Year |
Citation |
Score |
2022 |
Reusch S, Stein R, Kowalski M, van Velzen S, Franckowiak A, Lunardini C, Murase K, Winter W, Miller-Jones JCA, Kasliwal MM, Gilfanov M, Garrappa S, Paliya VS, Ahumada T, Anand S, et al. Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters. 128: 221101. PMID 35714251 DOI: 10.1103/PhysRevLett.128.221101 |
0.464 |
|
2021 |
Rodrigues X, Heinze J, Palladino A, van Vliet A, Winter W. Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Physical Review Letters. 126: 191101. PMID 34047601 DOI: 10.1103/PhysRevLett.126.191101 |
0.768 |
|
2021 |
Winter W, Lunardini C. Publisher Correction: A concordance scenario for the observed neutrino from a tidal disruption event Nature Astronomy. 5: 621-621. DOI: 10.1038/S41550-021-01343-X |
0.307 |
|
2020 |
Rudolph A, Heinze J, Fedynitch A, Winter W. Impact of the Collision Model on the Multi-messenger Emission from Gamma-Ray Burst Internal Shocks The Astrophysical Journal. 893: 72. DOI: 10.3847/1538-4357/Ab7Ea7 |
0.51 |
|
2020 |
Heinze J, Biehl D, Fedynitch A, Boncioli D, Rudolph A, Winter W. Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks Monthly Notices of the Royal Astronomical Society. 498: 5990-6004. DOI: 10.1093/mnras/staa2751 |
0.463 |
|
2020 |
Palladino A, Vliet Av, Winter W, Franckowiak A. Can astrophysical neutrinos trace the origin of the detected ultra-high energy cosmic rays? Monthly Notices of the Royal Astronomical Society. 494: 4255-4265. DOI: 10.1093/Mnras/Staa1003 |
0.504 |
|
2019 |
Rodrigues X, Fedynitch A, Gao S, Winter W, Palladino A. Leptohadronic Blazar Models Applied to the 2014–2015 Flare of TXS 0506+056 The Astrophysical Journal. 874. DOI: 10.3847/2041-8213/Ab1267 |
0.492 |
|
2019 |
Heinze J, Fedynitch A, Boncioli D, Winter W. A New View on Auger Data and Cosmogenic Neutrinos in Light of Different Nuclear Disintegration and Air-shower Models The Astrophysical Journal. 873: 88. DOI: 10.3847/1538-4357/Ab05Ce |
0.527 |
|
2019 |
Boncioli D, Biehl D, Winter W. On the Common Origin of Cosmic Rays across the Ankle and Diffuse Neutrinos at the Highest Energies from Low-luminosity Gamma-Ray Bursts The Astrophysical Journal. 872: 110. DOI: 10.3847/1538-4357/Aafda7 |
0.536 |
|
2019 |
Palladino A, Rodrigues X, Gao S, Winter W. Interpretation of the Diffuse Astrophysical Neutrino Flux in Terms of the Blazar Sequence The Astrophysical Journal. 871: 41. DOI: 10.3847/1538-4357/Aaf507 |
0.473 |
|
2019 |
Biehl D, Boncioli D, Fedynitch A, Morejon L, Winter W. Astrophysical neutrino production and impact of associated uncertainties in photo-hadronic interactions of UHECRs Epj Web of Conferences. 208: 04002. DOI: 10.1051/epjconf/201920804002 |
0.365 |
|
2019 |
Gao S, Fedynitch A, Winter W, Pohl M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare Nature Astronomy. 3: 88-92. DOI: 10.1038/S41550-018-0610-1 |
0.559 |
|
2018 |
Biehl D, Boncioli D, Lunardini C, Winter W. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Scientific Reports. 8: 10828. PMID 30018410 DOI: 10.1038/S41598-018-29022-4 |
0.755 |
|
2018 |
Rodrigues X, Fedynitch A, Gao S, Boncioli D, Winter W. Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars The Astrophysical Journal. 854: 54. DOI: 10.3847/1538-4357/Aaa7Ee |
0.525 |
|
2018 |
Biehl D, Heinze J, Winter W. Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints Monthly Notices of the Royal Astronomical Society. 476: 1191-1197. DOI: 10.1093/Mnras/Sty285 |
0.491 |
|
2018 |
Palladino A, Winter W. A multi-component model for observed astrophysical neutrinos Astronomy & Astrophysics. 615: A168. DOI: 10.1051/0004-6361/201832731 |
0.414 |
|
2018 |
Biehl D, Fedynitch A, Boncioli D, Winter W. Cosmic Ray and Neutrino Emission from Gamma-Ray Bursts with a Nuclear Cascade Astronomy and Astrophysics. 611. DOI: 10.1051/0004-6361/201731337 |
0.554 |
|
2017 |
Boncioli D, Fedynitch A, Winter W. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays. Scientific Reports. 7: 4882. PMID 28687805 DOI: 10.1038/S41598-017-05120-7 |
0.49 |
|
2017 |
Gao S, Pohl M, Winter W. On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars The Astrophysical Journal. 843: 109. DOI: 10.3847/1538-4357/Aa7754 |
0.33 |
|
2017 |
Bustamante M, Heinze J, Murase K, Winter W. Multi-messenger light curves from gamma-ray bursts in the internal shock model The Astrophysical Journal. 837: 33. DOI: 10.3847/1538-4357/837/1/33 |
0.776 |
|
2017 |
Rasmussen RW, Lechner L, Ackermann M, Kowalski M, Winter W. Astrophysical neutrinos flavored with beyond the Standard Model physics Physical Review D. 96: 83018. DOI: 10.1103/Physrevd.96.083018 |
0.538 |
|
2017 |
Lunardini C, Winter W. High Energy Neutrinos from the Tidal Disruption of Stars Physical Review D. 95: 123001. DOI: 10.1103/Physrevd.95.123001 |
0.542 |
|
2016 |
Heinze J, Boncioli D, Bustamante M, Winter W. Cosmogenic Neutrinos Challenge The Cosmic-Ray Proton Dip Model The Astrophysical Journal. 825: 122. DOI: 10.3847/0004-637X/825/2/122 |
0.795 |
|
2016 |
Rasmussen RW, Winter W. Perspectives for tests of neutrino mass generation at the GeV scale: Experimental reach versus theoretical predictions Physical Review D. 94: 73004. DOI: 10.1103/Physrevd.94.073004 |
0.402 |
|
2016 |
Edgecock T, Caretta O, Davenne T, Densam C, Fitton M, Kelliher D, Loveridge P, Machida S, Prior C, Rogers C, Rooney M, Thomason J, Wilcox D, Wildner E, Efthymiopoulos I, ... ... Winter W, et al. Publisher’s Note: High intensity neutrino oscillation facilities in Europe [Phys. Rev. Accel. Beams16, 021002 (2013)] Physical Review Accelerators and Beams. 19. DOI: 10.1103/Physrevaccelbeams.19.079901 |
0.747 |
|
2016 |
Winter W. Atmospheric Neutrino Oscillations for Earth Tomography Nuclear Physics. 908: 250-267. DOI: 10.1016/J.Nuclphysb.2016.03.033 |
0.438 |
|
2015 |
Bustamante M, Beacom JF, Winter W. Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos. Physical Review Letters. 115: 161302. PMID 26550861 DOI: 10.1103/Physrevlett.115.161302 |
0.766 |
|
2015 |
Bustamante M, Baerwald P, Murase K, Winter W. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts. Nature Communications. 6: 6783. PMID 25858274 DOI: 10.1038/Ncomms7783 |
0.764 |
|
2015 |
Baerwald P, Bustamante M, Winter W. Are gamma-ray bursts the sources of ultra-high energy cosmic rays? Astroparticle Physics. 62: 66-91. DOI: 10.1016/J.Astropartphys.2014.07.007 |
0.792 |
|
2014 |
Winter W. Describing the observed cosmic neutrinos by interactions of nuclei with matter Physical Review D. 90: 103003. DOI: 10.1103/Physrevd.90.103003 |
0.561 |
|
2014 |
Joshi JC, Winter W, Gupta N. Erratum: ‘How many of the observed neutrino events can be described by cosmic ray interactions in the Milky Way?’ Monthly Notices of the Royal Astronomical Society. 446: 892-892. DOI: 10.1093/MNRAS/STU2132 |
0.362 |
|
2014 |
Winter W, Becker Tjus J, Klein SR. Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts Astronomy & Astrophysics. 569: A58. DOI: 10.1051/0004-6361/201423745 |
0.359 |
|
2014 |
Merle A, Morisi S, Winter W. Common origin of reactor and sterile neutrino mixing Journal of High Energy Physics. 2014: 39. DOI: 10.1007/Jhep07(2014)039 |
0.445 |
|
2014 |
Krauss MB, Morisi S, Porod W, Winter W. Higher dimensional effective operators for direct dark matter detection Journal of High Energy Physics. 2014. DOI: 10.1007/Jhep02(2014)056 |
0.379 |
|
2013 |
Winter W. Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube Physical Review D. 88: 83007. DOI: 10.1103/Physrevd.88.083007 |
0.528 |
|
2013 |
Coloma P, Huber P, Kopp J, Winter W. Systematic uncertainties in long-baseline neutrino oscillations for large θ13 Physical Review D. 87: 1-12. DOI: 10.1103/Physrevd.87.033004 |
0.772 |
|
2013 |
Baerwald P, Bustamante M, Winter W. UHECR Escape Mechanisms for Protons and Neutrons from Gamma-Ray Bursts, and the Cosmic-Ray-Neutrino Connection The Astrophysical Journal. 768: 186. DOI: 10.1088/0004-637X/768/2/186 |
0.767 |
|
2013 |
Krauss MB, Meloni D, Porod W, Winter W. Neutrino mass from a d=7 effective operator in a SUSY-GUT framework Journal of High Energy Physics. 2013. DOI: 10.1007/Jhep05(2013)121 |
0.375 |
|
2013 |
Bonnet F, Hirsch M, Ota T, Winter W. Systematic decomposition of the neutrinoless double beta decay operator Journal of High Energy Physics. 2013: 55. DOI: 10.1007/Jhep03(2013)055 |
0.351 |
|
2012 |
Hümmer S, Baerwald P, Winter W. Neutrino emission from gamma-ray burst fireballs, revised. Physical Review Letters. 108: 231101. PMID 23003939 DOI: 10.1103/Physrevlett.108.231101 |
0.766 |
|
2012 |
Winter W. Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects Advances in High Energy Physics. 2012: 1-41. DOI: 10.1155/2012/586413 |
0.396 |
|
2012 |
Bonnet F, Ota T, Rauch M, Winter W. Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model Physical Review D. 86: 93014. DOI: 10.1103/Physrevd.86.093014 |
0.381 |
|
2012 |
Winter W. Optimization of a very low energy neutrino factory for the disappearance into sterile neutrinos Physical Review D. 85: 113005. DOI: 10.1103/Physrevd.85.113005 |
0.556 |
|
2012 |
Winter W. Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot Physical Review D. 85: 23013. DOI: 10.1103/Physrevd.85.023013 |
0.547 |
|
2012 |
Winter W. Constraints on the interpretation of the superluminal motion of neutrinos at OPERA Physical Review D. 85: 17301. DOI: 10.1103/Physrevd.85.017301 |
0.458 |
|
2012 |
Baerwald P, Bustamante M, Winter W. Neutrino decays over cosmological distances and the implications for neutrino telescopes Journal of Cosmology and Astroparticle Physics. 2012: 20-20. DOI: 10.1088/1475-7516/2012/10/020 |
0.792 |
|
2012 |
Baerwald P, Hümmer S, Winter W. Systematics in the interpretation of aggregated neutrino flux limits and flavor ratios from gamma-ray bursts Astroparticle Physics. 35: 508-529. DOI: 10.1016/J.Astropartphys.2011.11.005 |
0.475 |
|
2012 |
Bonnet F, Hirsch M, Ota T, Winter W. Systematic study of the d = 5 Weinberg operator at one-loop order Journal of High Energy Physics. 2012: 153. DOI: 10.1007/Jhep07(2012)153 |
0.349 |
|
2012 |
Tang J, Winter W. Requirements for a new detector at the South Pole receiving an accelerator neutrino beam Journal of High Energy Physics. 2012: 28. DOI: 10.1007/Jhep02(2012)028 |
0.426 |
|
2011 |
Krauss MB, Ota T, Porod W, Winter W. Neutrino mass from higher than d=5 effective operators in SUSY, and its test at the LHC Physical Review D. 84: 115023. DOI: 10.1103/Physrevd.84.115023 |
0.365 |
|
2011 |
Baerwald P, Hümmer S, Winter W. Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux Physical Review D. 83: 67303. DOI: 10.1103/Physrevd.83.067303 |
0.541 |
|
2011 |
Mehta P, Winter W. Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects Journal of Cosmology and Astroparticle Physics. 2011: 041-041. DOI: 10.1088/1475-7516/2011/03/041 |
0.354 |
|
2011 |
Meloni D, Plentinger F, Winter W. Perturbing exactly tri-bimaximal neutrino mixings with charged lepton mass matrices Physics Letters B. 699: 354-359. DOI: 10.1016/J.Physletb.2011.04.033 |
0.394 |
|
2011 |
Huber P, Kopp J, Lindner M, Merle A, Rodejohann W, Rolinec M, Schwetz T, Winter W. Physics potential of future reactor neutrino experiments Nuclear Physics B - Proceedings Supplements. 221: 360. DOI: 10.1016/J.NUCLPHYSBPS.2011.10.010 |
0.709 |
|
2011 |
Winter W. Neutrino flavor ratios from cosmic accelerators on the Hillas plot Nuclear Physics B - Proceedings Supplements. 217: 297-299. DOI: 10.1016/J.NUCLPHYSBPS.2011.04.125 |
0.387 |
|
2011 |
Agarwalla SK, Huber P, Tang J, Winter W. Optimization of the Neutrino Factory, revisited Journal of High Energy Physics. 2011: 120. DOI: 10.1007/Jhep01(2011)120 |
0.679 |
|
2010 |
Meloni D, Tang J, Winter W. Sterile neutrinos beyond LSND at the neutrino factory Physical Review D. 82: 93008. DOI: 10.1103/Physrevd.82.093008 |
0.465 |
|
2010 |
Tang J, Winter W. Neutrino factory in stages: Low energy, high energy, off-axis Physical Review D. 81: 33005. DOI: 10.1103/Physrevd.81.033005 |
0.52 |
|
2010 |
Winter W. Lectures on neutrino phenomenology Arxiv: High Energy Physics - Phenomenology. 203: 45-81. DOI: 10.1016/J.Nuclphysbps.2010.08.005 |
0.489 |
|
2010 |
Hümmer S, Maltoni M, Winter W, Yaguna C. Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot Astroparticle Physics. 34: 205-224. DOI: 10.1016/J.Astropartphys.2010.07.003 |
0.523 |
|
2010 |
Meloni D, Ohlsson T, Winter W, Zhang H. Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory Journal of High Energy Physics. 2010. DOI: 10.1007/Jhep04(2010)041 |
0.479 |
|
2009 |
Giunti C, Laveder M, Winter W. Short-Baseline Electron Neutrino Disappearance at a Neutrino Factory Physical Review D. 80. DOI: 10.1103/Physrevd.80.073005 |
0.482 |
|
2009 |
Tang J, Winter W. Physics with near detectors at a neutrino factory Physical Review D. 80: 53001. DOI: 10.1103/Physrevd.80.053001 |
0.511 |
|
2009 |
Gavela MB, Hernandez D, Ota T, Winter W. Large gauge invariant non-standard neutrino interactions Physical Review D. 79: 13007. DOI: 10.1103/Physrevd.79.013007 |
0.399 |
|
2009 |
Huber P, Lindner M, Schwetz T, Winter W. First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments Journal of High Energy Physics. 2009: 1-29. DOI: 10.1088/1126-6708/2009/11/044 |
0.729 |
|
2009 |
Bonnet F, Hernandez D, Ota T, Winter W. Neutrino masses from higher than d=5 effective operators Journal of High Energy Physics. 2009: 76-76. DOI: 10.1088/1126-6708/2009/10/076 |
0.391 |
|
2009 |
Winter W. Testing non-standard CP violation in neutrino propagation Physics Letters B. 671: 77-81. DOI: 10.1016/J.Physletb.2008.11.042 |
0.46 |
|
2009 |
Winter W. Long baseline neutrino oscillations: Theoretical aspects Arxiv: High Energy Physics - Phenomenology. 188: 151-157. DOI: 10.1016/J.Nuclphysbps.2009.02.036 |
0.45 |
|
2008 |
Kopp J, Ota T, Winter W. Neutrino factory optimization for nonstandard interactions Physical Review D. 78: 1-17. DOI: 10.1103/Physrevd.78.053007 |
0.661 |
|
2008 |
Winter W. Minimal neutrino beta beam for large θ 13 Physical Review D. 78: 37101. DOI: 10.1103/Physrevd.78.037101 |
0.374 |
|
2008 |
Niehage S, Winter W. Entangled maximal mixings in U{sub PMNS}=U{sub l}{sup {dagger}}U{sub {nu}}, and a connection to complex mass textures Physical Review D. 78. DOI: 10.1103/Physrevd.78.013007 |
0.311 |
|
2008 |
Maltoni M, Winter W. Testing neutrino oscillations plus decay with neutrino telescopes Journal of High Energy Physics. 807: 64. DOI: 10.1088/1126-6708/2008/07/064 |
0.399 |
|
2008 |
Agarwalla SK, Choubey S, Raychaudhuri A, Winter W. Optimizing the greenfield Beta-beam Journal of High Energy Physics. 2008: 90-90. DOI: 10.1088/1126-6708/2008/06/090 |
0.34 |
|
2008 |
Plentinger F, Seidl G, Winter W. Group space scan of flavor symmetries for nearly tribimaximal lepton mixing Journal of High Energy Physics. 2008: 77-77. DOI: 10.1088/1126-6708/2008/04/077 |
0.46 |
|
2008 |
Winter W. Neutrino oscillation observables from mass matrix structure Physics Letters B. 659: 275-280. DOI: 10.1016/J.Physletb.2007.11.032 |
0.376 |
|
2008 |
Plentinger F, Seidl G, Winter W. Systematic parameter space search of extended quark-lepton complementarity Nuclear Physics. 791: 60-92. DOI: 10.1016/J.Nuclphysb.2007.09.016 |
0.403 |
|
2007 |
Blennow M, Ohlsson T, Winter W. Non-standard Hamiltonian effects on neutrino oscillations European Physical Journal C. 49: 1023-1039. DOI: 10.1140/Epjc/S10052-006-0177-3 |
0.475 |
|
2007 |
Plentinger F, Seidl G, Winter W. Seesaw mechanism in quark-lepton complementarity Physical Review D. 76: 113003. DOI: 10.1103/Physrevd.76.113003 |
0.414 |
|
2007 |
Barger V, Huber P, Marfatia D, Winter W. Which long-baseline neutrino experiments are preferable? Physical Review D - Particles, Fields, Gravitation and Cosmology. 76. DOI: 10.1103/Physrevd.76.053005 |
0.59 |
|
2007 |
Barger V, Huber P, Marfatia D, Winter W. Upgraded experiments with super neutrino beams: Reach versus exposure Physical Review D - Particles, Fields, Gravitation and Cosmology. 76. DOI: 10.1103/Physrevd.76.031301 |
0.573 |
|
2007 |
Gandhi R, Winter W. Physics with a very long neutrino factory baseline Physical Review D. 75: 53002. DOI: 10.1103/Physrevd.75.053002 |
0.429 |
|
2007 |
Huber P, Winter W. Neutrino factory superbeam Physics Letters B. 655: 251-256. DOI: 10.1016/J.Physletb.2007.09.018 |
0.68 |
|
2007 |
Huber P, Kopp J, Lindner M, Rolinec M, Winter W. GLoBES: General Long Baseline Experiment Simulator ☆ Computer Physics Communications. 177: 439-440. DOI: 10.1016/J.Cpc.2007.05.007 |
0.767 |
|
2007 |
Huber P, Kopp J, Lindner M, Rolinec M, Winter W. New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator Computer Physics Communications. 177: 432-438. DOI: 10.1016/J.Cpc.2007.05.004 |
0.765 |
|
2006 |
Huber P, Lindner M, Rolinec M, Winter W. Optimization of a neutrino factory oscillation experiment Physical Review D. 74: 1-31. DOI: 10.1103/Physrevd.74.073003 |
0.699 |
|
2006 |
Winter W. How astrophysical neutrino sources could be used for early measurements of neutrino mass hierarchy and leptonic CP phase Physical Review D. 74: 33015. DOI: 10.1103/Physrevd.74.033015 |
0.499 |
|
2006 |
Huber P, Lindner M, Rolinec M, Winter W. Physics and optimization of beta beams : From low to very high gamma Physical Review D. 73: 53002. DOI: 10.1103/Physrevd.73.053002 |
0.635 |
|
2006 |
De Gouvêa A, Winter W. What would it take to determine the neutrino mass hierarchy if θ13 were too small? Physical Review D - Particles, Fields, Gravitation and Cosmology. 73. DOI: 10.1103/PhysRevD.73.033003 |
0.396 |
|
2006 |
Huber P, Kopp J, Lindner M, Rolinec M, Winter W. From Double Chooz to Triple Chooz - Neutrino Physics at the Chooz Reactor Complex Journal of High Energy Physics. 2006: 72-72. DOI: 10.1088/1126-6708/2006/05/072 |
0.795 |
|
2005 |
Winter W. Probing the absolute density of the Earth's core using a vertical neutrino beam Physical Review D. 72: 37302. DOI: 10.1103/Physrevd.72.037302 |
0.386 |
|
2005 |
Blennow M, Ohlsson T, Winter W. Damping signatures in future neutrino oscillation experiments Journal of High Energy Physics. 1095-1125. DOI: 10.1088/1126-6708/2005/06/049 |
0.321 |
|
2005 |
Huber P, Lindner M, Winter W. From parameter space constraints to the precision determination of the leptonic Dirac CP phase Journal of High Energy Physics. 2005: 20-20. DOI: 10.1088/1126-6708/2005/05/020 |
0.678 |
|
2005 |
Huber P, Lindner M, Rolinec M, Schwetz T, Winter W. Combined potential of future long-baseline and reactor experiments ∗ Arxiv: High Energy Physics - Phenomenology. 145: 190-193. DOI: 10.1016/J.Nuclphysbps.2005.04.004 |
0.684 |
|
2005 |
Huber P, Lindner M, Schwetz T, Rolinec M, Winter W. GLoBES – General Long Baseline Experiment Simulator Nuclear Physics B - Proceedings Supplements. 143: 565. DOI: 10.1016/J.NUCLPHYSBPS.2005.01.230 |
0.456 |
|
2005 |
Huber P, Lindner M, Winter W. Simulation of long-baseline neutrino oscillation experiments with GLoBES: (General Long Baseline Experiment Simulator) Computer Physics Communications. 167: 195-202. DOI: 10.1016/J.Cpc.2005.01.003 |
0.701 |
|
2004 |
Antusch S, Huber P, Kersten J, Schwetz T, Winter W. Is there maximal mixing in the lepton sector Physical Review D. 70: 97302. DOI: 10.1103/Physrevd.70.097302 |
0.725 |
|
2004 |
Huber P, Lindner M, Rolinec M, Schwetz T, Winter W. Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years Physical Review D. 70: 73014. DOI: 10.1103/Physrevd.70.073014 |
0.709 |
|
2004 |
Winter W. Understanding CP phase-dependent measurements at neutrino superbeams in terms of birate graphs Physical Review D. 70: 33006. DOI: 10.1103/Physrevd.70.033006 |
0.356 |
|
2003 |
Ohlsson T, Winter W. Role of matter density uncertainties in the analysis of future neutrino factory experiments Physical Review D. 68. DOI: 10.1103/Physrevd.68.073007 |
0.375 |
|
2003 |
Huber P, Winter W. Neutrino Factories and the "Magic" Baseline Physical Review D. 68: 37301. DOI: 10.1103/Physrevd.68.037301 |
0.538 |
|
2003 |
Lindner M, Ohlsson T, Tomàs R, Winter W. Tomography of the Earth's core using supernova neutrinos Astroparticle Physics. 19: 755-770. DOI: 10.1016/S0927-6505(03)00120-8 |
0.601 |
|
2003 |
Huber P, Lindner M, Schwetz T, Winter W. Reactor neutrino experiments compared to superbeams Nuclear Physics. 665: 487-519. DOI: 10.1016/S0550-3213(03)00493-0 |
0.724 |
|
2003 |
Huber P, Lindner M, Winter W. Synergies between the first-generation JHF-SK and NuMI superbeam experiments ∗ Nuclear Physics. 654: 3-29. DOI: 10.1016/S0550-3213(03)00063-4 |
0.688 |
|
2002 |
Ohlsson T, Winter W. Could one find petroleum using neutrino oscillations in matter? Europhysics Letters. 60: 34-39. DOI: 10.1209/Epl/I2002-00314-9 |
0.501 |
|
2002 |
Lindner M, Winter W. Quark and Lepton Mass Patterns and the Absolute Neutrino Mass Scale Physical Review D. 66: 57303. DOI: 10.1103/Physrevd.66.057303 |
0.575 |
|
2002 |
Bilenky SM, Freund M, Lindner M, Ohlsson T, Winter W. Tests of CPT Invariance at Neutrino Factories Physical Review D. 65: 73024. DOI: 10.1103/Physrevd.65.073024 |
0.613 |
|
2002 |
Huber P, Lindner M, Winter W. Superbeams versus neutrino factories Nuclear Physics. 3-48. DOI: 10.1016/S0550-3213(02)00825-8 |
0.704 |
|
2002 |
Lindner M, Ohlsson T, Winter W. Decays of supernova neutrinos Nuclear Physics B. 622: 429-456. DOI: 10.1016/S0550-3213(01)00603-4 |
0.674 |
|
2002 |
Jacobsson B, Ohlsson T, Snellman H, Winter W. Effects of random matter density fluctuations on the neutrino oscillation transition probabilities in the Earth Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 532: 259-266. DOI: 10.1016/S0370-2693(02)01580-0 |
0.401 |
|
2001 |
Lindner M, Ohlsson T, Winter W. A combined treatment of neutrino decay and neutrino oscillations Nuclear Physics B. 607: 326-354. DOI: 10.1016/S0550-3213(01)00237-1 |
0.633 |
|
2001 |
Ohlsson T, Winter W. Reconstruction of the Earth's matter density profile using a single neutrino baseline Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 512: 357-364. DOI: 10.1016/S0370-2693(01)00731-6 |
0.354 |
|
Show low-probability matches. |