Hue Sun Chan - Publications

Affiliations: 
Biochemistry University of Toronto, Toronto, ON, Canada 

104 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Song J, Li J, Chan HS. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. The Journal of Physical Chemistry. B. PMID 34115515 DOI: 10.1021/acs.jpcb.1c02453  0.74
2020 Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. Comparative roles of charge, , and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America. PMID 33139563 DOI: 10.1073/pnas.2008122117  0.377
2020 Amin AN, Lin YH, Das S, Chan HS. Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins. The Journal of Physical Chemistry. B. PMID 32639157 DOI: 10.1021/acs.jpcb.0c04575  0.309
2020 Song J, Li J, Chan HS. SAXS Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles Biophysical Journal. 118: 503a. DOI: 10.1016/j.bpj.2019.11.2774  0.71
2019 Lin Y, Song J, Forman-Kay JD, Chan HS. Corrigendum to “Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins” [J. Mol. Liq. 228 (2017) 176–193] Journal of Molecular Liquids. 273: 676. DOI: 10.1016/J.Molliq.2018.11.031  0.635
2017 Song J, Gomes GN, Shi T, Gradinaru CC, Chan HS. Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins. Biophysical Journal. 113: 1012-1024. PMID 28877485 DOI: 10.1016/J.Bpj.2017.07.023  0.753
2017 Hu J, Chen T, Wang M, Chan HS, Zhang Z. Correction: A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding. Physical Chemistry Chemical Physics : Pccp. PMID 28675224 DOI: 10.1039/c7cp90146a  0.683
2017 Hu J, Chen T, Wang M, Chan HS, Zhang Z. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding. Physical Chemistry Chemical Physics : Pccp. PMID 28530269 DOI: 10.1039/C7Cp01532A  0.719
2017 Csizmok V, Orlicky S, Cheng J, Song J, Bah A, Delgoshaie N, Lin H, Mittag T, Sicheri F, Chan HS, Tyers M, Forman-Kay JD. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nature Communications. 8: 13943. PMID 28045046 DOI: 10.1038/Ncomms13943  0.655
2017 Lin Y, Song J, Forman-Kay JD, Chan HS. Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins Journal of Molecular Liquids. 228: 176-193. DOI: 10.1016/J.Molliq.2016.09.090  0.666
2016 Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil-Helix Transitions. Biochemistry. PMID 27775315 DOI: 10.1021/Acs.Biochem.6B00802  0.815
2016 Chan HS, Liu Z. Thermodynamics and kinetics of TopoII action: A consensus on T-segment curvature selection? Comment on "Disentangling DNA Molecules" by Alexander Vologodskii. Physics of Life Reviews. PMID 27265508 DOI: 10.1016/J.Plrev.2016.05.016  0.437
2016 Sikosek T, Krobath H, Chan HS. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches. Plos Computational Biology. 12: e1004960. PMID 27253392 DOI: 10.1371/journal.pcbi.1004960  0.801
2016 Mazouchi A, Zhang Z, Bahram A, Gomes GN, Lin H, Song J, Chan HS, Forman-Kay JD, Gradinaru CC. Conformations of a Metastable SH3 Domain Characterized by smFRET and an Excluded-Volume Polymer Model. Biophysical Journal. 110: 1510-22. PMID 27074677 DOI: 10.1016/J.Bpj.2016.02.033  0.728
2015 Song J, Gomes GN, Gradinaru CC, Chan HS. An Adequate Account of Excluded Volume is Necessary to Infer Compactness and Asphericity of Disordered Proteins by Förster Resonance Energy Transfer. The Journal of Physical Chemistry. B. PMID 26566073 DOI: 10.1021/Acs.Jpcb.5B09133  0.733
2015 Liu Z, Chan HS. Consistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 27: 354103. PMID 26291958 DOI: 10.1088/0953-8984/27/35/354103  0.47
2015 Chen T, Chan HS. Native contact density and nonnative hydrophobic effects in the folding of bacterial immunity proteins. Plos Computational Biology. 11: e1004260. PMID 26016652 DOI: 10.1371/Journal.Pcbi.1004260  0.507
2015 Chen T, Song J, Chan HS. Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Current Opinion in Structural Biology. 30: 32-42. PMID 25544254 DOI: 10.1016/J.Sbi.2014.12.002  0.756
2015 Liu Z, Chan HS. Erratum: Consistent rationalization of type-2 topoisomerases’ unknotting, decatenating, supercoil-relaxing actions and their scaling relation (2015J. Phys.: Condens. Matter27354103) Journal of Physics: Condensed Matter. 27: 459601. DOI: 10.1088/0953-8984/27/45/459601  0.427
2015 Huynh LK, Neale C, Pomès R, Chan HS. Global Contacts Direct Hydophobic Collapse in Protein Folding Biophysical Journal. 108: 515a. DOI: 10.1016/J.Bpj.2014.11.2825  0.44
2014 Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. Journal of the Royal Society, Interface / the Royal Society. 11: 20140419. PMID 25165599 DOI: 10.1098/rsif.2014.0419  0.378
2014 Dias CL, Chan HS. Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding. The Journal of Physical Chemistry. B. PMID 24933471 DOI: 10.1021/Jp501935F  0.705
2014 Chen T, Chan HS. Effects of desolvation barriers and sidechains on local-nonlocal coupling and chevron behaviors in coarse-grained models of protein folding. Physical Chemistry Chemical Physics : Pccp. 16: 6460-79. PMID 24554086 DOI: 10.1039/C3Cp54866J  0.498
2013 Kaya H, Uzunoğlu Z, Chan HS. Spatial ranges of driving forces are a key determinant of protein folding cooperativity and rate diversity. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 88: 044701. PMID 24229309 DOI: 10.1103/PhysRevE.88.044701  0.698
2013 Song J, Ng SC, Tompa P, Lee KA, Chan HS. Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. Plos Computational Biology. 9: e1003239. PMID 24086122 DOI: 10.1371/Journal.Pcbi.1003239  0.718
2012 Zhang Z, Chan HS. Transition paths, diffusive processes, and preequilibria of protein folding. Proceedings of the National Academy of Sciences of the United States of America. 109: 20919-24. PMID 23213246 DOI: 10.1073/pnas.1209891109  0.721
2012 Sikosek T, Bornberg-Bauer E, Chan HS. Evolutionary dynamics on protein bi-stability landscapes can potentially resolve adaptive conflicts. Plos Computational Biology. 8: e1002659. PMID 23028272 DOI: 10.1371/Journal.Pcbi.1002659  0.38
2012 Beharry AA, Chen T, Al-Abdul-Wahid MS, Samanta S, Davidov K, Sadovski O, Ali AM, Chen SB, Prosser RS, Chan HS, Woolley GA. Quantitative analysis of the effects of photoswitchable distance constraints on the structure of a globular protein. Biochemistry. 51: 6421-31. PMID 22803618 DOI: 10.1021/Bi300685A  0.48
2012 Zarrine-Afsar A, Zhang Z, Schweiker KL, Makhatadze GI, Davidson AR, Chan HS. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain. Proteins. 80: 858-70. PMID 22161863 DOI: 10.1002/Prot.23243  0.672
2011 Dias CL, Karttunen M, Chan HS. Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 84: 041931. PMID 22181199 DOI: 10.1103/Physreve.84.041931  0.719
2011 Chan HS, Zhang Z, Wallin S, Liu Z. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annual Review of Physical Chemistry. 62: 301-26. PMID 21453060 DOI: 10.1146/Annurev-Physchem-032210-103405  0.825
2011 Chan HS. Funnels, Barriers, and Transition Paths in Protein Folding: A Theoretical Perspective Biophysical Journal. 100: 373a. DOI: 10.1016/j.bpj.2010.12.2225  0.316
2010 Liu Z, Zechiedrich L, Chan HS. Action at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases. Journal of Molecular Biology. 400: 963-82. PMID 20460130 DOI: 10.1016/J.Jmb.2010.05.007  0.496
2010 Liu Z, Zechiedrich L, Chan HS. Local site preference rationalizes disentangling by DNA topoisomerases. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 81: 031902. PMID 20365765 DOI: 10.1103/Physreve.81.031902  0.457
2010 Zhang Z, Chan HS. Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins. Proceedings of the National Academy of Sciences of the United States of America. 107: 2920-5. PMID 20133730 DOI: 10.1073/pnas.0911844107  0.729
2010 Ferguson A, Liu Z, Chan HS. Desolvation Barrier Effects Are a Likely Contributor to the Remarkable Diversity in the Folding Rates of Small Proteins [J. Mol. Biol. (2009) 389, 619–636] Journal of Molecular Biology. 401: 153. DOI: 10.1016/J.Jmb.2010.06.020  0.513
2009 Ferguson A, Liu Z, Chan HS. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. Journal of Molecular Biology. 389: 619-36. PMID 19362564 DOI: 10.1016/J.Jmb.2009.04.011  0.64
2009 Chan HS, Zhang Z. Liaison amid disorder: non-native interactions may underpin long-range coupling in proteins. Journal of Biology. 8: 27. PMID 19344476 DOI: 10.1186/jbiol126  0.702
2009 Liu Z, Deibler RW, Chan HS, Zechiedrich L. The why and how of DNA unlinking. Nucleic Acids Research. 37: 661-71. PMID 19240147 DOI: 10.1093/Nar/Gkp041  0.426
2009 Zhang Z, Chan HS. Native topology of the designed protein Top7 is not conducive to cooperative folding. Biophysical Journal. 96: L25-7. PMID 19186118 DOI: 10.1016/j.bpj.2008.11.004  0.74
2009 Liu Z, Chan HS. Erratum: “Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: Excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models” [J. Chem. Phys. 128, 145104 (2008)] The Journal of Chemical Physics. 131: 049902. DOI: 10.1063/1.3187933  0.501
2009 Ferguson A, Liu Z, Chan HS. Addendum to “Desolvation Barrier Effects Are a Likely Contributor to the Remarkable Diversity in the Folding Rates of Small Proteins” [J. Mol. Biol. 389 (2009) 619–636] Journal of Molecular Biology. 392: 242. DOI: 10.1016/J.Jmb.2009.07.011  0.555
2009 Badasyan A, Liu Z, Chan HS. Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments International Journal of Quantum Chemistry. 109: 3482-3499. DOI: 10.1002/Qua.22272  0.826
2008 Badasyan A, Liu Z, Chan HS. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. Journal of Molecular Biology. 384: 512-30. PMID 18823994 DOI: 10.1016/J.Jmb.2008.09.023  0.837
2008 Zarrine-Afsar A, Wallin S, Neculai AM, Neudecker P, Howell PL, Davidson AR, Chan HS. Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding. Proceedings of the National Academy of Sciences of the United States of America. 105: 9999-10004. PMID 18626019 DOI: 10.1073/pnas.0801874105  0.765
2008 Liu Z, Chan HS. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. The Journal of Chemical Physics. 128: 145104. PMID 18412482 DOI: 10.1063/1.2899022  0.552
2007 MacCallum JL, Moghaddam MS, Chan HS, Tieleman DP. Hydrophobic association of alpha-helices, steric dewetting, and enthalpic barriers to protein folding. Proceedings of the National Academy of Sciences of the United States of America. 104: 6206-10. PMID 17404236 DOI: 10.1073/pnas.0605859104  0.381
2006 Knott M, Chan HS. Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins. 65: 373-91. PMID 16909416 DOI: 10.1002/prot.21066  0.363
2006 Liu Z, Mann JK, Zechiedrich EL, Chan HS. Topological Information Embodied in Local Juxtaposition Geometry Provides a Statistical Mechanical Basis for Unknotting by Type-2 DNA Topoisomerases Journal of Molecular Biology. 361: 268-285. PMID 16842819 DOI: 10.1016/J.Jmb.2006.06.005  0.55
2006 Liu Z, Zechiedrich EL, Chan HS. Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophysical Journal. 90: 2344-55. PMID 16537549 DOI: 10.1529/Biophysj.105.076778  0.53
2006 Wallin S, Chan HS. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model Journal of Physics: Condensed Matter. 18: S307-S328. DOI: 10.1088/0953-8984/18/14/S14  0.368
2005 Shimizu S, Moghaddam MS, Chan HS, Czaplewski C, Kalinowski S, Liwo A, Ripoll DR, Scheraga HA. Comment on "molecular origin of anticooperativity in hydrophobic Association" Journal of Physical Chemistry B. 109: 21220-21224. PMID 16853749 DOI: 10.1021/Jp052076T  0.553
2005 Liu Z, Chan HS. Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions. Physical Biology. 2: S75-85. PMID 16280624 DOI: 10.1088/1478-3975/2/4/S01  0.626
2005 Wallin S, Chan HS. A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling. Protein Science : a Publication of the Protein Society. 14: 1643-60. PMID 15930009 DOI: 10.1110/ps.041317705  0.792
2005 Liu Z, Chan HS. Desolvation is a likely origin of robust enthalpic barriers to protein folding. Journal of Molecular Biology. 349: 872-89. PMID 15893325 DOI: 10.1016/J.Jmb.2005.03.084  0.606
2005 Kaya H, Liu Z, Chan HS. Chevron behavior and isostable enthalpic barriers in protein folding: successes and limitations of simple Gō-like modeling. Biophysical Journal. 89: 520-35. PMID 15863486 DOI: 10.1529/Biophysj.104.057471  0.784
2005 Moghaddam MS, Shimizu S, Chan HS. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity. Journal of the American Chemical Society. 127: 303-16. PMID 15631480 DOI: 10.1021/Ja040165Y  0.619
2005 Wroe R, Bornberg-Bauer E, Chan HS. Comparing folding codes in simple heteropolymer models of protein evolutionary landscape: robustness of the superfunnel paradigm. Biophysical Journal. 88: 118-31. PMID 15501948 DOI: 10.1529/Biophysj.104.050369  0.358
2005 Kaya H, Chan HS. Explicit-chain model of native-state hydrogen exchange: implications for event ordering and cooperativity in protein folding. Proteins. 58: 31-44. PMID 15468168 DOI: 10.1002/prot.20286  0.727
2004 Ollerenshaw JE, Kaya H, Chan HS, Kay LE. Sparsely populated folding intermediates of the Fyn SH3 domain: matching native-centric essential dynamics and experiment. Proceedings of the National Academy of Sciences of the United States of America. 101: 14748-53. PMID 15469926 DOI: 10.1073/Pnas.0404436101  0.726
2004 Chan HS, Shimizu S, Kaya H. Cooperativity principles in protein folding. Methods in Enzymology. 380: 350-79. PMID 15051345 DOI: 10.1016/S0076-6879(04)80016-8  0.805
2004 Knott M, Kaya H, Chan HS. Energetics of protein thermodynamic cooperativity: contributions of local and nonlocal interactions Polymer. 45: 623-632. DOI: 10.1016/J.POLYMER.2003.10.068  0.305
2004 Kaya H, Chan HS. Corrigendum to: “Solvation Effects and Driving Forces for Protein Thermodynamic and Kinetic Cooperativity: How Adequate is Native-Centric Topological Modeling?” [J. Mol. Biol. (2003) 326, 911–931] Journal of Molecular Biology. 337: 1069-1070. DOI: 10.1016/J.JMB.2004.02.025  0.68
2003 Kaya H, Chan HS. Contact order dependent protein folding rates: kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences. Proteins. 52: 524-33. PMID 12910452 DOI: 10.1002/prot.10478  0.731
2003 Kaya H, Chan HS. Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity. Proteins. 52: 510-23. PMID 12910451 DOI: 10.1002/prot.10506  0.745
2003 Kaya H, Chan HS. Origins of chevron rollovers in non-two-state protein folding kinetics. Physical Review Letters. 90: 258104. PMID 12857173 DOI: 10.1103/PhysRevLett.90.258104  0.722
2003 Kaya H, Chan HS. Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling? Journal of Molecular Biology. 326: 911-31. PMID 12581650  0.746
2002 Chan HS, Bornberg-Bauer E. Perspectives on protein evolution from simple exact models. Applied Bioinformatics. 1: 121-44. PMID 15130840  0.316
2002 Shimizu S, Chan HS. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins. 49: 560-6. PMID 12402364 DOI: 10.1002/Prot.10263  0.651
2002 Shimizu S, Chan HS. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Proteins. 48: 15-30. PMID 12012334 DOI: 10.1002/Prot.10108  0.666
2002 Kaya H, Chan HS. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding? Journal of Molecular Biology. 315: 899-909. PMID 11812156 DOI: 10.1006/jmbi.2001.5266  0.731
2002 Shimizu S, Chan HS. Reply to “Comment on ‘Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond’ ” [J. Chem. Phys. 116, 2665 (2002)] The Journal of Chemical Physics. 116: 2668-2669. DOI: 10.1063/1.1434995  0.595
2001 Shimizu S, Chan HS. Configuration-dependent heat capacity of pairwise hydrophobic interactions. Journal of the American Chemical Society. 123: 2083-4. PMID 11456842 DOI: 10.1021/Ja0034390  0.605
2001 Harrison PM, Chan HS, Prusiner SB, Cohen FE. Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Science : a Publication of the Protein Society. 10: 819-35. PMID 11274473 DOI: 10.1110/ps.38701  0.384
2001 Kaya H, Chan HS. Energetic components of cooperative protein folding. Physical Review Letters. 85: 4823-6. PMID 11082661 DOI: 10.1103/PhysRevLett.85.4823  0.417
2001 Shimizu S, Chan HS. Statistical mechanics of solvophobic aggregation: Additive and cooperative effects The Journal of Chemical Physics. 115: 3424-3431. DOI: 10.1063/1.1386420  0.593
2001 Shimizu S, Chan HS. Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond The Journal of Chemical Physics. 115: 1414-1421. DOI: 10.1063/1.1379765  0.651
2000 Kaya H, Chan HS. Polymer principles of protein calorimetric two-state cooperativity. Proteins. 40: 637-61. PMID 10899787 DOI: 10.1002/1097-0134(20000901)40:4<637::AID-PROT80>3.0.CO;2-4  0.395
2000 Chan HS. Modeling protein density of states: additive hydrophobic effects are insufficient for calorimetric two-state cooperativity. Proteins. 40: 543-71. PMID 10899781 DOI: 10.1002/1097-0134(20000901)40:4<543::AID-PROT20>3.0.CO;2-O  0.378
2000 Shimizu S, Chan HS. Temperature dependence of hydrophobic interactions: A mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures The Journal of Chemical Physics. 113: 4683-4700. DOI: 10.1063/1.1288922  0.622
2000 Brem R, Chan HS, Dill KA. Extracting microscopic energies from oil-phase solvation experiments Journal of Physical Chemistry B. 104: 7471-7482. DOI: 10.1021/Jp0003297  0.64
1999 Harrison PM, Chan HS, Prusiner SB, Cohen FE. Thermodynamics of model prions and its implications for the problem of prion protein folding. Journal of Molecular Biology. 286: 593-606. PMID 9973573 DOI: 10.1006/jmbi.1998.2497  0.431
1998 DeVido DR, Dorsey JG, Chan HS, Dill KA. Oil/water partitioning has a different thermodynamic signature when the oil solvent chains are aligned than when they are amorphous Journal of Physical Chemistry B. 102: 7272-7279. DOI: 10.1021/Jp9807165  0.405
1997 Dill KA, Chan HS. From levinthal to pathways to funnels Nature Structural Biology. 4: 10-19. PMID 8989315 DOI: 10.1038/Nsb0197-10  0.567
1995 Chan HS. Kinetics of protein folding. Nature. 373: 664-5. PMID 7854444 DOI: 10.1038/373664a0  0.358
1995 Krukowski AE, Chan HS, Dill KA. An exact lattice model of complex solutions: Chemical potentials depend on solute and solvent shape The Journal of Chemical Physics. 103: 10675-10688. DOI: 10.1063/1.469854  0.471
1995 Dill KA, Chan HS, Yue K. The protein folding problem: Searching conformations of compact chain molecule Macromolecular Symposia. 98: 615-617. DOI: 10.1002/Masy.19950980152  0.56
1994 Yee DP, Chan HS, Havel TF, Dill KA. Does compactness induce secondary structure in proteins? A study of poly-alanine chains computed by distance geometry. Journal of Molecular Biology. 241: 557-73. PMID 8057379 DOI: 10.1006/Jmbi.1994.1531  0.569
1994 Chan HS, Dill KA. Solvation: Effects of molecular size and shape The Journal of Chemical Physics. 101: 7007-7026. DOI: 10.1063/1.468327  0.451
1994 Chan HS, Dill KA. Transition states and folding dynamics of proteins and heteropolymers The Journal of Chemical Physics. 100: 9238-9257. DOI: 10.1063/1.466677  0.591
1994 Minden HT, Chan HS, Dill KA. Might DNA Shape Tell Proteins How to Fold? Physics Today. 47: 124-125. DOI: 10.1063/1.2808425  0.495
1993 Chan HS, Dill KA. Energy landscapes and the collapse dynamics of homopolymers The Journal of Chemical Physics. 99: 2116-2127. DOI: 10.1063/1.465277  0.552
1993 Baker D, Chan HS, Dill KA. Coordinate‐space formulation of polymer lattice cluster theory The Journal of Chemical Physics. 98: 9951-9962. DOI: 10.1063/1.464321  0.418
1992 Chan HS, Wattenbarger MR, Evans DF, Bloomfield VA, Dill KA. Erratum: Enhanced structure in polymers at interfaces [J. Chem. Phys. 94, 8542 (1991)] The Journal of Chemical Physics. 96: 3361-3361. DOI: 10.1063/1.462902  0.413
1992 Chan HS, Dill KA. Erratum: Intrachain loops in polymers: Effects of excluded volume [J. Chem. Phys. 90, 492 (1989)] The Journal of Chemical Physics. 96: 3361-3361. DOI: 10.1063/1.462900  0.4
1991 Chan HS, Dill KA. ‘‘Sequence space soup’’ of proteins and copolymers The Journal of Chemical Physics. 95: 3775-3787. DOI: 10.1063/1.460828  0.568
1991 Chan HS, Wattenbarger MR, Evans DF, Bloomfield VA, Dill KA. Enhanced structure in polymers at interfaces The Journal of Chemical Physics. 94: 8542-8557. DOI: 10.1063/1.460088  0.488
1990 Wattenbarger MR, Chan HS, Evans DF, Dill KA. Surface‐induced enhancement of internal structure in polymers and proteins The Journal of Chemical Physics. 93: 8343-8351. DOI: 10.1063/1.459317  0.523
1990 Chan HS, Dill KA. The effects of internal constraints on the configurations of chain molecules The Journal of Chemical Physics. 92: 3118-3135. DOI: 10.1063/1.458605  0.528
1989 Chan HS, Dill KA. Intrachain loops in polymers: Effects of excluded volume The Journal of Chemical Physics. 90: 492-509. DOI: 10.1063/1.456500  0.489
1987 Chan HS, Halpern MB. Continuum-regularized quantum gravity Zeitschrift FüR Physik C Particles and Fields. 36: 669-693. DOI: 10.1007/Bf01630605  0.52
1987 Bern Z, Chan HS, Halpern MB. Non-Grassmann formulation of regularized gauge theory with fermions Zeitschrift FüR Physik C Particles and Fields. 34: 267-276. DOI: 10.1007/Bf01566770  0.641
1986 Bern Z, Chan HS. Perturbative analysis of the QCD4 maps Nuclear Physics B. 266: 509-535. DOI: 10.1016/0550-3213(86)90183-5  0.509
1986 Bern Z, Chan HS, Halpern MB. Continuum regularization of gauge theory with fermions Zeitschrift FüR Physik C Particles and Fields. 33: 77-88. DOI: 10.1007/Bf01410454  0.643
Show low-probability matches.