Michele Vallisneri, Ph.D.

Affiliations: 
2005- Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 
Area:
Gravitational Physics/Theoretical Astrophysics
Website:
http://www.vallis.org/
Google:
"Michele Vallisneri"
Bio:

Vallisneri, Michele, Modeling and detecting gravitational waves from compact stellar objects. Dissertation (Ph.D.), California Institute of Technology (2002).

Mean distance: 11.32
 
SNBCP

Parents

Sign in to add mentor
Kip S. Thorne grad student 2002 Caltech
 (Modeling and detecting gravitational waves from compact stellar objects.)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Arzoumanian Z, Baker PT, Blumer H, et al. (2021) Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset. Physical Review Letters. 127: 251302
Chua AJK, Vallisneri M. (2020) Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference. Physical Review Letters. 124: 041102
Arzoumanian Z, Baker PT, Brazier A, et al. (2020) Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set The Astrophysical Journal. 900: 102
Vallisneri M, Taylor SR, Simon J, et al. (2020) Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays The Astrophysical Journal. 893: 112
Hazboun JS, Simon J, Taylor SR, et al. (2020) The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics The Astrophysical Journal. 890: 108
Aggarwal K, Arzoumanian Z, Baker PT, et al. (2020) The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory The Astrophysical Journal. 889: 38
Bertiger W, Bar-Sever Y, Dorsey A, et al. (2020) GipsyX/RTGx, a new tool set for space geodetic operations and research Advances in Space Research. 66: 469-489
Barausse E, Berti E, Hertog T, et al. (2020) Prospects for fundamental physics with LISA General Relativity and Gravitation. 52
Chua AJK, Galley CR, Vallisneri M. (2019) Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference. Physical Review Letters. 122: 211101
Aggarwal K, Arzoumanian Z, Baker PT, et al. (2019) The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries The Astrophysical Journal. 880: 116
See more...