Year |
Citation |
Score |
2025 |
Lu L, Ying T, Cui CX, Chen Y, Leng J, Li J, Jiang JW, Chang T. Friction Dissymmetry on Hexagonal Boron Carbon Nitride. Nano Letters. PMID 40294332 DOI: 10.1021/acs.nanolett.5c01360 |
0.307 |
|
2023 |
Qu ZX, Jiang JW. Nanobubble-induced significant reduction of the interfacial thermal conductance for few-layer graphene. Physical Chemistry Chemical Physics : Pccp. 25: 28651-28656. PMID 37876242 DOI: 10.1039/d3cp04085b |
0.426 |
|
2023 |
Li Y, Jiang JW. Modulation of thermal conductivity of single-walled carbon nanotubes by fullerene encapsulation: the effect of vacancy defects. Physical Chemistry Chemical Physics : Pccp. 25: 7734-7740. PMID 36880294 DOI: 10.1039/d2cp04638e |
0.33 |
|
2023 |
Xu T, Jiang J. On the configuration of the graphene/carbon nanotube/graphene van der Waals heterostructure. Physical Chemistry Chemical Physics : Pccp. PMID 36723006 DOI: 10.1039/d2cp04797g |
0.402 |
|
2022 |
Yin H, Zhao R, Liu K, Yang Y, Jiang JW, Wan J. Thermal transport in porous graphene with coupling effect of nanopore shape and defect concentration. Nanotechnology. PMID 35830769 DOI: 10.1088/1361-6528/ac80c8 |
0.426 |
|
2021 |
Zhang RS, Jiang JW. Effect of misfit strain on the thermal expansion coefficient of graphene/MoS van der Waals heterostructures. Physical Chemistry Chemical Physics : Pccp. 24: 156-162. PMID 34877582 DOI: 10.1039/d1cp04655a |
0.405 |
|
2021 |
Zhang RS, Jiang JW. Effect of misfit strain on the buckling of graphene/MoSvan der Waals heterostructures. Nanotechnology. 32. PMID 34412042 DOI: 10.1088/1361-6528/ac1f55 |
0.361 |
|
2020 |
Tan C, Dong Z, Li Y, Zhao H, Huang X, Zhou Z, Jiang JW, Long YZ, Jiang P, Zhang TY, Sun B. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications. 11: 3530. PMID 32669576 DOI: 10.1038/S41467-020-17301-6 |
0.382 |
|
2020 |
Zhang RS, Cao HY, Jiang JW. Tunable thermal expansion coefficient of transition-metal dichalcogenide lateral heterostructures. Nanotechnology. PMID 32521524 DOI: 10.1088/1361-6528/Ab9B48 |
0.396 |
|
2020 |
Wan J, Jiang J, Park HS. Machine learning-based design of porous graphene with low thermal conductivity Carbon. 157: 262-269. DOI: 10.1016/J.Carbon.2019.10.037 |
0.508 |
|
2019 |
He JD, Jiang JW. Misfit strain-induced energy dissipation for graphene/MoS2 heterostructure nanomechanical resonators. Nanotechnology. PMID 30865944 DOI: 10.1088/1361-6528/ab0f86 |
0.345 |
|
2019 |
Han G, Chang T, Jiang J. Directional Motion of a Graphene Sheet on Graded MoS2–WSe2 Lateral Heterostructures Journal of Applied Mechanics. 86: 1-6. DOI: 10.1115/1.4043142 |
0.396 |
|
2019 |
Xue Y, Chen Y, Li Z, Jiang J, Zhang Y, Wei N. Strain engineering for thermal conductivity of diamond nanothread forests Journal of Physics D. 52: 85301. DOI: 10.1088/1361-6463/Aaf559 |
0.317 |
|
2019 |
Jiang J, Park HS. Strain tunable phononic topological bandgaps in two-dimensional hexagonal boron nitride Journal of Applied Physics. 125: 82511. DOI: 10.1063/1.5040009 |
0.375 |
|
2019 |
Zhang R, Jiang J. The art of designing carbon allotropes Frontiers of Physics in China. 14: 13401. DOI: 10.1007/S11467-018-0836-5 |
0.37 |
|
2018 |
Wan J, Jiang JW. Modulation of thermal conductivity in single-walled carbon nanotubes by fullerene encapsulation: enhancement or reduction? Nanoscale. PMID 30238946 DOI: 10.1039/C8Nr05188G |
0.417 |
|
2018 |
Jiang JW, Wang BS, Park HS. Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide. Nanoscale. PMID 29999511 DOI: 10.1039/C8Nr04314K |
0.425 |
|
2018 |
Han G, Jiang J. Edge-mode–based graphene nanomechanical resonators for high-sensitivity mass sensor Epl. 123: 36002. DOI: 10.1209/0295-5075/123/36002 |
0.41 |
|
2018 |
Tan Y, Jiang J. Effect of interlayer space on the structure and Poisson's ratio of a graphene/MoS2 tubular van der Waals heterostructure Journal of Applied Physics. 124: 84302. DOI: 10.1063/1.5037392 |
0.435 |
|
2018 |
Han G, Sun J, Jiang J. An analytic investigation for the edge effect on mechanical properties of graphene nanoribbons Journal of Applied Physics. 123: 64301. DOI: 10.1063/1.5012562 |
0.454 |
|
2017 |
Zhou YP, Jiang JW. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific Reports. 7: 45516. PMID 28349983 DOI: 10.1038/Srep45516 |
0.313 |
|
2017 |
Wan J, Jiang JW, Park HS. Negative Poisson's ratio in graphene oxide. Nanoscale. PMID 28272622 DOI: 10.1039/C6Nr08657H |
0.384 |
|
2017 |
Wan J, Jiang J, Park HS. Irreversible crumpling of graphene from hydrostatic and biaxial compression Journal of Physics D: Applied Physics. 51: 015302. DOI: 10.1088/1361-6463/Aa99Af |
0.445 |
|
2017 |
Jiang J, Leng J, Li J, Guo Z, Chang T, Guo X, Zhang T. Twin graphene: A novel two-dimensional semiconducting carbon allotrope Carbon. 118: 370-375. DOI: 10.1016/J.Carbon.2017.03.067 |
0.5 |
|
2017 |
Chen Y, Zhang Y, Cai K, Jiang J, Zheng J, Zhao J, Wei N. Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures Carbon. 117: 399-410. DOI: 10.1016/J.Carbon.2017.03.011 |
0.525 |
|
2016 |
Jiang JW. Buckled graphene for efficient energy harvest, storage and conversion. Nanotechnology. 27: 405402. PMID 27581194 DOI: 10.1088/0957-4484/27/40/405402 |
0.467 |
|
2016 |
Jiang JW, Chang T, Guo X. Tunable negative Poisson's ratio in hydrogenated graphene. Nanoscale. PMID 27536878 DOI: 10.1039/C6Nr04976A |
0.398 |
|
2016 |
Jiang JW, Chang T, Guo X, Park HS. Intrinsic Negative Poisson's Ratio for Single-Layer Graphene. Nano Letters. PMID 27408994 DOI: 10.1021/Acs.Nanolett.6B02538 |
0.483 |
|
2016 |
Jiang JW, Wang BS, Park HS. Interlayer breathing and shear modes in few-layer black phosphorus. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 28: 165401. PMID 26988113 DOI: 10.1088/0953-8984/28/16/165401 |
0.332 |
|
2016 |
Jiang JW, Park HS. Negative Poisson's Ratio in Single-Layer Graphene Ribbons. Nano Letters. PMID 26986994 DOI: 10.1021/Acs.Nanolett.6B00311 |
0.472 |
|
2016 |
Jiang JW, Kim SY, Park HS. Auxetic nanomaterials: Recent progress and future development Applied Physics Reviews. 3. DOI: 10.1063/1.4964479 |
0.338 |
|
2016 |
Jiang J. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect Journal of Applied Physics. 119: 234301. DOI: 10.1063/1.4954019 |
0.446 |
|
2016 |
Wang C, Zhang C, Jiang J, Wei N, Park HS, Rabczuk T. Self-assembly of water molecules using graphene nanoresonators Rsc Advances. 6: 110466-110470. DOI: 10.1039/C6Ra22475J |
0.344 |
|
2016 |
Zhang H, Jiang J, Chang T, Guo X, Park HS. The effects of free edge interaction-induced knotting on the buckling of monolayer graphene International Journal of Solids and Structures. 446-455. DOI: 10.1016/J.Ijsolstr.2016.09.017 |
0.479 |
|
2016 |
Ding Z, Pei QX, Jiang JW, Huang W, Zhang YW. Interfacial thermal conductance in graphene/MoS2 heterostructures Carbon. 96: 888-896. DOI: 10.1016/J.Carbon.2015.10.046 |
0.492 |
|
2015 |
Zhang YY, Pei QX, Jiang JW, Wei N, Zhang YW. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale. PMID 26632915 DOI: 10.1039/C5Nr05451F |
0.458 |
|
2015 |
Jiang JW. The third principal direction besides armchair and zigzag in single-layer black phosphorus. Nanotechnology. 26: 365702. PMID 26294389 DOI: 10.1088/0957-4484/26/36/365702 |
0.375 |
|
2015 |
Jiang JW. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology. 26: 315706. PMID 26184637 DOI: 10.1088/0957-4484/26/31/315706 |
0.305 |
|
2015 |
Jiang JW, Rabczuk T, Park HS. A Stillinger-Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. Nanoscale. 7: 6059-68. PMID 25766085 DOI: 10.1039/C4Nr07341J |
0.339 |
|
2015 |
Jiang JW, Wang BS, Wang JS, Park HS. A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 27: 083001. PMID 25612615 DOI: 10.1088/0953-8984/27/8/083001 |
0.671 |
|
2015 |
Ding Z, Jiang JW, Pei QX, Zhang YW. In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology. 26: 065703. PMID 25597653 DOI: 10.1088/0957-4484/26/6/065703 |
0.465 |
|
2015 |
Jiang JW. Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology. 26: 055701. PMID 25571869 DOI: 10.1088/0957-4484/26/5/055701 |
0.433 |
|
2015 |
Sha ZD, Pei QX, Ding Z, Jiang JW, Zhang YW. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures Journal of Physics D: Applied Physics. 48. DOI: 10.1088/0022-3727/48/39/395303 |
0.354 |
|
2015 |
Lü JT, Zhou H, Jiang JW, Wang JS. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors Aip Advances. 5. DOI: 10.1063/1.4917017 |
0.711 |
|
2015 |
Jiang JW, Park HS. A Gaussian treatment for the friction issue of Lennard-Jones potential in layered materials: Application to friction between graphene, MoS2, and black phosphorus Journal of Applied Physics. 117. DOI: 10.1063/1.4916538 |
0.427 |
|
2015 |
Ding Z, Pei QX, Jiang JW, Zhang YW. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering Journal of Physical Chemistry C. 119: 16358-16365. DOI: 10.1021/Acs.Jpcc.5B03607 |
0.47 |
|
2015 |
Jiang JW. Strain engineering for thermal conductivity of single-walled carbon nanotube forests Carbon. 81: 688-693. DOI: 10.1016/J.Carbon.2014.10.006 |
0.442 |
|
2015 |
Jiang JW. Graphene versus MoS2: A short review Frontiers of Physics. 10: 287-302. DOI: 10.1007/S11467-015-0459-Z |
0.472 |
|
2014 |
Sahoo S, Chitturi VR, Agarwal R, Jiang JW, Katiyar RS. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy. Acs Applied Materials & Interfaces. 6: 19958-65. PMID 25350877 DOI: 10.1021/Am505484Z |
0.357 |
|
2014 |
Jiang JW, Park HS. Negative poisson's ratio in single-layer black phosphorus. Nature Communications. 5: 4727. PMID 25131569 DOI: 10.1038/Ncomms5727 |
0.335 |
|
2014 |
Zhao J, Kou L, Jiang JW, Rabczuk T. Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures. Nanotechnology. 25: 295701. PMID 24980057 DOI: 10.1088/0957-4484/25/29/295701 |
0.321 |
|
2014 |
Jiang JW. Phonon bandgap engineering of strained monolayer MoS₂. Nanoscale. 6: 8326-33. PMID 24932612 DOI: 10.1039/C4Nr00279B |
0.428 |
|
2014 |
Jiang JW, Park HS, Rabczuk T. MoS2 nanoresonators: intrinsically better than graphene? Nanoscale. 6: 3618-25. PMID 24556934 DOI: 10.1039/C3Nr05991J |
0.349 |
|
2014 |
Jiang JW, Wang BS, Rabczuk T. Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation. Nanotechnology. 25: 105706. PMID 24531058 DOI: 10.1088/0957-4484/25/10/105706 |
0.301 |
|
2014 |
Jiang JW, Park HS. Mechanical properties of single-layer black phosphorus Journal of Physics D: Applied Physics. 47. DOI: 10.1088/0022-3727/47/38/385304 |
0.342 |
|
2014 |
Liu B, Reddy CD, Jiang J, Zhu H, Baimova JA, Dmitriev SV, Zhou K. Thermal conductivity of silicene nanosheets and the effect of isotopic doping Journal of Physics D: Applied Physics. 47: 165301. DOI: 10.1088/0022-3727/47/16/165301 |
0.477 |
|
2014 |
Jiang JW. Registry effect on the thermal conductivity of few-layer graphene Journal of Applied Physics. 116. DOI: 10.1063/1.4900526 |
0.534 |
|
2014 |
Jiang JW, Park HS. Mechanical properties of MoS2/graphene heterostructures Applied Physics Letters. 105. DOI: 10.1063/1.4891342 |
0.489 |
|
2013 |
Jiang JW, Qi Z, Park HS, Rabczuk T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology. 24: 435705. PMID 24084656 DOI: 10.1088/0957-4484/24/43/435705 |
0.367 |
|
2013 |
Jiang JW, Zhao JH, Rabczuk T. Size-sensitive Young's modulus of kinked silicon nanowires. Nanotechnology. 24: 185702. PMID 23575466 DOI: 10.1088/0957-4484/24/18/185702 |
0.31 |
|
2013 |
Jiang JW, Yang N, Wang BS, Rabczuk T. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects. Nano Letters. 13: 1670-4. PMID 23517486 DOI: 10.1021/Nl400127Q |
0.453 |
|
2013 |
Zhao J, Wei N, Fan Z, Jiang JW, Rabczuk T. The mechanical properties of three types of carbon allotropes. Nanotechnology. 24: 095702. PMID 23396063 DOI: 10.1088/0957-4484/24/9/095702 |
0.397 |
|
2012 |
Jiang JW, Park HS, Rabczuk T. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism. Nanotechnology. 23: 475501. PMID 23117225 DOI: 10.1088/0957-4484/23/47/475501 |
0.387 |
|
2012 |
Jiang J, Wang J. Bright and dark modes induced by graphene bubbles Epl. 97: 36004. DOI: 10.1209/0295-5075/97/36004 |
0.587 |
|
2012 |
Shi L, Jiang J, Zhang G, Li B. High thermoelectric figure of merit in silicon-germanium superlattice structured nanowires Applied Physics Letters. 101: 233114. DOI: 10.1063/1.4769443 |
0.501 |
|
2012 |
Liu B, Reddy CD, Jiang J, Baimova JA, Dmitriev SV, Nazarov AA, Zhou K. Morphology and in-plane thermal conductivity of hybrid graphene sheets Applied Physics Letters. 101: 211909. DOI: 10.1063/1.4767388 |
0.51 |
|
2012 |
Jiang J, Wang J. Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators Journal of Applied Physics. 111: 54314. DOI: 10.1063/1.3691958 |
0.617 |
|
2012 |
Yang N, Ni X, Jiang J, Li B. How does folding modulate thermal conductivity of graphene Applied Physics Letters. 100: 93107. DOI: 10.1063/1.3690871 |
0.756 |
|
2011 |
Jiang J, Wang J. Graphene-based torsional resonator from molecular-dynamics simulation Epl. 96: 66007. DOI: 10.1209/0295-5075/96/66007 |
0.585 |
|
2011 |
Jiang J, Wang J. Manipulation of heat current by the interface between graphene and white graphene Epl. 96: 16003. DOI: 10.1209/0295-5075/96/16003 |
0.647 |
|
2011 |
Jiang J, Wang J. Theoretical study of thermal conductivity in single-walled boron nitride nanotubes Physical Review B. 84: 85439. DOI: 10.1103/Physrevb.84.085439 |
0.598 |
|
2011 |
Jiang J, Wang B, Wang J. Molecular dynamics simulation for heat transport in thin diamond nanowires Physical Review B. 83: 235432. DOI: 10.1103/Physrevb.83.235432 |
0.624 |
|
2011 |
Jiang J, Wang J. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: Electron-phonon interaction effect Journal of Applied Physics. 110: 124319. DOI: 10.1063/1.3671069 |
0.589 |
|
2011 |
Jiang J, Wang J, Wang B. Minimum thermal conductance in graphene and boron nitride superlattice Applied Physics Letters. 99: 43109. DOI: 10.1063/1.3619832 |
0.661 |
|
2011 |
Jiang J, Wang B, Wang J. First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defects Applied Physics Letters. 98: 113114. DOI: 10.1063/1.3567768 |
0.645 |
|
2011 |
Jiang J, Wang J, Li B. A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes Journal of Applied Physics. 109: 014326. DOI: 10.1063/1.3531573 |
0.68 |
|
2010 |
Jiang JW, Wang JS, Li B. Thermal contraction in silicon nanowires at low temperatures. Nanoscale. 2: 2864-7. PMID 20936243 DOI: 10.1039/C0Nr00437E |
0.666 |
|
2010 |
Jiang JW, Wang JS. Conditions for the existence of phonon localized edge-modes Physical Review B - Condensed Matter and Materials Physics. 81. DOI: 10.1103/Physrevb.81.174117 |
0.568 |
|
2010 |
Jiang J, Wang J, Li B. Elastic and nonlinear stiffness of graphene: A simple approach Physical Review B. 81. DOI: 10.1103/Physrevb.81.073405 |
0.683 |
|
2010 |
Jiang J, Wang J. A universal exponential factor in the dimensional crossover from graphene to graphite Journal of Applied Physics. 108: 124311. DOI: 10.1063/1.3524476 |
0.633 |
|
2010 |
Jiang J, Wang J, Li B. Topological effect on thermal conductivity in graphene Journal of Applied Physics. 108: 064307. DOI: 10.1063/1.3481677 |
0.734 |
|
2010 |
Jiang J, Wang J. Self-repairing in single-walled carbon nanotubes by heat treatment Journal of Applied Physics. 108: 54303. DOI: 10.1063/1.3481004 |
0.571 |
|
2010 |
Jiang J, Lan J, Wang J, Li B. Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism Journal of Applied Physics. 107: 054314. DOI: 10.1063/1.3329541 |
0.726 |
|
2009 |
Wang J, Ni X, Jiang J. Molecular dynamics with quantum heat baths: Application to nanoribbons and nanotubes Physical Review B. 80: 224302. DOI: 10.1103/Physrevb.80.224302 |
0.701 |
|
2009 |
Jiang J, Wang J, Li B. Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach Physical Review B. 80. DOI: 10.1103/Physrevb.80.205429 |
0.697 |
|
2009 |
Jiang J, Wang J, Li B. Young’s modulus of graphene: A molecular dynamics study Physical Review B. 80. DOI: 10.1103/Physrevb.80.113405 |
0.698 |
|
2009 |
Jiang J, Chen J, Wang J, Li B. Edge states induce boundary temperature jump in molecular dynamics simulation of heat conduction Physical Review B. 80. DOI: 10.1103/Physrevb.80.052301 |
0.672 |
|
2009 |
Jiang J, Wang J, Li B. Thermal conductance of graphene and dimerite Physical Review B. 79. DOI: 10.1103/Physrevb.79.205418 |
0.732 |
|
2009 |
Tang H, Jiang J, Wang B, Su Z. A full spd tight-binding treatment for electronic bands of graphitic tubes Solid State Communications. 149: 82-86. DOI: 10.1016/J.Ssc.2008.10.012 |
0.364 |
|
2008 |
Jiang J, Tang H, Wang B, Su Z. Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene Physical Review B. 77: 235421. DOI: 10.1103/Physrevb.77.235421 |
0.439 |
|
2008 |
Jiang J, Tang H, Wang B, Su Z. A lattice dynamical treatment for the total potential energy of single-walled carbon nanotubes and its applications: relaxed equilibrium structure, elastic properties, and vibrational modes of ultra-narrow tubes Journal of Physics: Condensed Matter. 20: 45228. DOI: 10.1088/0953-8984/20/04/045228 |
0.446 |
|
2006 |
Jiang J, Tang H, Wang B, Su Z. Chiral symmetry analysis and rigid rotational invariance for the lattice dynamics of single-wall carbon nanotubes Physical Review B. 73: 235434. DOI: 10.1103/Physrevb.73.235434 |
0.405 |
|
Show low-probability matches. |