Guiliang Tang, Ph.D. - Publications

Affiliations: 
2000 Weizmann Institute of Science, Rehovot, Israel 
Area:
Plant Physiology

33 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2016 Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan RA, Zhu JK. The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. Plos Genetics. 12: e1006416. PMID 27812104 DOI: 10.1371/Journal.Pgen.1006416  0.36
2016 Shi L, Tang X, Tang G. GUIDE-Seq to Detect Genome-wide Double-Stranded Breaks in Plants. Trends in Plant Science. PMID 27593568 DOI: 10.1016/J.Tplants.2016.08.005  0.72
2016 Wu X, Ding D, Shi C, Xue Y, Zhang Z, Tang G, Tang J. microRNA-dependent gene regulatory networks in maize leaf senescence. Bmc Plant Biology. 16: 73. PMID 27000050 DOI: 10.1186/S12870-016-0755-Y  0.72
2016 Bhagwat B, Chi M, Han D, Tang H, Tang G, Xiang Y. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System. Methods in Molecular Biology (Clifton, N.J.). 1405: 149-62. PMID 26843173 DOI: 10.1007/978-1-4939-3393-8_14  0.72
2015 Zhang Z, Wu X, Shi C, Wang R, Li S, Wang Z, Liu Z, Xue Y, Tang G, Tang J. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Molecular Genetics and Genomics : Mgg. PMID 26420507 DOI: 10.1007/S00438-015-1121-8  0.72
2015 Jia X, Ding N, Fan W, Yan J, Gu Y, Tang X, Li R, Tang G. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Science : An International Journal of Experimental Plant Biology. 233: 11-21. PMID 25711809 DOI: 10.1016/J.Plantsci.2014.12.020  0.72
2014 Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection. The Plant Journal : For Cell and Molecular Biology. 79: 928-40. PMID 24944042 DOI: 10.1111/Tpj.12590  0.72
2012 Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R. microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. Plant Signaling & Behavior. 7: 484-91. PMID 22499183 DOI: 10.4161/Psb.19337  0.72
2011 Tang X, Tang X, Gal J, Kyprianou N, Zhu H, Tang G. Detection of microRNAs in prostate cancer cells by microRNA array. Methods in Molecular Biology (Clifton, N.J.). 732: 69-88. PMID 21431706 DOI: 10.1007/978-1-61779-083-6_6  0.72
2010 Tang G. Plant microRNAs: An insight into their gene structures and evolution Seminars in Cell and Developmental Biology. 21: 782-789. PMID 20691276 DOI: 10.1016/J.Semcdb.2010.07.009  0.72
2010 Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. The American Journal of Pathology. 177: 334-45. PMID 20489155 DOI: 10.2353/Ajpath.2010.091202  0.72
2008 Tang G. MicroRNAs: An exciting and open field calls for extensive study from initial and established investigators Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms. 1779: 653-654. PMID 18992708 DOI: 10.1016/J.Bbagrm.2008.10.003  0.72
2008 Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochimica Et Biophysica Acta. 1779: 758-65. PMID 18439437 DOI: 10.1016/J.Bbagrm.2008.03.012  0.72
2008 Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 1213-23. PMID 18234899 DOI: 10.1523/Jneurosci.5065-07.2008  0.72
2007 Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G. A simple array platform for microRNA analysis and its application in mouse tissues. Rna (New York, N.Y.). 13: 1803-22. PMID 17675362 DOI: 10.1261/Rna.498607  0.72
2005 Tang G. siRNA and miRNA: An insight into RISCs Trends in Biochemical Sciences. 30: 106-114. PMID 15691656 DOI: 10.1016/J.Tibs.2004.12.007  0.72
2005 Stepansky A, Yao Y, Tang G, Galili G. Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus. Journal of Experimental Botany. 56: 525-36. PMID 15569707 DOI: 10.1093/Jxb/Eri031  0.72
2004 Tang G, Galili G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends in Biotechnology. 22: 463-9. PMID 15331227 DOI: 10.1016/J.Tibtech.2004.07.009  0.72
2004 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. The Embo Journal. 23: 3356-64. PMID 15282547 DOI: 10.1038/Sj.Emboj.7600340  0.72
2004 Tang G, Zamore PD. Biochemical dissection of RNA silencing in plants. Methods in Molecular Biology (Clifton, N.J.). 257: 223-44. PMID 14770009 DOI: 10.1385/1-59259-750-5:223  0.72
2003 Haley B, Tang G, Zamore PD. In vitro analysis of RNA interference in Drosophila melanogaster. Methods (San Diego, Calif.). 30: 330-6. PMID 12828947 DOI: 10.1016/S1046-2023(03)00052-5  0.72
2003 Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes & Development. 17: 49-63. PMID 12514099 DOI: 10.1101/Gad.1048103  0.72
2002 Zhu X, Tang G, Galili G. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains. The Journal of Biological Chemistry. 277: 49655-61. PMID 12393892 DOI: 10.1074/Jbc.M205466200  0.72
2002 Tang G, Zhu X, Gakiere B, Levanony H, Kahana A, Galili G. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiology. 130: 147-54. PMID 12226495 DOI: 10.1104/Pp.005660  0.72
2001 Zhu X, Tang G, Granier F, Bouchez D, Galili G. A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiology. 126: 1539-45. PMID 11500552 DOI: 10.1104/Pp.126.4.1539  0.48
2001 Galili G, Tang G, Zhu X, Gakiere B. Lysine catabolism: a stress and development super-regulated metabolic pathway. Current Opinion in Plant Biology. 4: 261-6. PMID 11312138 DOI: 10.1016/S1369-5266(00)00170-9  0.56
2001 Zhu X, Tang G, Galili G. Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis. Plant Physiology. 124: 1363-72. PMID 11080311 DOI: 10.1104/Pp.124.3.1363  0.52
2001 Zhu X, Tang G, Galili G. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase. The Biochemical Journal. 351: 215-20. PMID 10998364 DOI: 10.1042/0264-6021:3510215  0.48
2001 Galili G, Tang G, Zhu X, Karchi H, Miron D, Gakière B, Stepansky A. Molecular genetic dissection and potential manipulation of lysine metabolism in seeds Journal of Plant Physiology. 158: 515-520. DOI: 10.1078/0176-1617-00364  0.32
2000 Tang G, Zhu X, Tang X, Galili G. A novel composite locus of Arabidopsis encoding two polypeptides with metabolically related but distinct functions in lysine catabolism. The Plant Journal : For Cell and Molecular Biology. 23: 195-203. PMID 10929113 DOI: 10.1046/J.1365-313X.2000.00770.X  0.32
2000 ZHU X, TANG G, GALILI G. The catabolic function of the α-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine–oxoglutarate reductase, but not saccharopine dehydrogenase Biochemical Journal. 351: 215-220. DOI: 10.1042/bj3510215  0.32
1997 Tang G, Miron D, Zhu-Shimoni JX, Galili G. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in arabidopsis Plant Cell. 9: 1305-1316. PMID 9286108 DOI: 10.1105/Tpc.9.8.1305  0.72
1997 Tang G, Zhu-Shimoni JX, Amir R, Zchori IB, Galili G. Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli. Plant Molecular Biology. 34: 287-93. PMID 9207844 DOI: 10.1023/A:1005849228945  0.72
Show low-probability matches.