Year |
Citation |
Score |
2020 |
Qin H, Panzer MJ. Zwitterionic Copolymer-Supported Ionogel Electrolytes Featuring a Sodium Salt/Ionic Liquid Solution Chemistry of Materials. 32: 7951-7957. DOI: 10.1021/Acs.Chemmater.0C02820 |
0.319 |
|
2020 |
Clark A, Taylor ME, Panzer MJ, Cebe P. Interactions between ionic liquid and fully zwitterionic copolymers probed using thermal analysis Thermochimica Acta. 691: 178710. DOI: 10.1016/J.Tca.2020.178710 |
0.321 |
|
2019 |
Owyeung RE, Terse-Thakoor T, Rezaei Nejad H, Panzer MJ, Sonkusale SR. Highly Flexible Transistor Threads for All-Thread Based Integrated Circuits and Multiplexed Diagnostics. Acs Applied Materials & Interfaces. PMID 31381299 DOI: 10.1021/Acsami.9B09522 |
0.368 |
|
2019 |
Qin H, Owyeung RE, Sonkusale SR, Panzer MJ. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing Journal of Materials Chemistry C. 7: 601-608. DOI: 10.1039/C8Tc05918G |
0.36 |
|
2019 |
D’Angelo AJ, Panzer MJ. Design of Stretchable and Self-Healing Gel Electrolytes via Fully Zwitterionic Polymer Networks in Solvate Ionic Liquids for Li-Based Batteries Chemistry of Materials. 31: 2913-2922. DOI: 10.1021/Acs.Chemmater.9B00172 |
0.371 |
|
2018 |
Taylor ME, Panzer MJ. Fully-Zwitterionic Polymer-Supported Ionogel Electrolytes Featuring a Hydrophobic Ionic Liquid. The Journal of Physical Chemistry. B. PMID 30109930 DOI: 10.1021/Acs.Jpcb.8B05985 |
0.375 |
|
2018 |
D'Angelo AJ, Panzer MJ. Decoupling the Ionic Conductivity and Elastic Modulus of Gel Electrolytes: Fully Zwitterionic Copolymer Scaffolds in Lithium Salt/Ionic Liquid Solutions Advanced Energy Materials. 8: 1801646. DOI: 10.1002/Aenm.201801646 |
0.336 |
|
2017 |
D'Angelo AJ, Panzer MJ. Enhanced Lithium Ion Transport in Poly(Ethylene Glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways. The Journal of Physical Chemistry. B. PMID 28068086 DOI: 10.1021/Acs.Jpcb.6B10125 |
0.373 |
|
2016 |
Zhu C, Panzer MJ. Etching of electrodeposited Cu2O films using ammonia solution for photovoltaic applications. Physical Chemistry Chemical Physics : Pccp. PMID 26875697 DOI: 10.1039/C5Cp06385J |
0.449 |
|
2016 |
Lind F, Rebollar L, Bengani-Lutz P, Asatekin A, Panzer MJ. Zwitterion-Containing Ionogel Electrolytes Chemistry of Materials. 28: 8480-8483. DOI: 10.1021/Acs.Chemmater.6B04456 |
0.338 |
|
2016 |
Ameri SK, Singh PK, D'Angelo AJ, Panzer MJ, Sonkusale SR. Flexible 3D Graphene Transistors with Ionogel Dielectric for Low-Voltage Operation and High Current Carrying Capacity Advanced Electronic Materials. 2: 1500355. DOI: 10.1002/Aelm.201500355 |
0.355 |
|
2015 |
D'Angelo AJ, Grimes JJ, Panzer MJ. Deciphering Physical versus Chemical Contributions to the Ionic Conductivity of Functionalized Poly(methacrylate)-Based Ionogel Electrolytes. The Journal of Physical Chemistry. B. PMID 26528868 DOI: 10.1021/Acs.Jpcb.5B08250 |
0.394 |
|
2015 |
Zhu C, Panzer MJ. Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. Acs Applied Materials & Interfaces. 7: 5624-8. PMID 25741876 DOI: 10.1021/Acsami.5B00643 |
0.41 |
|
2015 |
Horowitz AI, Westerman K, Panzer MJ. Formulation influence on the sol–gel formation of silica-supported ionogels Journal of Sol-Gel Science and Technology. 1-6. DOI: 10.1007/S10971-015-3918-7 |
0.311 |
|
2014 |
Visentin AF, Dong T, Poli J, Panzer MJ. Rapid, microwave-assisted thermal polymerization of poly(ethylene glycol) diacrylate-supported ionogels Journal of Materials Chemistry A. 2: 7723-7726. DOI: 10.1039/C4Ta00907J |
0.37 |
|
2014 |
Zhu C, Panzer MJ. Seed layer-assisted chemical bath deposition of CuO films on ITO-coated glass substrates with tunable crystallinity and morphology Chemistry of Materials. 26: 2960-2966. DOI: 10.1021/Cm500762W |
0.43 |
|
2013 |
Osherov A, Zhu C, Panzer MJ. Influence of ITO electrode surface composition on the growth and optoelectronic properties of electrodeposited Cu2O thin films Journal of Physical Chemistry C. 117: 24937-24942. DOI: 10.1021/Jp409192P |
0.428 |
|
2013 |
Osherov A, Zhu C, Panzer MJ. Role of solution chemistry in determining the morphology and photoconductivity of electrodeposited cuprous oxide films Chemistry of Materials. 25: 692-698. DOI: 10.1021/Cm303287G |
0.432 |
|
2013 |
Zhu C, Osherov A, Panzer MJ. Surface chemistry of electrodeposited Cu2O films studied by XPS Electrochimica Acta. 111: 771-778. DOI: 10.1016/J.Electacta.2013.08.038 |
0.393 |
|
2012 |
Koylu D, Sarrafpour S, Zhang J, Ramjattan S, Panzer MJ, Thomas SW. Acene-doped polymer films: singlet oxygen dosimetry and protein sensing. Chemical Communications (Cambridge, England). 48: 9489-91. PMID 22899174 DOI: 10.1039/C2Cc34640K |
0.398 |
|
2012 |
Visentin AF, Panzer MJ. Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response. Acs Applied Materials & Interfaces. 4: 2836-9. PMID 22583832 DOI: 10.1021/Am300372N |
0.449 |
|
2012 |
Li Z, Tan S, Bozorg-Grayeli E, Kodama T, Asheghi M, Delgado G, Panzer M, Pokrovsky A, Wack D, Goodson KE. Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm. Nano Letters. 12: 3121-6. PMID 22563928 DOI: 10.1021/Nl300996R |
0.345 |
|
2012 |
Panzer MJ, Aidala KE, Bulović V. Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices. Nano Reviews. 3. PMID 22496953 DOI: 10.3402/Nano.V3I0.16144 |
0.475 |
|
2012 |
Horowitz AI, Panzer MJ. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications Journal of Materials Chemistry. 22: 16534-16539. DOI: 10.1039/C2Jm33496H |
0.419 |
|
2012 |
Kojic N, Panzer MJ, Leisk GG, Kojic M, Kaplan DL. Finite-Element Model of the Silk Electrogelation Process Biophysical Journal. 102: 592a. DOI: 10.1016/J.Bpj.2011.11.3227 |
0.327 |
|
2011 |
Wood V, Panzer MJ, Bozyigit D, Shirasaki Y, Rousseau I, Geyer S, Bawendi MG, Bulovi? V. Electroluminescence from nanoscale materials via field-driven ionization. Nano Letters. 11: 2927-32. PMID 21678932 DOI: 10.1021/Nl2013983 |
0.463 |
|
2011 |
Bozorg-Grayeli E, Li Z, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson KE. High temperature thermal properties of thin tantalum nitride films Applied Physics Letters. 99. DOI: 10.1063/1.3672098 |
0.359 |
|
2011 |
Aidala KE, Panzer MJ, Anikeeva PO, Halpert JE, Bawendi MG, Bulovi? V. Morphology of contact printed colloidal quantum dots in organic semiconductor films: Implications for QD-LEDs Physica Status Solidi (C) Current Topics in Solid State Physics. 8: 120-123. DOI: 10.1002/Pssc.201000667 |
0.41 |
|
2010 |
Panzer MJ, Aidala KE, Anikeeva PO, Halpert JE, Bawendi MG, Bulovi? V. Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films. Nano Letters. 10: 2421-6. PMID 20545311 DOI: 10.1021/Nl100375B |
0.407 |
|
2010 |
Wood V, Panzer MJ, Caruge JM, Halpert JE, Bawendi MG, Bulovi? V. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Letters. 10: 24-9. PMID 20028135 DOI: 10.1021/Nl902425G |
0.318 |
|
2010 |
Panzer MJ, Wood V, Geyer SM, Bawendi MG, Bulovic V. Tunable Infrared Emission From Printed Colloidal Quantum Dot/Polymer Composite Films on Flexible Substrates Journal of Display Technology. 6: 90-93. DOI: 10.1109/Jdt.2009.2034276 |
0.407 |
|
2009 |
Wood V, Panzer MJ, Halpert JE, Caruge JM, Bawendi MG, Bulovi? V. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. Acs Nano. 3: 3581-6. PMID 19886643 DOI: 10.1021/Nn901074R |
0.407 |
|
2009 |
Wood V, Halpert JE, Panzer MJ, Bawendi MG, Bulovi? V. Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. Nano Letters. 9: 2367-71. PMID 19397294 DOI: 10.1021/Nl900898T |
0.425 |
|
2009 |
Wood V, Panzer M, Caruge J, Halpert J, Bawendi M, Bulovic V. Colloidally-Synthesized Nanocrystal LEDs Using Metal Oxide Thin Films Energy. DOI: 10.1364/Energy.2009.Wc6 |
0.374 |
|
2009 |
Panzer MJ, Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V. Nanoscale Investigation of Collodial Quantum Dot/Organic Semiconductor Interfaces Energy. DOI: 10.1364/Energy.2009.Wc5 |
0.409 |
|
2009 |
Arango AC, Osedach TP, Panzer MJ, Bulovic V, Geyer SM, Oertel DC, Bawendi MG. High Open-Circuit Voltage in Heterojunction Photovoltaics Using Printed Colloidal Quantum Dots as a Photosensitive Layer Energy. DOI: 10.1364/Energy.2009.Thc9 |
0.427 |
|
2009 |
Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MG, Bulović V. Quantum Dot-Polymer Composites for Displays: Inkjet-Printed Quantum Dot-Polymer Composites for Full-Color AC-Driven Displays (Adv. Mater. 21/2009) Advanced Materials. 21: NA-NA. DOI: 10.1002/Adma.200990078 |
0.314 |
|
2009 |
Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MC, Bulović V. Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays Advanced Materials. 21: 2151-2155. DOI: 10.1002/Adma.200803256 |
0.332 |
|
2008 |
Panzer MJ, Frisbie CD. Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors Advanced Materials. 20: 3176-3180. DOI: 10.1002/Adma.200800617 |
0.618 |
|
2007 |
Kaake LG, Zou Y, Panzer MJ, Frisbie CD, Zhu XY. Vibrational spectroscopy reveals electrostatic and electrochemical doping in organic thin film transistors gated with a polymer electrolyte dielectric. Journal of the American Chemical Society. 129: 7824-30. PMID 17539635 DOI: 10.1021/ja070615x |
0.616 |
|
2007 |
Panzer MJ, Frisbie CD. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Journal of the American Chemical Society. 129: 6599-607. PMID 17472381 DOI: 10.1021/Ja0708767 |
0.659 |
|
2007 |
Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD. Ion gel gated polymer thin-film transistors. Journal of the American Chemical Society. 129: 4532-3. PMID 17381097 DOI: 10.1021/Ja070875E |
0.611 |
|
2006 |
Panzer MJ, Frisbie CD. High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric Applied Physics Letters. 88. DOI: 10.1063/1.2204846 |
0.642 |
|
2006 |
Panzer MJ, Frisbie CD. High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection Advanced Functional Materials. 16: 1051-1056. DOI: 10.1002/Adfm.200600111 |
0.619 |
|
2005 |
Panzer MJ, Frisbie CD. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. Journal of the American Chemical Society. 127: 6960-1. PMID 15884933 DOI: 10.1021/Ja051579+ |
0.671 |
|
2005 |
Newman CR, Chesterfield RJ, Panzer MJ, Frisbie CD. High mobility top-gated pentacene thin-film transistors Journal of Applied Physics. 98. DOI: 10.1063/1.2076429 |
0.663 |
|
2005 |
Panzer MJ, Newman CR, Frisbie CD. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric Applied Physics Letters. 86: 1-3. DOI: 10.1063/1.1880434 |
0.727 |
|
Show low-probability matches. |