Year |
Citation |
Score |
2021 |
Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Frontiers in Cellular and Infection Microbiology. 11: 693051. PMID 34178728 DOI: 10.3389/fcimb.2021.693051 |
0.34 |
|
2020 |
Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Infection. Vaccines. 8. PMID 32098116 DOI: 10.3390/vaccines8010096 |
0.317 |
|
2018 |
Bechelli J, Vergara L, Smalley C, Buzhdygan TP, Bender S, Zhang W, Liu Y, Popov VL, Wang J, Garg N, Hwang S, Walker DH, Fang R. Supports Infection in Macrophages and . Infection and Immunity. PMID 30297526 DOI: 10.1128/Iai.00651-18 |
0.305 |
|
2018 |
Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C. Early Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes. Frontiers in Microbiology. 9: 1889. PMID 30166980 DOI: 10.3389/Fmicb.2018.01889 |
0.333 |
|
2018 |
Wen JJ, Garg NJ. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease. Plos Neglected Tropical Diseases. 12: e0006687. PMID 30044789 DOI: 10.1371/journal.pntd.0006687 |
0.311 |
|
2018 |
Lopez M, Tanowitz HB, Garg NJ. Pathogenesis of Chronic Chagas Disease: Macrophages, Mitochondria, and Oxidative Stress. Current Clinical Microbiology Reports. 5: 45-54. PMID 29868332 |
0.332 |
|
2018 |
Jimenez-Coello M, Shelite T, Castellanos-Gonzalez A, Saldarriaga O, Rivero R, Ortega-Pacheco A, Acevedo-Arcique C, Amaya-Guardia K, Garg N, Melby P, Travi BL. Efficacy of Recombinase Polymerase Amplification to Diagnose Trypanosoma cruzi Infection in Dogs with Cardiac Alterations from an Endemic Area of Mexico. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.). PMID 29768103 DOI: 10.1089/Vbz.2017.2258 |
0.35 |
|
2016 |
Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ. Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease. Journal of Innate Immunity. PMID 27902980 DOI: 10.1159/000451055 |
0.318 |
|
2016 |
Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease. Plos Pathogens. 12: e1005954. PMID 27764247 DOI: 10.1371/journal.ppat.1005954 |
0.316 |
|
2016 |
Huante MB, Gupta S, Calderon VC, Koo SJ, Sinha M, Luxon BA, Garg NJ, Endsley JJ. Differential inflammasome activation signatures following intracellular infection of human macrophages with Mycobacterium bovis BCG or Trypanosoma cruzi. Tuberculosis (Edinburgh, Scotland). PMID 27733245 DOI: 10.1016/J.Tube.2016.09.026 |
0.353 |
|
2016 |
Zago MP, Hosakote YM, Koo SJ, Dhiman M, Piñeyro MD, Parodi-Talice A, Basombrio MA, Robello C, Garg NJ. TcI isolates of Trypanosoma cruzi exploit antioxidant network for enhanced intracellular survival in macrophages and virulence in mice. Infection and Immunity. PMID 27068090 DOI: 10.1128/IAI.00193-16 |
0.319 |
|
2014 |
Wen JJ, Nagajyothi F, Machado FS, Weiss LM, Scherer PE, Tanowitz HB, Garg NJ. Markers of oxidative stress in adipose tissue during Trypanosoma cruzi infection. Parasitology Research. 113: 3159-65. PMID 24948102 DOI: 10.1007/S00436-014-3977-7 |
0.308 |
|
2012 |
Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, Factor SM, Weiss LM, Nagajyothi F, Tanowitz HB, Garg NJ. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Seminars in Immunopathology. 34: 753-70. PMID 23076807 DOI: 10.1007/S00281-012-0351-7 |
0.305 |
|
2012 |
Dhiman M, Zago MP, Nunez S, Amoroso A, Rementeria H, Dousset P, Nunez Burgos F, Garg NJ. Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in chagas disease pathogenesis. Plos One. 7: e28449. PMID 22238578 DOI: 10.1371/journal.pone.0028449 |
0.313 |
|
2012 |
Wen JJ, Garg NJ. Proteome expression and carbonylation changes during Trypanosoma cruzi infection and Chagas disease in rats. Molecular & Cellular Proteomics : McP. 11: M111.010918. PMID 22199233 DOI: 10.1074/mcp.M111.010918 |
0.311 |
|
2009 |
Gupta S, Wen JJ, Garg NJ. [Not Available]. Interdisciplinary Perspectives On Infectious Diseases. 2009: 190354. PMID 19547716 DOI: 10.1155/2009/190354 |
0.345 |
|
2008 |
Dhiman M, Nakayasu ES, Madaiah YH, Reynolds BK, Wen JJ, Almeida IC, Garg NJ. Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas' disease. The American Journal of Pathology. 173: 728-40. PMID 18688021 DOI: 10.2353/Ajpath.2008.080047 |
0.366 |
|
2006 |
Zacks MA, Garg N. Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [review]. Molecular Membrane Biology. 23: 209-25. PMID 16785205 DOI: 10.1080/09687860600601494 |
0.596 |
|
2005 |
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Review of Vaccines. 4: 867-80. PMID 16372882 DOI: 10.1586/14760584.4.6.867 |
0.353 |
|
2005 |
Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. Anais Da Academia Brasileira De CiêNcias. 77: 695-715. PMID 16341444 DOI: 10.1590/S0001-37652005000400009 |
0.59 |
|
2005 |
Senkovich O, Bhatia V, Garg N, Chattopadhyay D. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas' disease. Antimicrobial Agents and Chemotherapy. 49: 3234-8. PMID 16048931 DOI: 10.1128/Aac.49.8.3234-3238.2005 |
0.308 |
|
2005 |
Garg N. Mitochondrial disorders in chagasic cardiomyopathy. Frontiers in Bioscience : a Journal and Virtual Library. 10: 1341-54. PMID 15769630 DOI: 10.2741/1624 |
0.323 |
|
2004 |
Wen JJ, Garg N. Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection. Free Radical Biology & Medicine. 37: 2072-81. PMID 15544925 DOI: 10.1016/J.Freeradbiomed.2004.09.011 |
0.418 |
|
2004 |
Wen JJ, Vyatkina G, Garg N. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radical Biology & Medicine. 37: 1821-33. PMID 15528041 DOI: 10.1016/J.Freeradbiomed.2004.08.018 |
0.42 |
|
2004 |
Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infection and Immunity. 72: 6245-54. PMID 15501750 DOI: 10.1128/Iai.72.11.6245-6254.2004 |
0.366 |
|
2004 |
Vyatkina G, Bhatia V, Gerstner A, Papaconstantinou J, Garg N. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development. Biochimica Et Biophysica Acta. 1689: 162-73. PMID 15196597 DOI: 10.1016/J.Bbadis.2004.03.005 |
0.368 |
|
2004 |
Garg N, Gerstner A, Bhatia V, DeFord J, Papaconstantinou J. Gene expression analysis in mitochondria from chagasic mice: alterations in specific metabolic pathways. The Biochemical Journal. 381: 743-52. PMID 15101819 DOI: 10.1042/Bj20040356 |
0.365 |
|
2003 |
Garg N, Popov VL, Papaconstantinou J. Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochimica Et Biophysica Acta. 1638: 106-20. PMID 12853116 DOI: 10.1016/S0925-4439(03)00060-7 |
0.432 |
|
2002 |
Garg N, Tarleton RL. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infection and Immunity. 70: 5547-55. PMID 12228281 DOI: 10.1128/Iai.70.10.5547-5555.2002 |
0.361 |
|
1999 |
Mensa-Wilmot K, Garg N, McGwire BS, Lu HG, Zhong L, Armah DA, LeBowitz JH, Chang KP. Roles of free GPIs in amastigotes of Leishmania. Molecular and Biochemical Parasitology. 99: 103-16. PMID 10215028 DOI: 10.1016/S0166-6851(99)00003-1 |
0.383 |
|
1998 |
Garg N. Biological Significance of Glycosylphosphatidylinositols in Protozoan Parasites. Trends in Glycoscience and Glycotechnology. 10: 439-453. DOI: 10.4052/Tigg.10.439 |
0.301 |
|
1998 |
Wizel B, Garg N, Tarleton RL. Vaccination with Trypomastigote Surface Antigen 1-Encoding Plasmid DNA Confers Protection against Lethal Trypanosoma cruzi Infection Infection and Immunity. 66: 5073-5081. DOI: 10.1128/Iai.66.11.5073-5081.1998 |
0.317 |
|
1997 |
Garg N, Postan M, Mensa-Wilmot K, Tarleton RL. Glycosylphosphatidylinositols are required for the development of Trypanosoma cruzi amastigotes. Infection and Immunity. 65: 4055-60. PMID 9317007 DOI: 10.1128/Iai.65.10.4055-4060.1997 |
0.376 |
|
1997 |
Garg N, Tarleton RL, Mensa-Wilmot K. Proteins with glycosylphosphatidylinositol (GPI) signal sequences have divergent fates during a GPI deficiency. GPIs are essential for nuclear division in Trypanosoma cruzi. The Journal of Biological Chemistry. 272: 12482-91. PMID 9139697 DOI: 10.1074/Jbc.272.19.12482 |
0.417 |
|
1997 |
Santos MA, Garg N, Tarleton RL. The identification and molecular characterization of Trypanosoma cruzi amastigote surface protein-1, a member of the trans-sialidase gene super-family1Note: Nucleotide sequence data reported in this paper is available in the GenBank data base under the Accession no. U74494.1 Molecular and Biochemical Parasitology. 86: 1-11. DOI: 10.1016/S0166-6851(96)02840-X |
0.41 |
|
Show low-probability matches. |