cached image

Michael Biehl

Affiliations: 
1988-1992 Physics Unviversity of Gießen, Germany 
 1992-2003 Theoretical Physics University of Würzburg, Würzburg, Bayern, Germany 
 2003- Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen, Groningen, Netherlands 
Area:
Statistical Physics, Machine Learning
Website:
http://www.cs.rug.nl/~biehl/
Google:
"Michael Biehl"
Bio:

http://hoogleraren.ub.rug.nl/?page=showPerson&type=hoogleraar&hoogleraar_id=555
http://www.rug.nl/staff/m.biehl/
http://www.cs.rug.nl/~biehl/bio.html
https://scholar.google.com/citations?user=493MsTwAAAAJ&hl=en

Mean distance: 13552
 

Parents

Sign in to add mentor
Wolfgang Kinzel grad student 1988-1992 Justus-Liebig-Universität Gießen
 (PhD completed in 1992)

Children

Sign in to add trainee
Otavio Cistolo Citton grad student RUG
Martin Ahr grad student 2002
Christoph Bunzmann grad student 2003
Florian Much grad student 2004 University of Wurzburg
Thorsten Volkmann grad student 2004 University of Wurzburg
Anarta Ghosh grad student 2007 RUG
Markus Walther grad student 2008 University of Wurzburg
Sebastian Weber grad student 2008 University of Wurzburg
Petra Schneider grad student 2006-2010 RUG
Aree Witoelar grad student 2006-2010 RUG
Kerstin Bunte grad student 2007-2011 RUG
Tina Geweniger grad student 2012 RUG
Dietlind Zühlke grad student 2012 RUG
Sven Haase grad student 2014 RUG
Gert-Jan de Vries grad student 2014 RUG
Ernest Mwebaze grad student 2009-2014 RUG
Deborah Mudali grad student 2016 RUG
Matthias Gay grad student 2017 RUG
Mandy Lange-Geisler grad student 2019 RUG
David Nebel grad student 2015-2020 RUG
Godliver Owomugisha grad student 2015-2020 RUG
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

van Veen R, Tamboli NRB, Lövdal S, et al. (2024) Subspace corrected relevance learning with application in neuroimaging. Artificial Intelligence in Medicine. 149: 102786
Htun HH, Biehl M, Petkov N. (2023) Survey of feature selection and extraction techniques for stock market prediction. Financial Innovation. 9: 26
van Veen R, Gurvits V, Kogan RV, et al. (2020) An application of generalized matrix learning vector quantization in neuroimaging. Computer Methods and Programs in Biomedicine. 197: 105708
Owomugisha G, Mugagga PKB, Melchert F, et al. (2020) A low-cost 3-D printed smartphone add-on spectrometer for diagnosis of crop diseases in field. The Compass. 331-332
Pfannschmidt L, Jakob J, Hinder F, et al. (2020) Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information Neurocomputing
Nolte A, Wang L, Bilicki M, et al. (2019) Galaxy classification: A machine learning analysis of GAMA catalogue data Neurocomputing. 342: 172-190
Melchert F, Bani G, Seiffert U, et al. (2019) Adaptive basis functions for prototype-based classification of functional data Neural Computing and Applications. 1-11
Straat M, Kaden M, Villmann T, et al. (2019) Learning vector quantization and relevances in complex coefficient space Neural Computing and Applications. 1-15
Straat M, Abadi F, Göpfert C, et al. (2018) Statistical Mechanics of On-Line Learning Under Concept Drift. Entropy (Basel, Switzerland). 20
Straat M, Abadi F, Göpfert C, et al. (2018) Statistical Mechanics of On-Line Learning Under Concept Drift Entropy. 20: 775
See more...