Lindsay S. Wray, Ph.D. - Publications

Affiliations: 
2014 Biomedical Engineering Tufts University, Boston 
Area:
Biomedical Engineering

11 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Rnjak-Kovacina J, Gerrand YW, Wray LS, Tan B, Joukhdar H, Kaplan DL, Morrison WA, Mitchell GM. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Advanced Healthcare Materials. e1901106. PMID 31714024 DOI: 10.1002/Adhm.201901106  0.576
2015 Rnjak-Kovacina J, Wray LS, Burke KA, Torregrosa T, Golinski JM, Huang W, Kaplan DL. Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. Acs Biomaterials Science & Engineering. 1: 260-270. PMID 25984573 DOI: 10.1021/Ab500149P  0.603
2015 Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, Zhang M, Dong J, Li G, Kaplan DL, Jiang X. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials. 56: 68-77. PMID 25934280 DOI: 10.1016/J.Biomaterials.2015.03.053  0.598
2015 Di Buduo CA, Wray LS, Tozzi L, Malara A, Chen Y, Ghezzi CE, Smoot D, Sfara C, Antonelli A, Spedden E, Bruni G, Staii C, De Marco L, Magnani M, Kaplan DL, et al. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood. 125: 2254-64. PMID 25575540 DOI: 10.1182/Blood-2014-08-595561  0.487
2014 Rnjak-Kovacina J, Wray LS, Golinski JM, Kaplan DL. Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs. Advanced Functional Materials. 24: 2188-2196. PMID 25395920 DOI: 10.1002/Adfm.201302901  0.639
2013 Wray LS, Tsioris K, Gi ES, Omenetto FG, Kaplan DL. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Advanced Functional Materials. 23: 3404-3412. PMID 24058328 DOI: 10.1002/Adfm.201202926  0.641
2013 Wray L, Di Buduo CA, Kaplan DL, Balduini A. Development Of 3D Models For Studying Megakaryopoiesis In Vitro Blood. 122: 3696-3696. DOI: 10.1182/Blood.V122.21.3696.3696  0.469
2012 Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 33: 9214-24. PMID 23036961 DOI: 10.1016/J.Biomaterials.2012.09.017  0.618
2011 Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 99: 89-101. PMID 21695778 DOI: 10.1002/Jbm.B.31875  0.494
2011 Phu D, Wray LS, Warren RV, Haskell RC, Orwin EJ. Effect of substrate composition and alignment on corneal cell phenotype. Tissue Engineering. Part A. 17: 799-807. PMID 20964577 DOI: 10.1089/Ten.Tea.2009.0724  0.523
2009 Wray LS, Orwin EJ. Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Engineering. Part A. 15: 1463-72. PMID 19193140 DOI: 10.1089/Ten.Tea.2008.0239  0.447
Show low-probability matches.