Year |
Citation |
Score |
2014 |
Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, Farghaian H, Cole AR, Lay PA, Sue CM, Cooper AA. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Human Molecular Genetics. 23: 2816-33. PMID 24603074 DOI: 10.1093/Hmg/Ddu099 |
0.36 |
|
2013 |
Murphy KE, Cottle L, Gysbers AM, Cooper AA, Halliday GM. ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies. Acta Neuropathologica Communications. 1: 11. PMID 24252509 DOI: 10.1186/2051-5960-1-11 |
0.365 |
|
2012 |
Protter D, Lang C, Cooper AA. αSynuclein and Mitochondrial Dysfunction: A Pathogenic Partnership in Parkinson's Disease? Parkinson's Disease. 2012: 829207. PMID 22737587 DOI: 10.1155/2012/829207 |
0.327 |
|
2012 |
Chesi A, Kilaru A, Fang X, Cooper AA, Gitler AD. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast. Plos One. 7: e34178. PMID 22457822 DOI: 10.1371/Journal.Pone.0034178 |
0.358 |
|
2011 |
Park JS, Mehta P, Cooper AA, Veivers D, Heimbach A, Stiller B, Kubisch C, Fung VS, Krainc D, Mackay-Sim A, Sue CM. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Human Mutation. 32: 956-64. PMID 21542062 DOI: 10.1002/Humu.21527 |
0.431 |
|
2010 |
Su LJ, Auluck PK, Outeiro TF, Yeger-Lotem E, Kritzer JA, Tardiff DF, Strathearn KE, Liu F, Cao S, Hamamichi S, Hill KJ, Caldwell KA, Bell GW, Fraenkel E, Cooper AA, et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. Disease Models & Mechanisms. 3: 194-208. PMID 20038714 DOI: 10.1242/Dmm.004267 |
0.337 |
|
2007 |
Kincaid MM, Cooper AA. ERADicate ER stress or die trying. Antioxidants & Redox Signaling. 9: 2373-87. PMID 17883326 DOI: 10.1089/Ars.2007.1817 |
0.709 |
|
2007 |
Kincaid MM, Cooper AA. Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Molecular Biology of the Cell. 18: 455-63. PMID 17108324 DOI: 10.1091/Mbc.E06-08-0696 |
0.711 |
|
2006 |
Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science (New York, N.Y.). 313: 324-8. PMID 16794039 DOI: 10.1126/Science.1129462 |
0.66 |
|
2004 |
Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Molecular Cell. 15: 767-76. PMID 15350220 DOI: 10.1016/J.Molcel.2004.08.025 |
0.746 |
|
2002 |
Haynes CM, Caldwell S, Cooper AA. An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. The Journal of Cell Biology. 158: 91-101. PMID 12105183 DOI: 10.1083/Jcb.200201053 |
0.72 |
|
2001 |
Caldwell SR, Hill KJ, Cooper AA. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. The Journal of Biological Chemistry. 276: 23296-303. PMID 11316816 DOI: 10.1074/Jbc.M102962200 |
0.784 |
|
2000 |
Hill K, Cooper AA. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. The Embo Journal. 19: 550-61. PMID 10675324 DOI: 10.1093/Emboj/19.4.550 |
0.59 |
|
1996 |
Cooper AA, Stevens TH. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. The Journal of Cell Biology. 133: 529-41. PMID 8636229 DOI: 10.1083/Jcb.133.3.529 |
0.434 |
|
1995 |
Piper RC, Cooper AA, Yang H, Stevens TH. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. The Journal of Cell Biology. 131: 603-17. PMID 7593183 DOI: 10.1083/Jcb.131.3.603 |
0.452 |
|
1995 |
Cooper AA, Stevens TH. Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends in Biochemical Sciences. 20: 351-6. PMID 7482702 DOI: 10.1016/S0968-0004(00)89075-1 |
0.448 |
|
1993 |
Cooper AA, Chen YJ, Lindorfer MA, Stevens TH. Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. The Embo Journal. 12: 2575-83. PMID 8508780 DOI: 10.1002/J.1460-2075.1993.Tb05913.X |
0.485 |
|
1993 |
Cooper AA, Stevens TH. Protein splicing: excision of intervening sequences at the protein level. Bioessays : News and Reviews in Molecular, Cellular and Developmental Biology. 15: 667-74. PMID 8274142 DOI: 10.1002/Bies.950151006 |
0.454 |
|
1993 |
Cooper A, Chen Y, Lindorfer M, Stevens T. Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. The Embo Journal. 12: 2575-2583. DOI: 10.1002/j.1460-2075.1993.tb05913.x |
0.303 |
|
1992 |
Cooper A, Bussey H. Yeast Kex1p is a Golgi-associated membrane protein: Deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane Journal of Cell Biology. 119: 1459-1468. PMID 1469044 DOI: 10.1083/Jcb.119.6.1459 |
0.407 |
|
1989 |
Cooper A, Bussey H. Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins Molecular and Cellular Biology. 9: 2706-2714. PMID 2668738 DOI: 10.1128/Mcb.9.6.2706 |
0.394 |
|
Show low-probability matches. |