Steven R. Grossman - Publications

Affiliations: 
Virginia Commonwealth University School of Medicine, Richmond, VA 

79 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Zhang T, Li S, Tan YA, Chen X, Zhang C, Chen Z, Mishra B, Na JH, Choi S, Shin SJ, Damle P, Chougoni KK, Grossman SR, Wang D, Jiang X, et al. Bcl-xL is translocated to the nucleus via CtBP2 to epigenetically promote metastasis. Cancer Letters. 217240. PMID 39265800 DOI: 10.1016/j.canlet.2024.217240  0.308
2023 Chougoni KK, Park H, Damle PK, Mason T, Cheng B, Dcona MM, Szomju B, Dozmorov MG, Idowu MO, Grossman SR. Coordinate transcriptional regulation of ErbB2/3 by C-terminal binding protein 2 signals sensitivity to ErbB2 inhibition in pancreatic adenocarcinoma. Oncogenesis. 12: 53. PMID 37949862 DOI: 10.1038/s41389-023-00498-8  0.769
2023 Dcona MM, Chougoni KK, Dcona DT, West JL, Singh SJ, Ellis KC, Grossman SR. Combined targeting of NAD biosynthesis and the NAD-dependent transcription factor C-terminal Binding Protein as a promising novel therapy for pancreatic cancer. Cancer Research Communications. PMID 37707363 DOI: 10.1158/2767-9764.CRC-22-0521  0.389
2023 Zhang T, Li S, Tan YA, Na JH, Chen Z, Damle P, Chen X, Choi S, Mishra B, Wang D, Grossman SR, Jiang X, Li Y, Chen YT, Xiang JZ, et al. Bcl-xL is translocated to the nucleus via CtBP2 to epigenetically promote metastasis. Biorxiv : the Preprint Server For Biology. PMID 37163116 DOI: 10.1101/2023.04.26.538373  0.318
2020 Jecrois AM, Dcona MM, Deng X, Bandyopadhyay D, Grossman SR, Schiffer CA, Royer WE. Cryo-EM Structure of CtBP2 Confirms Tetrameric Architecture. Structure (London, England : 1993). PMID 33264605 DOI: 10.1016/j.str.2020.11.008  0.365
2020 Ding B, Yuan F, Damle PK, Litovchick L, Drapkin R, Grossman SR. CtBP determines ovarian cancer cell fate through repression of death receptors. Cell Death & Disease. 11: 286. PMID 32332713 DOI: 10.1038/S41419-020-2455-7  0.446
2020 Oduah EI, Grossman SR. Harnessing the vulnerabilities of p53 mutants in lung cancer - Focusing on the proteasome: a new trick for an old foe? Cancer Biology & Therapy. 1-10. PMID 32041464 DOI: 10.1080/15384047.2019.1702403  0.379
2020 Adashek JJ, Szeto C, Sanborn JZ, Reddy SK, Toor AA, Danielides S, Smith S, Grossman SR, Clevenger CV, Faber A, Ferreira-Gonzalez A, Boikos SA. Targetable immune checkpoint molecules may be significantly differentially expressed in minority ethnicities. Journal of Clinical Oncology. 38: 3576-3576. DOI: 10.1200/Jco.2020.38.15_Suppl.3576  0.314
2020 Yazbeck V, McConnell I, Harris E, Lownick J, Sindel A, Sabo R, Chesney A, Lai G, Mauro A, Cain C, Salloum F, Grant S, Zweit J, Windle J, Grossman S. Abstract B41: Modeling marginal zone lymphomagenesis Cancer Research. 80. DOI: 10.1158/1538-7445.Camodels2020-B41  0.351
2019 Ding B, Haidurov A, Chawla A, Parmigiani A, van de Kamp G, Dalina A, Yuan F, Lee JH, Chumakov PM, Grossman SR, Budanov AV. p53-inducible SESTRINs might play opposite roles in the regulation of early and late stages of lung carcinogenesis. Oncotarget. 10: 6997-7009. PMID 31857853 DOI: 10.18632/Oncotarget.27367  0.431
2019 Dcona MM, Damle PK, Zarate-Perez F, Morris BL, Nawaz Z, Dennis MJ, Deng X, Korwar S, Singh S, Ellis KC, Royer WE, Bandyopadhyay D, Escalante C, Grossman SR. Active-site tryptophan, the target of anti-neoplastic CtBP inhibitors, mediates inhibitor disruption of CtBP oligomerization and transcription coregulatory activities. Molecular Pharmacology. PMID 31036695 DOI: 10.1124/Mol.118.114363  0.779
2019 Akande OE, Damle PK, Pop M, Sherman NE, Szomju BB, Litovchick LV, Grossman SR. DBC1 Regulates p53 Stability via Inhibition of CBP-Dependent p53 Polyubiquitination. Cell Reports. 26: 3323-3335.e4. PMID 30893604 DOI: 10.1016/J.Celrep.2019.02.076  0.428
2019 Yazbeck V, McConnell I, Lownik J, Sindel A, Sabo R, Chesney A, Lai G, Mauro A, Zweit J, Martin R, Conrad D, Grant S, Windle J, Grossman S. Abstract 4634: Mouse model for nodal marginal zone lymphoma Cancer Research. 79: 4634-4634. DOI: 10.1158/1538-7445.Am2019-4634  0.351
2019 Royer WE, Bellesis AG, Jecrois AM, Hilbert BJ, Dcona MM, Grossman SR, Schiffer CA. Tetrameric Assembly of the Oncogenic C-Terminal Binding Proteins Biophysical Journal. 116: 62a. DOI: 10.1016/J.Bpj.2018.11.380  0.757
2018 Chawla AT, Cororaton AD, Idowu MO, Damle PK, Szomju B, Ellis KC, Patel BB, Grossman SR. An intestinal stem cell niche in mutated neoplasia targetable by CtBP inhibition. Oncotarget. 9: 32408-32418. PMID 30197752 DOI: 10.18632/Oncotarget.25784  0.398
2018 Mei L, Smith SC, Faber AC, Trent J, Grossman SR, Stratakis CA, Boikos SA. Gastrointestinal Stromal Tumors: The GIST of Precision Medicine. Trends in Cancer. 4: 74-91. PMID 29413424 DOI: 10.1016/J.Trecan.2017.11.006  0.31
2018 Gopie P, Rosca OC, Chawla A, Mei L, Almenara J, Glass E, Dozmorov M, Grossman SR, Idowu M, Boikos SA. Risk stratification of gastrointestinal stromal tumors by CtBP2 and CD44 analysis. Journal of Clinical Oncology. 36: 48-48. DOI: 10.1200/Jco.2018.36.4_Suppl.48  0.323
2018 Joshi PJ, Chawla A, Memari P, Stansfield J, Idowu M, Sima A, Grossman SR. Role of C terminal binding proteins (CtBP) in pancreatic adenocarcinoma (PDAC). Journal of Clinical Oncology. 36: 320-320. DOI: 10.1200/Jco.2018.36.4_Suppl.320  0.354
2018 Sindel A, McConnell I, Windle J, Sabo R, Chesney A, Lai G, Mauro A, Al-Juhaishi T, Rahmani M, Zweit J, Grant S, Grossman S, Yazbeck VY. Role of the PI3K Pathway in the Pathogenesis of Marginal Zone Lymphoma Blood. 132: 4125-4125. DOI: 10.1182/Blood-2018-99-111284  0.345
2018 Boothello RS, Patel NJ, Damle PK, Sharon C, Chougoni KK, Desai UR, Grossman SR, Patel BB. Abstract 3460: p38-p14ARF-CtBP2 axis as a novel regulator of CSC phenotype and tumor cell dormancy Cancer Research. 78: 3460-3460. DOI: 10.1158/1538-7445.Am2018-3460  0.471
2017 Gopie P, Mei L, Faber AC, Grossman SR, Smith SC, Boikos S. Classification of gastrointestinal stromal tumor syndromes. Endocrine-Related Cancer. PMID 29170162 DOI: 10.1530/Erc-17-0329  0.316
2017 Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biology & Therapy. 0. PMID 28532298 DOI: 10.1080/15384047.2017.1323586  0.774
2017 Vaughan CA, Singh S, Grossman SR, Windle B, P Deb S, Deb S. Gain-of-function p53 activates multiple signaling pathways to induce oncogenicity in lung cancer cells. Molecular Oncology. PMID 28423230 DOI: 10.1002/1878-0261.12068  0.458
2017 Sumner ET, Chawla AT, Cororaton AD, Koblinski JE, Kovi RC, Love IM, Szomju BB, Korwar S, Ellis KC, Grossman SR. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia. Oncogene. PMID 28414304 DOI: 10.1038/Onc.2017.106  0.461
2017 Singh S, Vaughan CA, Frum RA, Grossman SR, Deb S, Deb SP. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. The Journal of Clinical Investigation. PMID 28394262 DOI: 10.1172/Jci87724  0.412
2017 Chawla AT, Cororaton A, Seth R, Szomju B, Sumner ET, Grossman SR. Abstract 3901: Therapeutic targeting of C-terminal binding protein: a key dependency for polyposis and cancer stem cell activity inAPCmutant neoplasia Cancer Research. 77: 3901-3901. DOI: 10.1158/1538-7445.Am2017-3901  0.462
2017 Dcona MM, Morris BL, Damle PK, Nawaz Z, Perez FZ, Dennis MJ, Singh SJ, Royer WE, Ellis KC, Grossman SR. Abstract 3204: Tryptophan 318/324, the target of C-terminal binding protein (CtBP) inhibitors, plays a critical role in CtBP enzymatic activity, oligomerization and transcriptional coregulation Cancer Research. 77: 3204-3204. DOI: 10.1158/1538-7445.Am2017-3204  0.773
2017 Akande OE, Damle PK, Sherman NE, Grossman SR. Abstract 2571: DBC1, a novel CBP-interacting protein, promotes p53 stability by regulating CBP-dependent p53 polyubiquitination Cancer Research. 77: 2571-2571. DOI: 10.1158/1538-7445.Am2017-2571  0.47
2016 Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM, Hilbert BJ, Royer WE, Kellogg GE, Grossman SR, Ellis KC. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorganic & Medicinal Chemistry. PMID 27156192 DOI: 10.1016/J.Bmc.2016.04.037  0.43
2016 Frum RA, Love IM, Damle P, Mukhopadhyay ND, Palit Deb S, Deb S, Grossman SR. Constitutive Activation of DNA Damage Checkpoint Signaling Contributes to Mutant p53 Accumulation via Modulation of p53 Ubiquitination. Molecular Cancer Research : McR. PMID 26965143 DOI: 10.1158/1541-7786.Mcr-15-0363  0.373
2016 Vaughan CA, Pearsall I, Singh S, Windle B, Deb SP, Grossman SR, Yeudall WA, Deb S. Addiction of lung cancer cells to GOF p53 is promoted by up-regulation of epidermal growth factor receptor through multiple contacts with p53 transactivation domain and promoter. Oncotarget. PMID 26820293 DOI: 10.18632/Oncotarget.6998  0.367
2016 Sumner ET, Korwar S, Morris BL, Dcona MM, Hilbert BJ, Royer WE, Ellis KC, Grossman S. Abstract 2003: C-terminal binding protein (CtBP): An emerging oncogene and small molecule drug target in solid tumors Cancer Research. 76: 2003-2003. DOI: 10.1158/1538-7445.Am2016-2003  0.782
2015 Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR, Royer WE. Structure-guided design of a high affinity inhibitor to human CtBP. Acs Chemical Biology. 10: 1118-27. PMID 25636004 DOI: 10.1021/Cb500820B  0.414
2015 Morris BL, Damle P, Nawaz Z, Grossman SR. Abstract 2199: Evaluation of critical residues in the C-terminal binding protein (CtBP) dehydrogenase domain contributing to substrate binding, catalysis, and oncogenic activity Cancer Research. 75: 2199-2199. DOI: 10.1158/1538-7445.Am2015-2199  0.492
2015 Sumner ET, Grossman SR. Abstract 2052: The transcriptional co-regulator and emerging cancer drug target C-terminal binding protein (CtBP) is a transforming oncogene Cancer Research. 75: 2052-2052. DOI: 10.1158/1538-7445.Am2015-2052  0.5
2014 Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle (Georgetown, Tex.). 13: 3506-18. PMID 25483087 DOI: 10.4161/15384101.2014.958407  0.451
2014 Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, Das SK, Sarkar D, Fisher PB, Emdad L. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid. Cancer Research. 74: 6224-35. PMID 25205107 DOI: 10.1158/0008-5472.Can-14-0819  0.364
2014 Frum RA, Grossman SR. Mechanisms of mutant p53 stabilization in cancer. Sub-Cellular Biochemistry. 85: 187-97. PMID 25201195 DOI: 10.1007/978-94-017-9211-0_10  0.383
2014 Love IM, Grossman SR. NIAM's tangled web of growth control. Cell Cycle (Georgetown, Tex.). 13: 1660. PMID 24810596 DOI: 10.4161/Cc.29150  0.452
2014 Hilbert BJ, Grossman SR, Schiffer CA, Royer WE. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design. Febs Letters. 588: 1743-8. PMID 24657618 DOI: 10.1016/J.Febslet.2014.03.026  0.356
2014 Frum RA, Singh S, Vaughan C, Mukhopadhyay ND, Grossman SR, Windle B, Deb S, Deb SP. The human oncoprotein MDM2 induces replication stress eliciting early intra-S-phase checkpoint response and inhibition of DNA replication origin firing. Nucleic Acids Research. 42: 926-40. PMID 24163099 DOI: 10.1093/Nar/Gkt944  0.34
2014 Patel J, Baranwal S, Love IM, Patel NJ, Raqhibana A, Sharon C, Grossman SR, Patel BB. Su1993 C-Terminal Binding Protein is an Important Therapeutic Target for Colorectal Cancer to Selectively aim At Cancer Stem Cells by Regulating β-Catenin Signaling Gastroenterology. 146: S-516-S-517. DOI: 10.1016/S0016-5085(14)61872-2  0.403
2013 Love IM, Shi D, Grossman SR. p53 Ubiquitination and proteasomal degradation. Methods in Molecular Biology (Clifton, N.J.). 962: 63-73. PMID 23150437 DOI: 10.1007/978-1-62703-236-0_5  0.361
2012 Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP, Deb S. Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes & Cancer. 3: 491-502. PMID 23264849 DOI: 10.1177/1947601912462719  0.41
2012 Paliwal S, Ho N, Parker D, Grossman SR. CtBP2 Promotes Human Cancer Cell Migration by Transcriptional Activation of Tiam1. Genes & Cancer. 3: 481-90. PMID 23264848 DOI: 10.1177/1947601912463695  0.482
2012 Love IM, Grossman SR. It Takes 15 to Tango: Making Sense of the Many Ubiquitin Ligases of p53. Genes & Cancer. 3: 249-63. PMID 23150758 DOI: 10.1177/1947601912455198  0.373
2012 Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ. The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle (Georgetown, Tex.). 11: 2458-66. PMID 22713239 DOI: 10.4161/Cc.20864  0.35
2011 Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, Zamba KD, Cullen JJ, Meyerholz DK, Meyers S, Davis JN, Grossman SR, Henry MD, Quelle DE. The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Molecular Cancer Research : McR. 9: 867-77. PMID 21636682 DOI: 10.1158/1541-7786.Mcr-10-0475  0.38
2011 Straza MW, Kovi RC, Paliwal S, Rajeshkumar B, Hilbert B, Doughty T, Parker D, Royer W, Whalen GF, Lyle S, Schiffer CA, Grossman SR. Abstract 1633: C-terminal binding proteins are novel drug targets Cancer Research. 71: 1633-1633. DOI: 10.1158/1538-7445.Am2011-1633  0.461
2010 Straza MW, Paliwal S, Kovi RC, Rajeshkumar B, Trenh P, Parker D, Whalen GF, Lyle S, Schiffer CA, Grossman SR. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle (Georgetown, Tex.). 9: 3740-50. PMID 20930544 DOI: 10.4161/Cc.9.18.12936  0.469
2010 Shi D, Grossman SR. Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biology & Therapy. 10: 737-47. PMID 20930542 DOI: 10.4161/Cbt.10.8.13417  0.436
2010 Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. Mdm2 facilitates the association of p53 with the proteasome. Proceedings of the National Academy of Sciences of the United States of America. 107: 10038-43. PMID 20479273 DOI: 10.1073/Pnas.0911716107  0.42
2010 Kovi RC, Paliwal S, Pande S, Grossman SR. An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death and Differentiation. 17: 513-21. PMID 19798104 DOI: 10.1038/Cdd.2009.140  0.49
2009 Shi D, Pop MS, Kulikov R, Love IM, Kung AL, Kung A, Grossman SR. CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proceedings of the National Academy of Sciences of the United States of America. 106: 16275-80. PMID 19805293 DOI: 10.1073/Pnas.0904305106  0.386
2009 Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene. 28: 2492-501. PMID 19448667 DOI: 10.1038/Onc.2009.121  0.439
2008 Chen YW, Paliwal S, Draheim K, Grossman SR, Lewis BC. p19Arf inhibits the invasion of hepatocellular carcinoma cells by binding to C-terminal binding protein. Cancer Research. 68: 476-82. PMID 18199542 DOI: 10.1158/0008-5472.Can-07-1960  0.398
2007 Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB, Montrose M, Houghton J. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Research. 67: 10889-98. PMID 18006834 DOI: 10.1158/0008-5472.Can-07-2665  0.352
2007 Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Research. 67: 9322-9. PMID 17909040 DOI: 10.1158/0008-5472.Can-07-1743  0.489
2007 Kaur M, Pop M, Shi D, Brignone C, Grossman SR. hHR23B is required for genotoxic-specific activation of p53 and apoptosis. Oncogene. 26: 1231-7. PMID 16924240 DOI: 10.1038/Sj.Onc.1209865  0.346
2006 Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. The Journal of Biological Chemistry. 281: 24304-13. PMID 16803902 DOI: 10.1074/Jbc.M602596200  0.312
2006 Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR. Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Molecular and Cellular Biology. 26: 2360-72. PMID 16508011 DOI: 10.1128/Mcb.26.6.2360-2372.2006  0.451
2005 Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, Kumamoto K, Wincovitch S, Garfield SH, McMenamin M, Nagashima M, Grossman SR, Appella E, Harris CC. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Molecular and Cellular Biology. 25: 6639-48. PMID 16024799 DOI: 10.1128/Mcb.25.15.6639-6648.2005  0.338
2004 Sui G, Affar EB, Shi Y, Brignone C, Wall NR, Yin P, Donohoe M, Luke MP, Calvo D, Grossman SR. Yin Yang 1 is a negative regulator of p53 Cell. 117: 859-872. PMID 15210108 DOI: 10.1016/J.Cell.2004.06.004  0.368
2004 Brignone C, Bradley KE, Kisselev AF, Grossman SR. A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. Oncogene. 23: 4121-9. PMID 15064742 DOI: 10.1038/Sj.Onc.1207540  0.393
2003 Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB, Maki CG. Physical and functional interactions between PML and MDM2. The Journal of Biological Chemistry. 278: 29288-97. PMID 12759344 DOI: 10.1074/Jbc.M212215200  0.435
2003 Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM. Polyubiquitination of p53 by a ubiquitin ligase activity of p300 Science. 300: 342-344. PMID 12690203 DOI: 10.1126/Science.1080386  0.37
2000 Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR, Gan J, DeCaprio JA, Adams PD, Kaelin WG. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Molecular and Cellular Biology. 20: 8889-902. PMID 11073989 DOI: 10.1128/Mcb.20.23.8889-8902.2000  0.5
2000 Wang L, Grossman SR, Kieff E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proceedings of the National Academy of Sciences of the United States of America. 97: 430-5. PMID 10618435 DOI: 10.1073/Pnas.97.1.430  0.427
1996 Grossman SR, Laimins LA. EBNA1 and E2: a new paradigm for origin-binding proteins? Trends in Microbiology. 4: 87-9. PMID 8868083 DOI: 10.1016/0966-842X(96)81520-4  0.579
1995 Johannsen E, Koh E, Mosialos G, Tong X, Kieff E, Grossman SR. Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. Journal of Virology. 69: 253-62. PMID 7983717 DOI: 10.1128/Jvi.69.1.253-262.1995  0.321
1995 Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein Jκ Journal of Virology. 69: 3108-3116. PMID 7707539 DOI: 10.1128/Jvi.69.5.3108-3116.1995  0.337
1994 Yalamanchili R, Tong X, Grossman S, Johannsen E, Mosialos G, Kieff E. Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology. 204: 634-41. PMID 7941331 DOI: 10.1006/Viro.1994.1578  0.31
1993 McIntyre MC, Frattini MG, Grossman SR, Laimins LA. Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. Journal of Virology. 67: 3142-50. PMID 8497045  0.72
1992 Hegde RS, Grossman SR, Laimins LA, Sigler PB. Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature. 359: 505-12. PMID 1328886 DOI: 10.1038/359505A0  0.544
1992 Prakash SS, Grossman SR, Pepinsky RB, Laimins LA, Androphy EJ. Amino acids necessary for DNA contact and dimerization imply novel motifs in the papillomavirus E2 trans-activator. Genes & Development. 6: 105-16. PMID 1309714  0.566
1991 Monini P, Grossman SR, Pepinsky B, Androphy EJ, Laimins LA. Cooperative binding of the E2 protein of bovine papillomavirus to adjacent E2-responsive sequences. Journal of Virology. 65: 2124-30. PMID 1848322  0.71
1989 Bedell MA, Jones KH, Grossman SR, Laimins LA. Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells Journal of Virology. 63: 1247-1255. PMID 2536832 DOI: 10.1128/Jvi.63.3.1247-1255.1989  0.736
1989 Grossman SR, Mora R, Laimins LA. Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector Journal of Virology. 63: 366-374. PMID 2535738  0.58
1988 Gius D, Grossman S, Bedell MA, Laimins LA. Inducible and constitutive enhancer domains in the noncoding region of human papillomavirus type 18 Journal of Virology. 62: 665-672. PMID 2828662  0.747
Show low-probability matches.