 10.1007/S00775-009-0511-Y |
0.662 |
|
2009 |
AlmlÖf J, Deleeuw BJ, Taylor PR, Bauschlicher CW, Siegbahn P. The dissociation energy of N2 International Journal of Quantum Chemistry. 36: 345-354. DOI: 10.1002/Qua.560360838 |
0.715 |
|
2009 |
Blomberg MRA, Siegbahn PEM, Roos BO. The ground-state potential curve of the beryllium dimer International Journal of Quantum Chemistry. 18: 229-247. DOI: 10.1002/Qua.560180826 |
0.469 |
|
2008 |
Borowski T, Blomberg MRA, Siegbahn PEM. Reaction mechanism of apocarotenoid oxygenase (ACO): a DFT study. Chemistry (Weinheim An Der Bergstrasse, Germany). 14: 2264-2276. PMID 18181127 DOI: 10.1002/chem.200701344 |
0.314 |
|
2007 |
Blomberg LM, Blomberg MRA, Siegbahn PEM. Theoretical study of the reduction of nitric oxide in an A-type flavoprotein Journal of Biological Inorganic Chemistry. 12: 79-89. PMID 16957917 DOI: 10.1007/s00775-006-0166-x |
0.338 |
|
2006 |
Bassan A, Borowski T, Schofield CJ, Siegbahn PE. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study. Chemistry (Weinheim An Der Bergstrasse, Germany). 12: 8835-46. PMID 16933342 DOI: 10.1002/Chem.200501459 |
0.323 |
|
2006 |
Blomberg LM, Blomberg MR, Siegbahn PE. A theoretical study on nitric oxide reductase activity in a ba(3)-type heme-copper oxidase. Biochimica Et Biophysica Acta. 1757: 31-46. PMID 16375849 DOI: 10.1016/j.bbabio.2005.11.004 |
0.325 |
|
2005 |
Borowski T, Bassan A, Richards NG, Siegbahn PE. Catalytic Reaction Mechanism of Oxalate Oxidase (Germin). A Hybrid DFT Study. Journal of Chemical Theory and Computation. 1: 686-93. PMID 26641691 DOI: 10.1021/ct050041r |
0.314 |
|
2005 |
Borowski T, Georgiev V, Siegbahn PE. Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT study. Journal of the American Chemical Society. 127: 17303-14. PMID 16332080 DOI: 10.1021/ja054433j |
0.302 |
|
2004 |
Blomberg LM, Blomberg MRA, Siegbahn PEM. A theoretical study of myoglobin working as a nitric oxide scavenger Journal of Biological Inorganic Chemistry. 9: 923-935. PMID 15452775 DOI: 10.1007/s00775-004-0585-5 |
0.311 |
|
2004 |
Siegbahn PEM. The catalytic cycle of catechol oxidase Journal of Biological Inorganic Chemistry. 9: 577-590. PMID 15185133 |
0.312 |
|
2004 |
Borowski T, Bassan A, Siegbahn PEM. A Hybrid Density Functional Study of O-O Bond Cleavage and Phenyl Ring Hydroxylation for a Biomimetic Non-Heme Iron Complex Inorganic Chemistry. 43: 3277-3291. PMID 15132638 DOI: 10.1021/ic035395c |
0.306 |
|
2004 |
Prabhakar R, Siegbahn PEM. A Theoretical Study of the Mechanism for the Biogenesis of Cofactor Topaquinone in Copper Amine Oxidases Journal of the American Chemical Society. 126: 3996-4006. PMID 15038754 DOI: 10.1021/Ja034721K |
0.622 |
|
2004 |
Prabhakar R, Siegbahn PEM, Minaev BF, Ågren H. Spin transition during H2O2 formation in the oxidative half-reaction of copper amine oxidases Journal of Physical Chemistry B. 108: 13882-13892. DOI: 10.1021/Jp0478312 |
0.628 |
|
2003 |
Prabhakar R, Siegbahn PEM. A comparison of the mechanism for the reductive half-reaction between pea seedling and other copper amine oxidases (CAOs) Journal of Computational Chemistry. 24: 1599-1609. PMID 12926004 DOI: 10.1002/Jcc.10282 |
0.64 |
|
2003 |
Blomberg MRA, Siegbahn PEM, Wikström M. Metal-bridging mechanism for O-O bond cleavage in cytochrome c oxidase Inorganic Chemistry. 42: 5231-5243. PMID 12924894 DOI: 10.1021/ic034060s |
0.303 |
|
2003 |
Himo F, Siegbahn PEM. Quantum chemical studies of radical-containing enzymes Chemical Reviews. 103: 2421-2456. PMID 12797836 DOI: 10.1021/Cr020436S |
0.652 |
|
2003 |
Prabhakar R, Siegbahn PEM, Minaev BF. A theoretical study of the dioxygen activation by glucose oxidase and copper amine oxidase Biochimica Et Biophysica Acta - Proteins and Proteomics. 1647: 173-178. PMID 12686129 DOI: 10.1016/S1570-9639(03)00090-6 |
0.615 |
|
2003 |
Prabhakar R, Siegbahn PEM. Theoretical Study of the Mechanism for the Oxidative Half-Reaction of Copper Amine Oxidase (CAO) Journal of Physical Chemistry B. 107: 3944-3953. DOI: 10.1021/Jp0272062 |
0.654 |
|
2002 |
Himo F, Noodleman L, Blomberg MRA, Siegbahn PEM. Relative acidities of ortho-substituted phenols, as models for modified tyrosines in proteins Journal of Physical Chemistry A. 106: 8757-8761. DOI: 10.1021/Jp025646N |
0.637 |
|
2002 |
Prabhakar R, Siegbahn PEM, Minaev BF, Ågren H. Activation of triplet dioxygen by glucose oxidase: Spin-orbit coupling in the superoxide ion Journal of Physical Chemistry B. 106: 3742-3750. DOI: 10.1021/Jp014013Q |
0.577 |
|
2001 |
Himo F, Siegbahn PEM. Catalytic mechanism of glyoxalase I: A theoretical study Journal of the American Chemical Society. 123: 10280-10289. PMID 11603978 DOI: 10.1021/Ja010715H |
0.682 |
|
2001 |
Cho KB, Himo F, Gräslund A, Siegbahn PEM. The substrate reaction mechanism of class III anaerobic ribonucleotide reductase Journal of Physical Chemistry B. 105: 6445-6452. DOI: 10.1021/Jp0107614 |
0.681 |
|
2001 |
Prabhakar R, Siegbahn PEM. A theoretical study of the mechanism for the reductive half-reaction of pea seedling amine oxidase (PSAO) Journal of Physical Chemistry B. 105: 4400-4408. DOI: 10.1021/Jp003343S |
0.635 |
|
2000 |
Himo F, Siegbahn PEM. Very Stable Ribonucleotide Substrate Radical Relevant for Class I Ribonucleotide Reductase The Journal of Physical Chemistry B. 104: 7502-7509. DOI: 10.1021/Jp000752F |
0.665 |
|
2000 |
Himo F, Eriksson LA, Maseras F, Siegbahn PEM. Catalytic mechanism of galactose oxidase: A theoretical study Journal of the American Chemical Society. 122: 8031-8036. DOI: 10.1021/Ja994527R |
0.682 |
|
2000 |
Prabhakar R, Blomberg MRA, Siegbahn PEM. A density functional theory study of a concerted mechanism for proton exchange between amino acid side chains and water Theoretical Chemistry Accounts. 104: 461-470. DOI: 10.1007/S002140000170 |
0.577 |
|
2000 |
Himo F, Eriksson LA, Blomberg MRA, Siegbahn PEM. Substituent effects on OH bond strength and hyperfine properties of phenol, as model for modified tyrosyl radicals in proteins International Journal of Quantum Chemistry. 76: 714-723. DOI: 10.1002/(Sici)1097-461X(2000)76:6<714::Aid-Qua4>3.0.Co;2-F |
0.669 |
|
1998 |
Siegbahn PEM, Eriksson L, Himo F, Pavlov M. Hydrogen Atom Transfer in Ribonucleotide Reductase (RNR) The Journal of Physical Chemistry B. 102: 10622-10629. DOI: 10.1021/Jp9827835 |
0.664 |
|
1997 |
Eriksson LA, Himo F, Siegbahn PEM, Babcock GT. Electronic and magnetic properties of neutral and charged quinone and plastoquinone radicals Journal of Physical Chemistry A. 101: 9496-9504. DOI: 10.1021/Jp9720451 |
0.671 |
|
1997 |
Blomberg MRA, Siegbahn PEM, Styring S, Babcock GT, Åkermark B, Korall P. A quantum chemical study of hydrogen abstraction from manganese-coordinated water by a tyrosyl radical: A model for water oxidation in photosystem II Journal of the American Chemical Society. 119: 8285-8292. DOI: 10.1021/Ja9642323 |
0.322 |
|
1996 |
Triguero L, Wahlgren U, Pettersson LGM, Siegbahn P. DFT and MO calculations of atomic and molecular chemisorption energies on surface cluster models Theoretical Chemistry Accounts. 94: 297-310. DOI: 10.1007/Bf00213714 |
0.351 |
|
1991 |
Blomberg MRA, Siegbahn PEM, Lee TJ, Rendell AP, Rice JE. Binding energies and bond distances of Ni(CO)x,x=1–4: An application of coupled‐cluster theory The Journal of Chemical Physics. 95: 5898-5905. DOI: 10.1063/1.461611 |
0.426 |
|
1991 |
Swang O, Faegri K, Gropen O, Wahlgren U, Siegbahn P. A theoretical study of the chemisorption of methane on a Ni(100) surface Chemical Physics. 156: 379-386. DOI: 10.1016/0301-0104(91)89006-V |
0.34 |
|
1991 |
Wahlgren U, Siegbahn P, Almlöf J. Oxygen chemisorption on metal surfaces using the cluster model: Basis set effects Theoretical Chemistry Accounts. 79: 413-418. DOI: 10.1007/Bf01112568 |
0.609 |
|
1990 |
Pettersson LGM, Åkeby H, Siegbahn P, Wahlgren U. The effects of core (3d) correlation on chemisorption Journal of Chemical Physics. 93: 4954-4957. DOI: 10.1063/1.458632 |
0.305 |
|
1989 |
Jorgensen UG, Almlöf J, Siegbahn PEM. Complete active space self-consistent field calculations of the vibrational band strengths for C3 The Astrophysical Journal. 343: 554-561. DOI: 10.1086/167729 |
0.549 |
|
1989 |
Panas I, Siegbahn P, Wahlgren U. The mechanism for the O2 dissociation on Ni(100) Journal of Chemical Physics. 90: 6791-6801. DOI: 10.1063/1.456298 |
0.371 |
|
1988 |
Schüle J, Siegbahn P, Wahlgren U. A theoretical study of methyl chemisorption on Ni(111) Journal of Chemical Physics. 89: 6982-6988. DOI: 10.1063/1.455324 |
0.31 |
|
1988 |
Bowen‐Jenkins P, Pettersson LGM, Siegbahn P, Almlöf J, Taylor PR. On the bond distance in methane Journal of Chemical Physics. 88: 6977-6981. DOI: 10.1063/1.454395 |
0.698 |
|
1988 |
Blomberg M, Brandemark U, Johansson J, Siegbahn P, Wennerberg J. The vibrational frequencies, the dissociation energy, and the electron affinity of nickel carbonyl Journal of Chemical Physics. 88: 4324-4333. DOI: 10.1063/1.453792 |
0.333 |
|
1987 |
Mattsson A, Panas I, Siegbahn P, Wahlgren U, Akeby H. Model studies of the chemisorption of hydrogen and oxygen on Cu(100). Physical Review B. 36: 7389-7401. PMID 9942503 DOI: 10.1103/Physrevb.36.7389 |
0.359 |
|
1985 |
Jo UG, rgensen, Almlöf J, Gustafsson B, Larsson M, Siegbahn P. CASSCF and CCI calculations of the vibrational band strengths of HCN Journal of Chemical Physics. 83: 3034-3041. DOI: 10.1063/1.449206 |
0.557 |
|
1985 |
Baeckvall JE, Bjoerkman EE, Pettersson L, Siegbahn P. A theoretical study on the reactivity of nucleophiles coordinated to palladium Journal of the American Chemical Society. 107: 7265-7267. DOI: 10.1021/Ja00311A006 |
0.329 |
|
1985 |
Widmark PO, Roos BO, Siegbahn PEM. Singlet and triplet potential surfaces for the nickel-ethylene [Ni(C2H4)] complex. A CASSCF-CI study The Journal of Physical Chemistry. 89: 2180-2186. DOI: 10.1021/J100257A009 |
0.42 |
|
1984 |
Lüthi HP, Siegbahn PEM, Almlöf J, Fægri K, Heiberg A. The effect of electron correlation on the metal—ligand bond in ferrocene Chemical Physics Letters. 111: 1-6. DOI: 10.1016/0009-2614(84)80427-3 |
0.55 |
|
1983 |
Hotokka M, Roos B, Siegbahn P. CASSCF study of reaction of singlet molecular oxygen with ethylene. Reaction paths with C2v and Cs symmetries Journal of the American Chemical Society. 105: 5263-5269. DOI: 10.1021/Ja00354A014 |
0.437 |
|
1983 |
Larsson S, Roos BO, Siegbahn PI. AB initio SCF study of the electronic structure and spectrum of CuF2 Chemical Physics Letters. 96: 436-441. DOI: 10.1016/0009-2614(83)80727-1 |
0.421 |
|
1983 |
Habitz P, Bagus P, Siegbahn P, Clementi E. Electronic correlation contribution to the three-body potentials for water trimers International Journal of Quantum Chemistry. 23: 1803-1806. DOI: 10.1002/Qua.560230509 |
0.429 |
|
1983 |
Blomberg M, Brandemark U, Pettersson L, Siegbahn P. Contracted CI calculations of models for catalytic reactions involving transition metals International Journal of Quantum Chemistry. 23: 855-863. DOI: 10.1002/Qua.560230309 |
0.35 |
|
1983 |
HOTOKKA M, ROOS B, SIEGBAHN P. ChemInform Abstract: CASSCF STUDY OF REACTION OF SINGLET MOLECULAR OXYGEN WITH ETHYLENE. REACTION PATHS WITH C2V AND CS SYMMETRIES Chemischer Informationsdienst. 14. DOI: 10.1002/chin.198346116 |
0.439 |
|
1982 |
Blomberg MR, Siegbahn PE, Roos BO. A theoretical study of NiH Optical spectrum and potential curves Molecular Physics. 47: 127-143. DOI: 10.1080/00268978200100092 |
0.439 |
|
1982 |
Nelin C, Roos BO, Sadlej AJ, Siegbahn PEM. Complete active space (CAS) SCF and externally contracted multireference CI studies of atomic and molecular properties. Static dipole polarizabilities of F, F−, and Ne The Journal of Chemical Physics. 77: 3607-3614. DOI: 10.1063/1.444263 |
0.41 |
|
1982 |
Kraemer WP, Roos BO, Siegbahn PE. MCSCF and multi-reference CI calculations of the potential energy surface for ground state H2O Chemical Physics. 69: 305-321. DOI: 10.1016/0301-0104(82)88070-1 |
0.439 |
|
1982 |
Roos BO, Linse P, Siegbahn PE, Blomberg MR. A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction Chemical Physics. 66: 197-207. DOI: 10.1016/0301-0104(82)88019-1 |
0.449 |
|
1981 |
Jönsson B, Roos BO, Taylor PR, Siegbahn PEM. MCSCF–CI calculations of the ground state potential curves of LiH, Li2, and F2 The Journal of Chemical Physics. 74: 4566-4575. DOI: 10.1063/1.441645 |
0.631 |
|
1981 |
Siegbahn PEM, Almlöf J, Heiberg A, Roos BO. The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule The Journal of Chemical Physics. 74: 2384-2396. DOI: 10.1063/1.441359 |
0.64 |
|
1980 |
Siegbahn P, Heiberg A, Roos B, Levy B. A Comparison of the Super-CI and the Newton-Raphson Scheme in the Complete Active Space SCF Method Physica Scripta. 21: 323-327. DOI: 10.1088/0031-8949/21/3-4/014 |
0.481 |
|
1980 |
Roos BO, Siegbahn PEM. A directCI method with a multiconfigurational reference state International Journal of Quantum Chemistry. 17: 485-500. DOI: 10.1002/Qua.560170310 |
0.435 |
|
1979 |
Kowalewski J, Laaksonen A, Roos B, Siegbahn P. Finite perturbation–configuration interaction calculations of nuclear spin–spin coupling constants. I. The first row hydrides and the hydrogen molecule Journal of Chemical Physics. 71: 2896-2902. DOI: 10.1063/1.438691 |
0.337 |
|
1978 |
Almöf J, Roos B, Siegbahn P. An MC-SCF computation scheme for large scale calculations on polyatomic systems Computational Biology and Chemistry. 2: 89-94. DOI: 10.1016/0097-8485(78)87007-7 |
0.503 |
|
1977 |
Roos BO, Siegbahn PM. Methylene singlet-triplet separation. An ab initio configuration interaction study Journal of the American Chemical Society. 99: 7716-7718. DOI: 10.1021/Ja00465A057 |
0.415 |
|
1977 |
Niblaeus K, Roos BO, Siegbahn PE. UHF-CI studies of energy barriers for the abstraction and exchange reactions in the system H + CH4 Chemical Physics. 26: 59-68. DOI: 10.1016/0301-0104(77)87092-4 |
0.434 |
|
1975 |
Siegbahn P, Schaefer HF. Potential energy surfaces for H + Li2 → LiH + Li ground state surface from large scale configuration interaction Journal of Chemical Physics. 62: 3488-3495. DOI: 10.1063/1.430985 |
0.312 |
|
1973 |
Dejardin P, Kochanski E, Veillard A, Roos B, Siegbahn P. MC–SCF and CI calculations for the ammonia molecule Journal of Chemical Physics. 59: 5546-5553. DOI: 10.1063/1.1679905 |
0.316 |
|
1973 |
Kochanski E, Roos B, Siegbahn P, Wood MH. Ab initio SCF-CI studies of the intermolecular interaction between two hydrogen molecules near the Van der Waals minimum Theoretical Chemistry Accounts. 32: 151-159. DOI: 10.1007/Bf00528487 |
0.311 |
|
1973 |
Fischer-Hjalmars I, Siegbahn P. A comparative ab initio study of ethylene, acetylene and benzene Theoretica Chimica Acta. 31: 1-17. DOI: 10.1007/Bf00527435 |
0.688 |
|
1972 |
Gelius U, Roos B, Siegbahn P. MO-SCF-LCAO studies of sulphur compounds Theoretica Chimica Acta. 27: 171-185. DOI: 10.1007/Bf01046363 |
0.543 |
|
1971 |
Siegbahn P. Ab initio calculations on furan with a new computer program Chemical Physics Letters. 8: 245-250. DOI: 10.1016/0009-2614(71)85001-7 |
0.302 |
|
1971 |
Gelius U, Roos B, Siegbahn P. MO-SCF-LCAO studies of sulphur compounds Theoretica Chimica Acta. 23: 59-66. DOI: 10.1007/Bf00530200 |
0.441 |
|
1970 |
Roos B, Siegbahn P. Gaussian basis sets for the first and second row atoms Theoretica Chimica Acta. 17: 209-215. DOI: 10.1007/Bf00527179 |
0.471 |
|
1970 |
Roos B, Siegbahn P. Polarization functions for first and second row atoms in Gaussian type MO-SCF calculations Theoretica Chimica Acta. 17: 199-208. DOI: 10.1007/Bf00527178 |
0.508 |
|
Show low-probability matches. |