Year |
Citation |
Score |
2023 |
Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. Journal of the Association For Research in Otolaryngology : Jaro. PMID 36648734 DOI: 10.1007/s10162-022-00852-4 |
0.628 |
|
2022 |
Abdala C, Luo P, Shera CA. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. Journal of the Association For Research in Otolaryngology : Jaro. PMID 35804277 DOI: 10.1007/s10162-022-00857-z |
0.397 |
|
2022 |
Nankali A, Shera CA, Applegate BE, Oghalai JS. Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea. Biophysical Journal. PMID 35778839 DOI: 10.1016/j.bpj.2022.06.029 |
0.383 |
|
2022 |
Leschke J, Rodriguez Orellana G, Shera CA, Oxenham AJ. Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning. Hearing Research. 420: 108500. PMID 35405591 DOI: 10.1016/j.heares.2022.108500 |
0.344 |
|
2022 |
Shera CA. Whistling While it Works: Spontaneous Otoacoustic Emissions and the Cochlear Amplifier. Journal of the Association For Research in Otolaryngology : Jaro. 23: 17-25. PMID 34981262 DOI: 10.1007/s10162-021-00829-9 |
0.303 |
|
2021 |
Dewey JB, Altoè A, Shera CA, Applegate BE, Oghalai JS. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 34686590 DOI: 10.1073/pnas.2025206118 |
0.327 |
|
2021 |
Altoè A, Charaziak KK, Dewey JB, Moleti A, Sisto R, Oghalai JS, Shera CA. The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking. Journal of the Association For Research in Otolaryngology : Jaro. 22: 623-640. PMID 34677710 DOI: 10.1007/s10162-021-00814-2 |
0.383 |
|
2021 |
Charaziak KK, Shera CA. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. Journal of the Association For Research in Otolaryngology : Jaro. 22: 641-658. PMID 34606020 DOI: 10.1007/s10162-021-00813-3 |
0.388 |
|
2020 |
Altoè A, Shera CA. The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing. Scientific Reports. 10: 20528. PMID 33239701 DOI: 10.1038/s41598-020-77042-w |
0.392 |
|
2020 |
Christensen AT, Abdala C, Shera CA. A cochlea with three parts? Evidence from otoacoustic emission phase in humans. The Journal of the Acoustical Society of America. 148: 1585. PMID 33003861 DOI: 10.1121/10.0001920 |
0.445 |
|
2020 |
Charaziak KK, Dong W, Altoè A, Shera CA. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion. Journal of the Association For Research in Otolaryngology : Jaro. PMID 32166602 DOI: 10.1007/S10162-020-00747-2 |
0.493 |
|
2019 |
Christensen AT, Abdala C, Shera CA. Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. The Journal of the Acoustical Society of America. 146: 3457. PMID 31795700 DOI: 10.1121/1.5134058 |
0.434 |
|
2019 |
Sisto R, Shera CA, Altoè A, Moleti A. Constraints imposed by zero-crossing invariance on cochlear models with two mechanical degrees of freedom. The Journal of the Acoustical Society of America. 146: 1685. PMID 31590512 DOI: 10.1121/1.5126514 |
0.355 |
|
2019 |
Nørgaard KR, Charaziak KK, Shera CA. On the calculation of reflectance in non-uniform ear canals. The Journal of the Acoustical Society of America. 146: 1464. PMID 31472574 DOI: 10.1121/1.5124000 |
0.426 |
|
2019 |
Nørgaard KR, Charaziak KK, Shera CA. A comparison of ear-canal-reflectance measurement methods in an ear simulator. The Journal of the Acoustical Society of America. 146: 1350. PMID 31472530 DOI: 10.1121/1.5123379 |
0.419 |
|
2019 |
Meenderink SWF, Shera CA, Valero MD, Liberman MC, Abdala C. Morphological Immaturity of the Neonatal Organ of Corti and Associated Structures in Humans. Journal of the Association For Research in Otolaryngology : Jaro. PMID 31407107 DOI: 10.1007/S10162-019-00734-2 |
0.409 |
|
2019 |
Maxim T, Shera CA, Charaziak KK, Abdala C. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits. Ear and Hearing. PMID 30882535 DOI: 10.1097/Aud.0000000000000714 |
0.44 |
|
2019 |
Alkhairy SA, Shera CA. An analytic physically motivated model of the mammalian cochlea. The Journal of the Acoustical Society of America. 145: 45. PMID 30710944 DOI: 10.1121/1.5084042 |
0.343 |
|
2018 |
Sumner CJ, Wells TT, Bergevin C, Sollini J, Kreft HA, Palmer AR, Oxenham AJ, Shera CA. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America. PMID 30322908 DOI: 10.1073/Pnas.1810766115 |
0.432 |
|
2018 |
Christensen AT, Abdala C, Shera CA. Probing Apical-Basal Differences in the Human Cochlea Using Distortion-Product Otoacoustic Emission Phase. Aip Conference Proceedings. 1965. PMID 30089933 DOI: 10.1063/1.5038495 |
0.374 |
|
2018 |
Charaziak KK, Dong W, Shera CA. Temporal Suppression of Clicked-Evoked Otoacoustic Emissions and Basilar-Membrane Motion in Gerbils. Aip Conference Proceedings. 1965. PMID 30057432 DOI: 10.1063/1.5038490 |
0.327 |
|
2018 |
Shera CA, Charaziak KK. Cochlear Frequency Tuning and Otoacoustic Emissions. Cold Spring Harbor Perspectives in Medicine. PMID 30037987 DOI: 10.1101/Cshperspect.A033498 |
0.475 |
|
2018 |
Charaziak KK, Siegel JH, Shera CA. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. Journal of the Association For Research in Otolaryngology : Jaro. PMID 30014309 DOI: 10.1007/S10162-018-0668-6 |
0.475 |
|
2018 |
Abdala C, Ortmann AJ, Shera CA. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. Journal of the Association For Research in Otolaryngology : Jaro. PMID 29968098 DOI: 10.1007/S10162-018-0680-X |
0.403 |
|
2018 |
Abdala C, Guardia YC, Shera CA. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. The Journal of the Acoustical Society of America. 143: 181. PMID 29390734 DOI: 10.1121/1.5020275 |
0.461 |
|
2018 |
Verhulst S, Altoè A, Raufer S, Charaziak K, Shera C. Temporal dynamics of the generator of stimulated otoacoustic emissions The Journal of the Acoustical Society of America. 143: 1811-1811. DOI: 10.1121/1.5035933 |
0.427 |
|
2017 |
Sisto R, Shera CA, Moleti A. Negative-delay sources in distortion product otoacoustic emissions. Hearing Research. PMID 29287918 DOI: 10.1016/J.Heares.2017.12.011 |
0.434 |
|
2017 |
Charaziak KK, Shera CA, Siegel JH. Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss. Frontiers in Neuroscience. 11: 169. PMID 28420953 DOI: 10.3389/Fnins.2017.00169 |
0.455 |
|
2017 |
Abdala C, Luo P, Shera CA. Characterizing spontaneous otoacoustic emissions across the human lifespan. The Journal of the Acoustical Society of America. 141: 1874. PMID 28372113 DOI: 10.1121/1.4977192 |
0.468 |
|
2017 |
Charaziak KK, Shera CA. Compensating for ear-canal acoustics when measuring otoacoustic emissions. The Journal of the Acoustical Society of America. 141: 515. PMID 28147590 DOI: 10.1121/1.4973618 |
0.52 |
|
2016 |
Shera CA, Abdala C. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. The Journal of the Acoustical Society of America. 140: 936. PMID 27586726 DOI: 10.1121/1.4960592 |
0.521 |
|
2016 |
Bharadwaj HM, Varghese L, Mehraei G, Shera CA, Shinn-Cunningham BG. Individualized assessment of suprathreshold hearing and relationship to cochlear synaptopathy The Journal of the Acoustical Society of America. 140: 3153-3153. DOI: 10.1121/1.4969889 |
0.386 |
|
2016 |
Charaziak K, Shera C. Removing effects of ear-canal acoustics from measurements of otoacoustic emissions The Journal of the Acoustical Society of America. 139: 2074-2074. DOI: 10.1121/1.4950152 |
0.514 |
|
2016 |
Alkhairy S, Shera C. A model of the cochlear apex and structure for study of mechanism and response characteristics The Journal of the Acoustical Society of America. 139: 1988-1988. DOI: 10.1121/1.4949807 |
0.391 |
|
2016 |
Bergevin C, Shera CA. Dynamics of Spontaneous Otoacoustic Emissions: Theory and Experiment Biophysical Journal. 110: 93a-94a. DOI: 10.1016/J.Bpj.2015.11.564 |
0.429 |
|
2015 |
Verhulst S, Shera CA. Relating the Variability of Tone-Burst Otoacoustic Emission and Auditory Brainstem Response Latencies to the Underlying Cochlear Mechanics. Aip Conference Proceedings. 1703. PMID 27175040 DOI: 10.1063/1.4939401 |
0.342 |
|
2015 |
Abdala C, Luo P, Shera CA. Optimizing swept-tone protocols for recording distortion-product otoacoustic emissions in adults and newborns. The Journal of the Acoustical Society of America. 138: 3785. PMID 26723333 DOI: 10.1121/1.4937611 |
0.458 |
|
2015 |
Shera CA. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses. The Journal of the Acoustical Society of America. 138: 3717-22. PMID 26723327 DOI: 10.1121/1.4937738 |
0.487 |
|
2015 |
Verhulst S, Bharadwaj HM, Mehraei G, Shera CA, Shinn-Cunningham BG. Functional modeling of the human auditory brainstem response to broadband stimulation. The Journal of the Acoustical Society of America. 138: 1637. PMID 26428802 DOI: 10.1121/1.4928305 |
0.46 |
|
2015 |
Shera CA. The spiral staircase: tonotopic microstructure and cochlear tuning. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 4683-90. PMID 25788685 DOI: 10.1523/Jneurosci.4788-14.2015 |
0.47 |
|
2015 |
Sisto R, Moleti A, Shera CA. On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. The Journal of the Acoustical Society of America. 137: 768-76. PMID 25698011 DOI: 10.1121/1.4906583 |
0.475 |
|
2014 |
Shera CA. On the method of lumens. The Journal of the Acoustical Society of America. 136: 3126. PMID 25480060 DOI: 10.1121/1.4900919 |
0.366 |
|
2014 |
Marshall L, Lapsley Miller JA, Guinan JJ, Shera CA, Reed CM, Perez ZD, Delhorne LA, Boege P. Otoacoustic-emission-based medial-olivocochlear reflex assays for humans. The Journal of the Acoustical Society of America. 136: 2697-713. PMID 25373970 DOI: 10.1121/1.4896745 |
0.465 |
|
2014 |
Abdala C, Guérit F, Luo P, Shera CA. Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan. The Journal of the Acoustical Society of America. 135: 1950-8. PMID 25234993 DOI: 10.1121/1.4868357 |
0.419 |
|
2014 |
Knudson IM, Shera CA, Melcher JR. Increased contralateral suppression of otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans with tinnitus and hyperacusis. Journal of Neurophysiology. 112: 3197-208. PMID 25231612 DOI: 10.1152/Jn.00576.2014 |
0.413 |
|
2014 |
Walsh EJ, Shera CA, Abdala C, Robertson HE, McGee J. Stimulus-frequency and response timing in clouded leopards: Evidence for inner ear adaptation The Journal of the Acoustical Society of America. 135: 2265-2265. DOI: 10.1121/1.4877423 |
0.424 |
|
2013 |
Kalluri R, Shera CA. Measuring stimulus-frequency otoacoustic emissions using swept tones. The Journal of the Acoustical Society of America. 134: 356-68. PMID 23862813 DOI: 10.1121/1.4807505 |
0.645 |
|
2013 |
Shera CA, Cooper NP. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. The Journal of the Acoustical Society of America. 133: 2224-39. PMID 23556591 DOI: 10.1121/1.4792129 |
0.471 |
|
2012 |
Verhulst S, Dau T, Shera CA. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. The Journal of the Acoustical Society of America. 132: 3842-8. PMID 23231114 DOI: 10.1121/1.4763989 |
0.429 |
|
2012 |
Elliott SJ, Shera CA. The cochlea as a smart structure. Smart Materials & Structures. 21: 64001. PMID 23148128 DOI: 10.1088/0964-1726/21/6/064001 |
0.401 |
|
2012 |
Shera CA, Bergevin C. Obtaining reliable phase-gradient delays from otoacoustic emission data. The Journal of the Acoustical Society of America. 132: 927-43. PMID 22894215 DOI: 10.1121/1.4730916 |
0.438 |
|
2012 |
Bergevin C, Walsh EJ, McGee J, Shera CA. Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions Journal of Comparative Physiology a: Neuroethology, Sensory, Neural, and Behavioral Physiology. 198: 617-624. PMID 22645048 DOI: 10.1007/S00359-012-0734-1 |
0.51 |
|
2012 |
Rasetshwane DM, Neely ST, Allen JB, Shera CA. Reflectance of acoustic horns and solution of the inverse problem. The Journal of the Acoustical Society of America. 131: 1863-73. PMID 22423684 DOI: 10.1121/1.3681923 |
0.351 |
|
2011 |
de Boer E, Shera CA, Nuttall AL. Tracing Distortion Product (DP) Waves in a Cochlear Model. Aip Conference Proceedings. 1403: 557-562. PMID 25284909 |
0.304 |
|
2011 |
Shera CA, Bergevin C, Kalluri R, Laughlin MM, Michelet P, van der Heijden M, Joris PX. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque. Aip Conference Proceedings. 1403: 286-292. PMID 24701000 DOI: 10.1063/1.3658099 |
0.578 |
|
2011 |
Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America. 108: 17516-20. PMID 21987783 DOI: 10.1073/Pnas.1105867108 |
0.634 |
|
2011 |
Sisto R, Moleti A, Botti T, Bertaccini D, Shera CA. Distortion products and backward-traveling waves in nonlinear active models of the cochlea. The Journal of the Acoustical Society of America. 129: 3141-52. PMID 21568417 DOI: 10.1121/1.3569700 |
0.39 |
|
2010 |
O'Gorman DE, Colburn HS, Shera CA. Auditory sensitivity may require dynamically unstable spike generators: evidence from a model of electrical stimulation. The Journal of the Acoustical Society of America. 128: EL300-5. PMID 21110542 DOI: 10.1121/1.3469765 |
0.355 |
|
2010 |
Shera CA, Guinan JJ, Oxenham AJ. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. Journal of the Association For Research in Otolaryngology : Jaro. 11: 343-65. PMID 20440634 DOI: 10.1007/S10162-010-0217-4 |
0.503 |
|
2010 |
Bergevin C, Shera CA. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards. The Journal of the Acoustical Society of America. 127: 2398-409. PMID 20370023 DOI: 10.1121/1.3303977 |
0.531 |
|
2010 |
Voss SE, Adegoke MF, Horton NJ, Sheth KN, Rosand J, Shera CA. Posture systematically alters ear-canal reflectance and DPOAE properties. Hearing Research. 263: 43-51. PMID 20227475 DOI: 10.1016/J.Heares.2010.03.003 |
0.403 |
|
2009 |
O'Gorman DE, White JA, Shera CA. Dynamical instability determines the effect of ongoing noise on neural firing. Journal of the Association For Research in Otolaryngology : Jaro. 10: 251-67. PMID 19308644 DOI: 10.1007/S10162-008-0148-5 |
0.336 |
|
2009 |
Shera CA. Shampooing, skydiving, and the cochlear amplifier. The Journal of the Acoustical Society of America. 125: 2563-2563. DOI: 10.1121/1.4783704 |
0.38 |
|
2008 |
Shera CA, Tubis A, Talmadge CL. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. The Journal of the Acoustical Society of America. 124: 381-95. PMID 18646984 DOI: 10.1121/1.2917805 |
0.531 |
|
2008 |
Bergevin C, Freeman DM, Saunders JC, Shera CA. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 194: 665-83. PMID 18500528 DOI: 10.1007/S00359-008-0338-Y |
0.481 |
|
2008 |
Shera CA, Tubis A, Talmadge CL. Testing coherent reflection in chinchilla The Journal of the Acoustical Society of America. 123: 3851-3851. DOI: 10.1121/1.2935684 |
0.452 |
|
2007 |
Kalluri R, Shera CA. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. The Journal of the Acoustical Society of America. 122: 3562-75. PMID 18247764 DOI: 10.1121/1.2793604 |
0.625 |
|
2007 |
Sisto R, Moleti A, Shera CA. Cochlear reflectivity in transmission-line models and otoacoustic emission characteristic time delays. The Journal of the Acoustical Society of America. 122: 3554-61. PMID 18247763 DOI: 10.1121/1.2799498 |
0.528 |
|
2007 |
Shera CA. Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea. The Journal of the Acoustical Society of America. 122: 2738-58. PMID 18189566 DOI: 10.1121/1.2783205 |
0.419 |
|
2007 |
Kalluri R, Shera CA. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. The Journal of the Acoustical Society of America. 121: 2097-110. PMID 17471725 DOI: 10.1121/1.2435981 |
0.657 |
|
2007 |
Shera CA, Tubis A, Talmadge CL, de Boer E, Fahey PF, Guinan JJ. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. The Journal of the Acoustical Society of America. 121: 1564-75. PMID 17407894 DOI: 10.1121/1.2405891 |
0.432 |
|
2007 |
Shera CA, Guinan JJ. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. The Journal of the Acoustical Society of America. 121: 1003-16. PMID 17348523 DOI: 10.1121/1.2404620 |
0.526 |
|
2007 |
de Boer E, Nuttall AL, Shera CA. Wave propagation patterns in a "classical" three-dimensional model of the cochlea. The Journal of the Acoustical Society of America. 121: 352-62. PMID 17297790 DOI: 10.1121/1.2385068 |
0.447 |
|
2006 |
Voss SE, Horton NJ, Tabucchi TH, Folowosele FO, Shera CA. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocritical Care. 4: 251-7. PMID 16757834 DOI: 10.1385/Ncc:4:3:251 |
0.426 |
|
2005 |
Shera CA, Tubis A, Talmadge CL. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions. The Journal of the Acoustical Society of America. 118: 287-313. PMID 16119350 DOI: 10.1121/1.1895025 |
0.411 |
|
2004 |
Shera CA, Tubis A, Talmadge CL. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al. Journal of the Association For Research in Otolaryngology : Jaro. 5: 349-59. PMID 15675000 DOI: 10.1007/S10162-004-4038-1 |
0.386 |
|
2004 |
Voss SE, Shera CA. Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat. The Journal of the Acoustical Society of America. 116: 2187-98. PMID 15532651 DOI: 10.1121/1.1785832 |
0.451 |
|
2004 |
Shera CA. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear and Hearing. 25: 86-97. PMID 15064654 DOI: 10.1097/01.Aud.0000121200.90211.83 |
0.415 |
|
2003 |
Oxenham AJ, Shera CA. Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association For Research in Otolaryngology : Jaro. 4: 541-54. PMID 14716510 DOI: 10.1007/S10162-002-3058-Y |
0.427 |
|
2003 |
Goodman SS, Withnell RH, Shera CA. The origin of SFOAE microstructure in the guinea pig. Hearing Research. 183: 7-17. PMID 13679133 DOI: 10.1016/S0378-5955(03)00193-X |
0.453 |
|
2003 |
Shera CA. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. The Journal of the Acoustical Society of America. 114: 244-62. PMID 12880039 DOI: 10.1121/1.1575750 |
0.467 |
|
2003 |
Shera CA, Guinan JJ. Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. The Journal of the Acoustical Society of America. 113: 2762-72. PMID 12765394 DOI: 10.1121/1.1557211 |
0.486 |
|
2002 |
Shera CA, Guinan JJ, Oxenham AJ. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America. 99: 3318-23. PMID 11867706 DOI: 10.1073/Pnas.032675099 |
0.482 |
|
2001 |
Shera CA. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. The Journal of the Acoustical Society of America. 110: 332-48. PMID 11508959 DOI: 10.1121/1.1378349 |
0.477 |
|
2001 |
Shera CA. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. The Journal of the Acoustical Society of America. 109: 2023-34. PMID 11386555 DOI: 10.1121/1.1366372 |
0.522 |
|
2001 |
Kalluri R, Shera CA. Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. The Journal of the Acoustical Society of America. 109: 622-37. PMID 11248969 DOI: 10.1121/1.1334597 |
0.652 |
|
2001 |
Oxenham AJ, Shera CA. Frequency selectivity estimated using stimulus‐frequency otoacoustic emissions and psychophysical masking The Journal of the Acoustical Society of America. 109: 2408-2408. DOI: 10.1121/1.4744511 |
0.424 |
|
2000 |
Shera CA, Talmadge CL, Tubis A. Interrelations among distortion-product phase-gradient delays: Their connection to scaling symmetry and its breaking Journal of the Acoustical Society of America. 108: 2933-2948. PMID 11144585 DOI: 10.1121/1.1323234 |
0.456 |
|
2000 |
Voss SE, Rosowski JJ, Merchant SN, Thornton AR, Shera CA, Peake WT. Middle ear pathology can affect the ear-canal sound pressure generated by audiologic earphones. Ear and Hearing. 21: 265-74. PMID 10981602 DOI: 10.1097/00003446-200008000-00001 |
0.398 |
|
2000 |
Voss SE, Rosowski JJ, Shera CA, Peake WT. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones. The Journal of the Acoustical Society of America. 107: 1548-65. PMID 10738809 DOI: 10.1121/1.428440 |
0.419 |
|
1999 |
Shera CA, Guinan JJ. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. The Journal of the Acoustical Society of America. 105: 782-98. PMID 9972564 DOI: 10.1121/1.426948 |
0.452 |
|
1995 |
Zweig G, Shera CA. The origin of periodicity in the spectrum of evoked otoacoustic emissions. The Journal of the Acoustical Society of America. 98: 2018-47. PMID 7593924 DOI: 10.1121/1.413320 |
0.685 |
|
1995 |
Kimberley BP, Shaw G, Shera C, Allen JB. Cochlear acoustic reflectance and traveling wave delay The Journal of the Acoustical Society of America. 97: 3413-3413. DOI: 10.1121/1.412500 |
0.463 |
|
1993 |
Shera CA, Zweig G. Noninvasive measurement of the cochlear traveling-wave ratio. The Journal of the Acoustical Society of America. 93: 3333-52. PMID 8326061 DOI: 10.1121/1.405717 |
0.68 |
|
1992 |
Shera CA, Zweig G. An empirical bound on the compressibility of the cochlea. The Journal of the Acoustical Society of America. 92: 1382-8. PMID 1401524 DOI: 10.1121/1.403931 |
0.607 |
|
1992 |
Shera CA, Zweig G. Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments. The Journal of the Acoustical Society of America. 92: 1371-81. PMID 1401523 DOI: 10.1121/1.403930 |
0.6 |
|
1992 |
Shera CA, Zweig G. Middle-ear phenomenology: the view from the three windows. The Journal of the Acoustical Society of America. 92: 1356-70. PMID 1401522 DOI: 10.1121/1.403929 |
0.617 |
|
1991 |
Shera CA, Zweig G. Reflection of retrograde waves within the cochlea and at the stapes. The Journal of the Acoustical Society of America. 89: 1290-305. PMID 2030216 DOI: 10.1121/1.400654 |
0.64 |
|
1991 |
Shera CA, Zweig G. A symmetry suppresses the cochlear catastrophe. The Journal of the Acoustical Society of America. 89: 1276-89. PMID 2030215 DOI: 10.1121/1.400650 |
0.658 |
|
1991 |
Shera CA, Zweig G. Phenomenological characterization of eardrum transduction. The Journal of the Acoustical Society of America. 90: 253-62. PMID 1880296 DOI: 10.1121/1.401295 |
0.544 |
|
Show low-probability matches. |