Year |
Citation |
Score |
2024 |
Balasubramani SG, Korchagina K, Schwartz S. Transition Path Sampling Study of Engineered Enzymes That Catalyze the Morita-Baylis-Hillman Reaction: Why Is Enzyme Design so Difficult? Journal of Chemical Information and Modeling. PMID 38451822 DOI: 10.1021/acs.jcim.4c00045 |
0.379 |
|
2023 |
Antoniou D, Zoi I, Schwartz SD. Atomistic description of the relationship between protein dynamics and catalysis with transition path sampling. Methods in Enzymology. 685: 319-340. PMID 37245906 DOI: 10.1016/bs.mie.2023.03.005 |
0.785 |
|
2023 |
Schwartz SD. Protein Dynamics and Enzymatic Catalysis. The Journal of Physical Chemistry. B. PMID 36944023 DOI: 10.1021/acs.jpcb.3c00477 |
0.322 |
|
2022 |
Frost CF, Balasubramani SG, Antoniou D, Schwartz SD. Connecting Conformational Motions to Rapid Dynamics in Human Purine Nucleoside Phosphorylase. The Journal of Physical Chemistry. B. 127: 144-150. PMID 36538016 DOI: 10.1021/acs.jpcb.2c07243 |
0.378 |
|
2022 |
Schwartz SD. Perspective: Path Sampling Methods Applied to Enzymatic Catalysis. Journal of Chemical Theory and Computation. 18: 6397-6406. PMID 36305863 DOI: 10.1021/acs.jctc.2c00734 |
0.385 |
|
2022 |
Balasubramani SG, Schwartz SD. Transition Path Sampling Based Calculations of Free Energies for Enzymatic Reactions: The Case of Human Methionine Adenosyl Transferase and Adenosine Deaminase. The Journal of Physical Chemistry. B. 126: 5413-5420. PMID 35830574 DOI: 10.1021/acs.jpcb.2c03251 |
0.31 |
|
2022 |
Antoniou D, Schwartz SD. Method for Identifying Common Features in Reactive Trajectories of a Transition Path Sampling Ensemble. Journal of Chemical Theory and Computation. PMID 35536190 DOI: 10.1021/acs.jctc.2c00186 |
0.342 |
|
2021 |
Schafer JW, Chen X, Schwartz SD. Engineered Tryptophan Synthase Balances Equilibrium Effects and Fast Dynamic Effects. Acs Catalysis. 12: 913-922. PMID 35719741 DOI: 10.1021/acscatal.1c03913 |
0.32 |
|
2021 |
Brown M, Zoi I, Antoniou D, Namanja-Magliano HA, Schwartz SD, Schramm VL. Inverse heavy enzyme isotope effects in methylthioadenosine nucleosidases. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 34580228 DOI: 10.1073/pnas.2109118118 |
0.793 |
|
2020 |
Schafer JW, Schwartz SD. Directed Evolution's Influence on Rapid Density Fluctuations Illustrates How Protein Dynamics Can Become Coupled to Chemistry. Acs Catalysis. 10: 8476-8484. PMID 33163256 DOI: 10.1021/Acscatal.0C01618 |
0.439 |
|
2020 |
Antoniou D, Schwartz SD. Role of Protein Motions in Catalysis by Formate Dehydrogenase. The Journal of Physical Chemistry. B. PMID 33064490 DOI: 10.1021/acs.jpcb.0c05725 |
0.39 |
|
2020 |
Chen X, Schwartz SD. Multiple Reaction Pathways in the Morphinone Reductase-Catalyzed Hydride Transfer Reaction. Acs Omega. 5: 23468-23480. PMID 32954200 DOI: 10.1021/acsomega.0c03472 |
0.367 |
|
2020 |
Schafer J, Zoi I, Antoniou D, Schwartz SD. The Role of Rapid Protein Dynamics in Artificial Enzyme Design Biophysical Journal. 118. DOI: 10.1016/J.Bpj.2019.11.882 |
0.768 |
|
2020 |
Chakraborti A, Baldo A, Tardiff JC, Schwartz SD. Utilization of Transition Path Sampling to Perform Dynamically Unbiased Simulations of ATP Hydrolysis in Two Isoforms of Myosin II Biophysical Journal. 118: 437a. DOI: 10.1016/J.Bpj.2019.11.2450 |
0.357 |
|
2019 |
Chen X, Schwartz SD. Examining the Origin of Catalytic Power of Catechol O-Methyltransferase. Acs Catalysis. 9: 9870-9879. PMID 31750009 DOI: 10.1021/Acscatal.9B02657 |
0.402 |
|
2019 |
Szatkowski L, Lynn ML, Holeman T, Williams MR, Baldo AP, Tardiff JC, Schwartz SD. Proof of Principle that Molecular Modeling Followed by a Biophysical Experiment Can Develop Small Molecules that Restore Function to the Cardiac Thin Filament in the Presence of Cardiomyopathic Mutations. Acs Omega. 4: 6492-6501. PMID 31342001 DOI: 10.1021/acsomega.8b03340 |
0.441 |
|
2019 |
Schafer J, Zoi I, Antoniou D, Schwartz SD. Optimization of the turnover in artificial enzymes via directed evolution results in the coupling of protein dynamics to chemistry. Journal of the American Chemical Society. PMID 31199129 DOI: 10.1021/Jacs.9B04515 |
0.809 |
|
2019 |
Schafer J, Zoi I, Schwartz SD. Exploring the Effects of Directed Evolution on the Dynamics of Artificial Retro Aldolases Biophysical Journal. 116: 432a. DOI: 10.1016/J.Bpj.2018.11.2325 |
0.75 |
|
2019 |
Smith AB, Baldo A, Braz N, Schwartz SD. Molecular Dynamics Studies of Single Point Mutations in the Cardiac Thin Filament Biophysical Journal. 116: 264a. DOI: 10.1016/J.Bpj.2018.11.1432 |
0.307 |
|
2018 |
Harijan RK, Zoi I, Antoniou D, Schwartz SD, Schramm VL. Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels. Proceedings of the National Academy of Sciences of the United States of America. PMID 29915028 DOI: 10.1073/Pnas.1805416115 |
0.796 |
|
2018 |
Williams MR, Tardiff JC, Schwartz SD. The Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin as Revealed by all Atom Steered Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters. PMID 29863359 DOI: 10.1021/Acs.Jpclett.8B00958 |
0.552 |
|
2018 |
Schramm VL, Schwartz SD. Promoting vibrations and the function of enzymes. Emerging theoretical and experimental convergence. Biochemistry. PMID 29608286 DOI: 10.1021/Acs.Biochem.8B00201 |
0.467 |
|
2018 |
Chen X, Schwartz SD. Directed evolution as a probe of rate promoting vibrations introduced via mutational change. Biochemistry. PMID 29553716 DOI: 10.1021/Acs.Biochem.8B00185 |
0.482 |
|
2017 |
Zoi I, Antoniou D, Schwartz SD. Electric Fields and Fast Protein Dynamics in Enzymes. The Journal of Physical Chemistry Letters. 6165-6170. PMID 29220191 DOI: 10.1016/J.Bpj.2017.11.2872 |
0.776 |
|
2017 |
Bras N, Fernandes P, Ramos M, Schwartz S. Mechanistic insights on human phosphoglucomutase revealed by transition path sampling and molecular dynamics calculations. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 29131453 DOI: 10.1002/Chem.201705090 |
0.426 |
|
2017 |
Zoi I, Antoniou D, Schwartz SD. Incorporating Fast Protein Dynamics into Enzyme Design: A Proposed Mutant Aromatic Amine Dehydrogenase. The Journal of Physical Chemistry. B. PMID 28696108 DOI: 10.1021/Acs.Jpcb.7B05319 |
0.806 |
|
2017 |
McConnell M, Tal Grinspan L, Williams MR, Lynn ML, Schwartz BA, Fass OZ, Schwartz SD, Tardiff JC. Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap. Biochemistry. PMID 28603979 DOI: 10.1021/Acs.Biochem.7B00266 |
0.509 |
|
2017 |
Harijan RK, Zoi I, Antoniou D, Schwartz SD, Schramm VL. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase. Proceedings of the National Academy of Sciences of the United States of America. PMID 28584087 DOI: 10.1073/Pnas.1704786114 |
0.795 |
|
2017 |
Varga MJ, Dzierlenga MW, Schwartz SD. Structurally linked dynamics in lactate dehydrogenases of evolutionarily distinct species. Biochemistry. PMID 28445027 DOI: 10.1021/Acs.Biochem.7B00245 |
0.785 |
|
2016 |
Dzierlenga MW, Varga MJ, Schwartz SD. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions. Methods in Enzymology. 578: 21-43. PMID 27497161 DOI: 10.1016/Bs.Mie.2016.05.028 |
0.789 |
|
2016 |
Pan X, Schwartz SD. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models. The Journal of Physical Chemistry. B. PMID 27347759 DOI: 10.1021/Acs.Jpcb.6B05119 |
0.385 |
|
2016 |
Dzierlenga MW, Schwartz SD. Targeting a Rate Promoting Vibration with an Allosteric Mediator in Lactate Dehydrogenase. The Journal of Physical Chemistry Letters. PMID 27327209 DOI: 10.1021/Acs.Jpclett.6B01209 |
0.804 |
|
2016 |
Williams MR, Lehman SJ, Tardiff JC, Schwartz SD. Atomic resolution probe for allostery in the regulatory thin filament. Proceedings of the National Academy of Sciences of the United States of America. PMID 26957598 DOI: 10.1073/Pnas.1519541113 |
0.518 |
|
2016 |
Varga MJ, Schwartz SD. Enzymatic Kinetic Isotope Effects from First Principles Path Sampling Calculations. Journal of Chemical Theory and Computation. PMID 26949835 DOI: 10.1021/Acs.Jctc.5B01169 |
0.798 |
|
2016 |
Zoi I, Suarez J, Antoniou D, Cameron SA, Schramm VL, Schwartz SD. Modulating enzyme catalysis through mutations designed to alter rapid protein dynamics. Journal of the American Chemical Society. PMID 26927977 DOI: 10.1021/Jacs.5B12551 |
0.802 |
|
2016 |
Antoniou D, Schwartz SD. Phase Space Bottlenecks in Enzymatic Reactions. The Journal of Physical Chemistry. B. 120: 433-9. PMID 26756622 DOI: 10.1021/Acs.Jpcb.5B11157 |
0.397 |
|
2015 |
Wang Z, Antoniou D, Schwartz SD, Schramm VL. "Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects and Heavy Enzyme Studies". Biochemistry. PMID 26652185 DOI: 10.1021/Acs.Biochem.5B01241 |
0.489 |
|
2015 |
Dzierlenga MW, Antoniou D, Schwartz SD. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling. The Journal of Physical Chemistry Letters. 6: 1177-81. PMID 26262969 DOI: 10.1021/Acs.Jpclett.5B00346 |
0.795 |
|
2015 |
Pan X, Schwartz SD. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations. The Journal of Physical Chemistry. B. 119: 5430-6. PMID 25831215 DOI: 10.1021/Acs.Jpcb.5B01840 |
0.373 |
|
2015 |
Van der Poorten O, Fehér K, Buysse K, Feytens D, Zoi I, Schwartz SD, Martins JC, Tourwé D, Cai M, Hruby VJ, Ballet S. Azepinone-Containing Tetrapeptide Analogues of Melanotropin Lead to Selective hMC4R Agonists and hMC5R Antagonist. Acs Medicinal Chemistry Letters. 6: 192-7. PMID 25699148 DOI: 10.1021/Ml500436S |
0.705 |
|
2015 |
Zoi I, Motley MW, Antoniou D, Schramm VL, Schwartz SD. Enzyme homologues have distinct reaction paths through their transition states. The Journal of Physical Chemistry. B. 119: 3662-8. PMID 25650981 DOI: 10.1021/Jp511983H |
0.797 |
|
2015 |
Masterson JE, Schwartz SD. Evolution alters the enzymatic reaction coordinate of dihydrofolate reductase. The Journal of Physical Chemistry. B. 119: 989-96. PMID 25369552 DOI: 10.1021/Jp506373Q |
0.524 |
|
2015 |
Dzierlenga MW, Antoniou D, Schwartz SD. Another look at the mechanisms of hydride transfer enzymes with quantum and classical transition path sampling Journal of Physical Chemistry Letters. 6: 1177-1181. DOI: 10.1021/acs.jpclett.5b00346 |
0.766 |
|
2015 |
Williams MR, Lehman SJ, Tardiff JC, Schwartz SD. An Explicitly Solvated Full Atomistic Model of the Cardiac Thin Filament and Application on the Calcium Binding Affinity Effects from Familial Hypertrophic Cardiomyopathy Linked Mutations Biophysical Journal. 108: 447a. DOI: 10.1016/J.Bpj.2014.11.2441 |
0.5 |
|
2015 |
Zhang J, Schwartz SD. A Coarse-Grained Model to Study Calcium Activation of the Cardiac Thin Filament Biophysical Journal. 108: 447a. DOI: 10.1016/J.Bpj.2014.11.2440 |
0.321 |
|
2015 |
Pan X, Schwartz SD. Free Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: A Network Analysis of Atomistic Simulations Biophysical Journal. 108: 216a. DOI: 10.1016/J.Bpj.2014.11.1194 |
0.385 |
|
2014 |
Masterson JE, Schwartz SD. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path. Chemical Physics. 442: 132-136. PMID 25368440 DOI: 10.1016/J.Chemphys.2014.02.018 |
0.453 |
|
2014 |
Williams MR, Tardiff J, Schwartz S. A Revised Atomistic Model of the Cardiac Thin Filament and Application to a Specific Disease Causing Mutation Biophysical Journal. 106: 32a. DOI: 10.1016/J.Bpj.2013.11.247 |
0.457 |
|
2013 |
Motley MW, Schramm VL, Schwartz SD. Conformational freedom in tight binding enzymatic transition-state analogues. The Journal of Physical Chemistry. B. 117: 9591-7. PMID 23895500 DOI: 10.1021/Jp4030443 |
0.438 |
|
2013 |
Schwartz SD. Protein dynamics and the enzymatic reaction coordinate. Topics in Current Chemistry. 337: 189-208. PMID 23508766 DOI: 10.1007/128_2012_412 |
0.499 |
|
2013 |
Masterson JE, Schwartz SD. Changes in protein architecture and subpicosecond protein dynamics impact the reaction catalyzed by lactate dehydrogenase. The Journal of Physical Chemistry. A. 117: 7107-13. PMID 23441954 DOI: 10.1021/Jp400376H |
0.527 |
|
2012 |
Antoniou D, Ge X, Schramm VL, Schwartz SD. Mass Modulation of Protein Dynamics Associated with Barrier Crossing in Purine Nucleoside Phosphorylase. The Journal of Physical Chemistry Letters. 3: 3538-3544. PMID 24496053 DOI: 10.1021/Jz301670S |
0.496 |
|
2012 |
Dametto M, Antoniou D, Schwartz SD. Barrier Crossing in Dihydrofolate Reductasedoes not involve a rate-promoting vibration. Molecular Physics. 110: 531-536. PMID 22942460 DOI: 10.1080/00268976.2012.655337 |
0.488 |
|
2011 |
Antoniou D, Schwartz SD. Response to Comment on "Towards identification of the reaction coordinate directly from the transition state ensemble using the kernel PCA method" by D. Antoniou and S. Schwartz, J. Phys. Chem. B. 115, 2465-2469 (2011). The Journal of Physical Chemistry. B. 115: 12674-12675. PMID 23741196 DOI: 10.1021/Jp207463G |
0.373 |
|
2011 |
Davarifar A, Antoniou D, Schwartz SD. The promoting vibration in human heart lactate dehydrogenase is a preferred vibrational channel. The Journal of Physical Chemistry. B. 115: 15439-44. PMID 22077414 DOI: 10.1021/Jp210347H |
0.379 |
|
2011 |
Antoniou D, Schwartz SD. Protein dynamics and enzymatic chemical barrier passage. The Journal of Physical Chemistry. B. 115: 15147-58. PMID 22031954 DOI: 10.1021/Jp207876K |
0.458 |
|
2011 |
Antoniou D, Schwartz SD. Toward Identification of the reaction coordinate directly from the transition state ensemble using the kernel PCA method. The Journal of Physical Chemistry. B. 115: 2465-9. PMID 21332236 DOI: 10.1021/Jp111682X |
0.351 |
|
2011 |
Gelman D, Schwartz SD. Finite temperature application of the corrected propagator method to reactive dynamics in a condensed-phase environment. The Journal of Chemical Physics. 134: 034109. PMID 21261332 DOI: 10.1063/1.3545978 |
0.347 |
|
2011 |
Manning EP, Tardiff JC, Schwartz SD. Computational Modeling of Cardiac Troponin Dynamics: Elucidating a Regulatory Mechanism for Calcium Activation of the Thin Filament Biophysical Journal. 100: 225a. DOI: 10.1016/J.Bpj.2010.12.1440 |
0.308 |
|
2010 |
Pineda JR, Antoniou D, Schwartz SD. Slow conformational motions that favor sub-picosecond motions important for catalysis. The Journal of Physical Chemistry. B. 114: 15985-90. PMID 21077591 DOI: 10.1021/Jp1071296 |
0.38 |
|
2010 |
Machleder SQ, Pineda ET, Schwartz SD. On the Origin of the Chemical Barrier and Tunneling in Enzymes. Journal of Physical Organic Chemistry. 23: 690-695. PMID 20582160 DOI: 10.1002/Poc.1688 |
0.448 |
|
2010 |
Gelman D, Schwartz SD. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations Chemical Physics. 370: 62-69. DOI: 10.1016/J.Chemphys.2010.01.021 |
0.335 |
|
2009 |
Antoniou D, Schwartz SD. Approximate inclusion of quantum effects in transition path sampling. The Journal of Chemical Physics. 131: 224111. PMID 20001028 DOI: 10.1063/1.3272793 |
0.346 |
|
2009 |
Schwartz SD, Schramm VL. Enzymatic transition states and dynamic motion in barrier crossing. Nature Chemical Biology. 5: 551-8. PMID 19620996 DOI: 10.1038/Nchembio.202 |
0.461 |
|
2009 |
Antoniou D, Schwartz SD. The stochastic separatrix and the reaction coordinate for complex systems. The Journal of Chemical Physics. 130: 151103. PMID 19388729 DOI: 10.1063/1.3123162 |
0.404 |
|
2009 |
Gelman D, Schwartz SD. Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method. The Journal of Chemical Physics. 130: 134110. PMID 19355720 DOI: 10.1063/1.3110063 |
0.341 |
|
2009 |
Quaytman SL, Schwartz SD. Comparison studies of the human heart and Bacillus stearothermophilus lactate dehydrogreanse by transition path sampling. The Journal of Physical Chemistry. A. 113: 1892-7. PMID 19053545 DOI: 10.1021/Jp804874P |
0.414 |
|
2009 |
Guinto PJ, Manning EP, Moore RK, Schwartz SD, Tardiff JC. Structural and Functional Characterization of Cardiac Troponin T Mutations in the TNT1 Domain That Cause Familial Hypertrophic Cardiomyopathy Biophysical Journal. 96: 499a. DOI: 10.1016/J.Bpj.2008.12.2575 |
0.303 |
|
2008 |
Saen-Oon S, Schramm VL, Schwartz SD. Transition Path Sampling Study of the Reaction Catalyzed by Purine Nucleoside Phosphorylase. Zeitschrift Fur Physikalische Chemie (Frankfurt Am Main, Germany). 222: 1359-1374. PMID 20664707 DOI: 10.1524/Zpch.2008.5395 |
0.488 |
|
2008 |
Saen-Oon S, Quaytman-Machleder S, Schramm VL, Schwartz SD. Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Proceedings of the National Academy of Sciences of the United States of America. 105: 16543-8. PMID 18946041 DOI: 10.1073/Pnas.0808413105 |
0.469 |
|
2008 |
Gelman D, Schwartz SD. Tunneling dynamics with a mixed quantum-classical method: quantum corrected propagator combined with frozen Gaussian wave packets. The Journal of Chemical Physics. 129: 024504. PMID 18624535 DOI: 10.1063/1.2949818 |
0.318 |
|
2008 |
Ghanem M, Saen-oon S, Zhadin N, Wing C, Cahill SM, Schwartz SD, Callender R, Schramm VL. Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry. 47: 3202-15. PMID 18269249 DOI: 10.1021/Bi702491D |
0.369 |
|
2008 |
Saen-Oon S, Ghanem M, Schramm VL, Schwartz SD. Remote mutations and active site dynamics correlate with catalytic properties of purine nucleoside phosphorylase. Biophysical Journal. 94: 4078-88. PMID 18234834 DOI: 10.1529/Biophysj.107.121913 |
0.483 |
|
2007 |
Guinto PJ, Manning EP, Schwartz SD, Tardiff JC. Computational Characterization of Mutations in Cardiac Troponin T Known to Cause Familial Hypertrophic Cardiomyopathy. Journal of Theoretical & Computational Chemistry. 6: 413. PMID 26500385 DOI: 10.1142/S0219633607003271 |
0.307 |
|
2007 |
Quaytman SL, Schwartz SD. Reaction coordinate of an enzymatic reaction revealed by transition path sampling. Proceedings of the National Academy of Sciences of the United States of America. 104: 12253-8. PMID 17640885 DOI: 10.1073/Pnas.0704304104 |
0.474 |
|
2007 |
Antoniou D, Gelman D, Schwartz SD. New mixed quantumsemiclassical propagation method. The Journal of Chemical Physics. 126: 184107. PMID 17508792 DOI: 10.1063/1.2731779 |
0.308 |
|
2007 |
Pineda JR, Callender R, Schwartz SD. Ligand binding and protein dynamics in lactate dehydrogenase. Biophysical Journal. 93: 1474-83. PMID 17483170 DOI: 10.1529/Biophysj.107.106146 |
0.33 |
|
2007 |
Antoniou D, Basner J, Núñez S, Schwartz SD. Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chemical Reviews. 106: 3170-87. PMID 16895323 DOI: 10.1021/Cr0503052 |
0.397 |
|
2007 |
Antoniou D, Abolfath MR, Schwartz SD. Transition path sampling study of classical rate-promoting vibrations. The Journal of Chemical Physics. 121: 6442-7. PMID 15446943 DOI: 10.1063/1.1782813 |
0.427 |
|
2006 |
Pineda JR, Schwartz SD. Protein dynamics and catalysis: the problems of transition state theory and the subtlety of dynamic control. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361: 1433-8. PMID 16873129 DOI: 10.1098/Rstb.2006.1877 |
0.518 |
|
2006 |
Núñez S, Wing C, Antoniou D, Schramm VL, Schwartz SD. Insight into catalytically relevant correlated motions in human purine nucleoside phosphorylase Journal of Physical Chemistry A. 110: 463-472. PMID 16405318 DOI: 10.1021/Jp051277U |
0.438 |
|
2006 |
Basner JE, Schwartz SD. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study. Journal of the American Chemical Society. 127: 13822-31. PMID 16201803 DOI: 10.1021/Ja043320H |
0.477 |
|
2006 |
Mincer JS, Schwartz SD. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: a model for enzymatic catalysis. The Journal of Chemical Physics. 120: 7755-60. PMID 15267689 DOI: 10.1063/1.1690239 |
0.409 |
|
2006 |
Antoniou D, Basner J, Núñez S, Schwartz SD. Effect of enzyme dynamics on catalytic activity Advances in Physical Organic Chemistry. 41: 315-362. DOI: 10.1016/S0065-3160(06)41006-6 |
0.545 |
|
2005 |
Ertz-Berger BR, He H, Dowell C, Factor SM, Haim TE, Nunez S, Schwartz SD, Ingwall JS, Tardiff JC. Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 102: 18219-24. PMID 16326803 DOI: 10.1073/Pnas.0509181102 |
0.327 |
|
2005 |
SCHWARTZ SD. A NEW SEMICLASSICAL DYNAMICS FROM THE INTERACTION REPRESENTATION Journal of Theoretical and Computational Chemistry. 4: 1093-1100. DOI: 10.1142/S0219633605001908 |
0.308 |
|
2004 |
Núñez S, Antoniou D, Schramm VL, Schwartz SD. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study Journal of the American Chemical Society. 126: 15720-15729. PMID 15571394 DOI: 10.1021/Ja0457563 |
0.394 |
|
2004 |
Mincer JS, Schwartz SD. Protein promoting vibrations in enzyme catalysis--a conserved evolutionary motif. Journal of Proteome Research. 2: 437-9. PMID 12945535 DOI: 10.1021/PR025590+ |
0.344 |
|
2004 |
MINCER JS, NUÑEZ S, SCHWARTZ SD. COUPLING PROTEIN DYNAMICS TO REACTION CENTER ELECTRON DENSITY IN ENZYMES: AN ELECTRONIC PROTEIN PROMOTING VIBRATION IN HUMAN PURINE NUCLEOSIDE PHOSPHORYLASE Journal of Theoretical and Computational Chemistry. 3: 501-509. DOI: 10.1142/S0219633604001215 |
0.448 |
|
2004 |
Basner JE, Schwartz SD. Donor−Acceptor Distance and Protein Promoting Vibration Coupling to Hydride Transfer: A Possible Mechanism for Kinetic Control in Isozymes of Human Lactate Dehydrogenase The Journal of Physical Chemistry B. 108: 444-451. DOI: 10.1021/Jp0364349 |
0.505 |
|
2003 |
Antoniou D, Schwartz SD. Low-Frequency Collective Motions in Proteins Journal of Theoretical and Computational Chemistry. 2: 163-169. DOI: 10.1142/S0219633603000458 |
0.365 |
|
2003 |
Schwartz SD. Response to Comment on “Effect of Active Site Mutation Phe93 → Trp in the Horse Liver Alcohol Dehydrogenase Enzyme on Catalysis: A Molecular Dynamics Study” The Journal of Physical Chemistry B. 107: 12372-12372. DOI: 10.1021/Jp035474+ |
0.368 |
|
2003 |
Mincer JS, Schwartz SD. A Computational Method to Identify Residues Important in Creating a Protein Promoting Vibration in Enzymes The Journal of Physical Chemistry B. 107: 366-371. DOI: 10.1021/Jp027017J |
0.426 |
|
2002 |
Antoniou D, Caratzoulas S, Kalyanaraman C, Mincer JS, Schwartz SD. Barrier passage and protein dynamics in enzymatically catalyzed reactions. European Journal of Biochemistry. 269: 3103-12. PMID 12084050 DOI: 10.1046/J.1432-1033.2002.03021.X |
0.493 |
|
2002 |
Caratzoulas S, Mincer JS, Schwartz SD. Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase. Journal of the American Chemical Society. 124: 3270-6. PMID 11916410 DOI: 10.1021/Ja017146Y |
0.459 |
|
2002 |
Kalyanaraman C, Schwartz SD. Effect of Active Site Mutation Phe 93 → Trp in the Horse Liver Alcohol Dehydrogenase Enzyme on Catalysis: A Molecular Dynamics Study The Journal of Physical Chemistry B. 106: 13111-13113. DOI: 10.1021/Jp027088I |
0.468 |
|
2001 |
Caratzoulas S, Schwartz SD. A computational method to discover the existence of promoting vibrations for chemical reactions in condensed phases The Journal of Chemical Physics. 114: 2910-2918. DOI: 10.1063/1.1342817 |
0.406 |
|
2001 |
Antoniou D, Schwartz SD. Internal Enzyme Motions as a Source of Catalytic Activity: Rate-Promoting Vibrations and Hydrogen Tunneling The Journal of Physical Chemistry B. 105: 5553-5558. DOI: 10.1021/Jp004547B |
0.495 |
|
2001 |
Karmacharya R, Antoniou D, Schwartz SD. Nonequilibrium Solvation and the Quantum Kramers Problem: Proton Transfer in Aqueous Glycine† The Journal of Physical Chemistry A. 105: 2563-2567. DOI: 10.1021/Jp003596L |
0.301 |
|
2000 |
Schwartz SD. Quantum dynamics in condensed phases via extended modes and exact interaction propagator relations The Journal of Chemical Physics. 113: 7437-7445. DOI: 10.1063/1.1312280 |
0.327 |
|
2000 |
Braunheim BB, Bagdassarian CK, Schramm VL, Schwartz SD. Quantum neural networks can predict binding free energies for enzymatic inhibitors International Journal of Quantum Chemistry. 78: 195-204. DOI: 10.1002/(Sici)1097-461X(2000)78:3<195::Aid-Qua7>3.0.Co;2-G |
0.345 |
|
1999 |
Braunheim BB, Schwartz SD. Computational methods for transition state and inhibitor recognition. Methods in Enzymology. 308: 398-426. PMID 10507012 DOI: 10.1016/S0076-6879(99)08017-9 |
0.305 |
|
1999 |
Karmacharya R, Gross P, Schwartz SD. The effect of coupled nonreactive modes on laser control of quantum wave packet dynamics The Journal of Chemical Physics. 111: 6864-6868. DOI: 10.1063/1.479978 |
0.31 |
|
1999 |
Antoniou D, Schwartz SD. Quantum proton transfer with spatially dependent friction: Phenol-amine in methyl chloride The Journal of Chemical Physics. 110: 7359-7364. DOI: 10.1063/1.478667 |
0.38 |
|
1999 |
Karmacharya R, Schwartz SD. Quantum proton transfer coupled to a quantum anharmonic mode The Journal of Chemical Physics. 110: 7376-7381. DOI: 10.1063/1.478639 |
0.363 |
|
1999 |
Antoniou D, Schwartz SD. A molecular dynamics quantum Kramers study of proton transfer in solution The Journal of Chemical Physics. 110: 465-472. DOI: 10.1063/1.478107 |
0.392 |
|
1998 |
Antoniou D, Schwartz SD. Temperature dependent spectral densities and quantum activated rate theory The Journal of Chemical Physics. 109: 5487-5492. DOI: 10.1063/1.477167 |
0.317 |
|
1998 |
Gross P, Schwartz SD. External field control of condensed phase reactions The Journal of Chemical Physics. 109: 4843-4851. DOI: 10.1063/1.477095 |
0.311 |
|
1998 |
Antoniou D, Schwartz SD. Proton transfer in benzoic acid crystals: Another look using quantum operator theory The Journal of Chemical Physics. 109: 2287-2293. DOI: 10.1063/1.476796 |
0.359 |
|
1998 |
Antoniou D, Schwartz SD. Activated chemistry in the presence of a strongly symmetrically coupled vibration The Journal of Chemical Physics. 108: 3620-3625. DOI: 10.1063/1.475756 |
0.39 |
|
1997 |
Antoniou D, Schwartz SD. Large kinetic isotope effects in enzymatic proton transfer and the role of substrate oscillations. Proceedings of the National Academy of Sciences of the United States of America. 94: 12360-5. PMID 9356454 DOI: 10.1073/Pnas.94.23.12360 |
0.369 |
|
1997 |
Schwartz SD. Quantum reaction in a condensed phase: Turnover behavior from new adiabatic factorizations and corrections The Journal of Chemical Physics. 107: 2424-2429. DOI: 10.1063/1.475141 |
0.306 |
|
1996 |
Schwartz SD. Quantum activated rates—an evolution operator approach The Journal of Chemical Physics. 105: 6871-6879. DOI: 10.1063/1.471981 |
0.339 |
|
1996 |
Mitra S, Schwartz SD. A mixed momentum‐position space representation to study quantum vibrational energy transfer The Journal of Chemical Physics. 104: 7539-7544. DOI: 10.1063/1.471463 |
0.307 |
|
1996 |
Antoniou D, Schwartz SD. Nonadiabatic effects in a method that combines classical and quantum mechanics Journal of Chemical Physics. 104: 3526-3530. DOI: 10.1063/1.471057 |
0.334 |
|
1996 |
Bagdassarian CK, Schramm VL, Schwartz SD. Molecular Electrostatic Potential Analysis for Enzymatic Substrates, Competitive Inhibitors, and Transition-State Inhibitors Journal of the American Chemical Society. 118: 8825-8836. DOI: 10.1021/Ja952781N |
0.417 |
|
1996 |
Schramm VL, Horenstein BA, Bagdassarian CK, Schwartz SD, Berti PJ, Rising KA, Scheuring J, Kline PC, Parkin DW, Merkler DJ. Enzymatic transition states and inhibitor design from principles of classical and quantum chemistry International Journal of Quantum Chemistry. 60: 1805-1813. DOI: 10.1002/(Sici)1097-461X(1996)60:8<1805::Aid-Qua8>3.0.Co;2-1 |
0.44 |
|
1996 |
Bagdassarian CK, Braunheim BB, Schramm VL, Schwartz SD. Quantitative measures of molecular similarity: Methods to analyze transition-state analogs for enzymatic reactions International Journal of Quantum Chemistry. 60: 1797-1804. DOI: 10.1002/(Sici)1097-461X(1996)60:8<1797::Aid-Qua7>3.0.Co;2-T |
0.399 |
|
1994 |
Schwartz SD. Vibrational energy transfer from resummed evolution operators The Journal of Chemical Physics. 101: 10436-10441. DOI: 10.1063/1.467861 |
0.321 |
|
1994 |
Schwartz SD. Accurate quantum mechanics from high order resummed operator expansions The Journal of Chemical Physics. 100: 8795-8801. DOI: 10.1063/1.466734 |
0.353 |
|
1992 |
Schwartz SD. Effective Feynman propagators and Schrödinger equations for processes coupled to many degrees of freedom The Journal of Chemical Physics. 96: 5952-5957. DOI: 10.1063/1.462662 |
0.309 |
|
1989 |
Schwartz SD. Propagator expansions for softly coupled potentials: A model for complex reaction dynamics The Journal of Chemical Physics. 91: 7621-7629. DOI: 10.1063/1.457232 |
0.365 |
|
1983 |
Schwartz SD, Miller WH. System‐bath decomposition of the reaction path Hamiltonian. II. Rotationally inelastic reactive scattering of H+H2 in three dimensions The Journal of Chemical Physics. 79: 3759-3764. DOI: 10.1063/1.446308 |
0.442 |
|
1983 |
Miller WH, Schwartz SD, Tromp JW. Quantum mechanical rate constants for bimolecular reactions The Journal of Chemical Physics. 79: 4889-4898. DOI: 10.1063/1.445581 |
0.494 |
|
1982 |
Miller WH, Schwartz S. System‐bath decomposition of the reaction path Hamiltonian for polyatomic scattering: Quantum perturbative treatment The Journal of Chemical Physics. 77: 2378-2382. DOI: 10.1063/1.444159 |
0.537 |
|
Show low-probability matches. |