Zhenghua Tang - Publications

Affiliations: 
2014 Chemistry University of Miami, Coral Gables, FL 

73 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Wang L, Chen L, Qin L, Liu Y, Tang Z. Alkynyl-protected Ag20Rh2 nanocluster with atomic precision: Structure analysis and tri-functionality catalytic application. Chemistry, An Asian Journal. e202300685. PMID 37622415 DOI: 10.1002/asia.202300685  0.301
2020 Ma X, Tang Z, Qin L, Peng J, Li L, Chen S. Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au molecules. Nanoscale. PMID 31994572 DOI: 10.1039/C9Nr10930G  0.328
2020 Qian Z, Wang K, Shi K, Fu Z, Mai Z, Wang X, Tang Z, Tian Y. Interfacial electron transfer of heterostructured MIL-88A/Ni(OH)2 enhances the oxygen evolution reaction in alkaline solutions Journal of Materials Chemistry. 8: 3311-3321. DOI: 10.1039/C9Ta12865D  0.327
2020 Mai Z, Duan W, Wang K, Tang Z, Chen S. Integrating ZnCo2O4 submicro/nanospheres with CoxSey nanosheets for the oxygen evolution reaction and zinc–air batteries Sustainable Energy and Fuels. 4: 2184-2191. DOI: 10.1039/C9Se01253B  0.344
2020 Zhang Z, Liu J, Curcio A, Wang Y, Wu J, Zhou G, Tang Z, Ciucci F. Atomically dispersed materials for rechargeable batteries Nano Energy. 76: 105085. DOI: 10.1016/J.Nanoen.2020.105085  0.339
2020 Qin L, Ma G, Wang L, Tang Z. Atomically precise metal nanoclusters for (photo)electroreduction of CO2: Recent advances, challenges and opportunities Journal of Energy Chemistry. DOI: 10.1016/J.Jechem.2020.09.003  0.369
2020 Yang H, Wang K, Tang Z, Liu Z, Chen S. Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure Journal of Catalysis. 382: 181-191. DOI: 10.1016/J.Jcat.2019.12.018  0.348
2020 Peng J, Chen Y, Wang K, Tang Z, Chen S. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution International Journal of Hydrogen Energy. 45: 18840-18849. DOI: 10.1016/J.Ijhydene.2020.05.064  0.408
2020 Zhu X, Dai J, Li L, Zhao D, Wu Z, Tang Z, Ma L, Chen S. Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: An efficient electrocatalyst for water splitting Carbon. 160: 133-144. DOI: 10.1016/J.Carbon.2019.12.072  0.412
2020 Ma X, Ma G, Qin L, Chen G, Chen S, Tang Z. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate Science China-Chemistry. 1-8. DOI: 10.1007/S11426-020-9819-4  0.365
2019 Zhao D, Tang Z, Xu W, Wu Z, Ma LJ, Cui Z, Yang C, Li L. N, S-codoped CNTs supported CoS nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: An efficient catalyst for reversible oxygen electrocatalysis. Journal of Colloid and Interface Science. 560: 186-197. PMID 31670016 DOI: 10.1016/J.Jcis.2019.10.069  0.351
2019 Wang K, Wu W, Tang Z, Li L, Chen S, Bedford NM. Hierarchically Structured Co(OH)2/CoPt/N-CN Air Cathodes for Rechargeable Zinc-Air Batteries. Acs Applied Materials & Interfaces. PMID 30621388 DOI: 10.1021/Acsami.8B18424  0.335
2019 Zong Z, Qian Z, Tang Z, Liu Z, Tian Y, Wang S. Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@Ru nanoparticles embedded in porous dodecahedron carbon Journal of Alloys and Compounds. 784: 447-455. DOI: 10.1016/J.Jallcom.2019.01.088  0.4
2019 Ding Z, Wang K, Mai Z, He G, Liu Z, Tang Z. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values International Journal of Hydrogen Energy. 44: 24680-24689. DOI: 10.1016/J.Ijhydene.2019.07.244  0.355
2019 Wu W, Wu Y, Zheng D, Wang K, Tang Z. Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at All-pH values, oxygen evolution reaction and overall water splitting in alkaline solution Electrochimica Acta. 320: 134568. DOI: 10.1016/J.Electacta.2019.134568  0.414
2019 Li T, Chen Y, Tang Z, Liu Z, Wang C. Palladium nanoparticles supported by metal-organic frameworks derived FeNi3Cx nanorods as efficient oxygen reversible catalysts for rechargeable Zn-Air batteries Electrochimica Acta. 307: 403-413. DOI: 10.1016/J.Electacta.2019.03.192  0.384
2019 Qian Z, Chen Y, Tang Z, Liu Z, Wang X, Tian Y, Gao W. Hollow Nanocages of Ni x Co 1−x Se for Efficient Zinc–Air Batteries and Overall Water Splitting Nano-Micro Letters. 11: 28. DOI: 10.1007/S40820-019-0258-0  0.333
2019 Chen Y, Peng J, Duan W, He G, Tang Z. NiFe Alloyed Nanoparticles Encapsulated in Nitrogen Doped Carbon Nanotubes for Bifunctional Electrocatalysis Toward Rechargeable Zn‐Air Batteries Chemcatchem. 11: 5994-6001. DOI: 10.1002/Cctc.201901337  0.351
2018 Yang H, Tang Z, Wang K, Wu W, Chen Y, Ding Z, Liu Z, Chen S. Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Colloid and Interface Science. 528: 18-26. PMID 29807352 DOI: 10.1016/J.Jcis.2018.05.063  0.384
2018 Tian J, Wu W, Tang Z, Wu Y, Burns R, Tichnell B, Liu Z, Chen S. Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets Catalysts. 8: 329. DOI: 10.3390/Catal8080329  0.373
2018 Tang Z, Wu W, Wang K. Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters Catalysts. 8: 65. DOI: 10.3390/Catal8020065  0.357
2018 Ding Z, Tang Z, Li L, Wang K, Wu W, Chen X, Wu X, Chen S. Ternary PtVCo dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries Inorganic Chemistry Frontiers. 5: 2425-2431. DOI: 10.1039/C8Qi00623G  0.374
2018 Li D, Zong Z, Tang Z, Liu Z, Chen S, Tian Y, Wang X. Total Water Splitting Catalyzed by Co@Ir Core–Shell Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Derived from Metal–Organic Frameworks Acs Sustainable Chemistry & Engineering. 6: 5105-5114. DOI: 10.1021/Acssuschemeng.7B04777  0.396
2018 Wang N, Lu B, Li L, Niu W, Tang Z, Kang X, Chen S. Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations Acs Catalysis. 8: 6827-6836. DOI: 10.1021/Acscatal.8B00338  0.332
2018 Zong Z, Xu K, Li D, Tang Z, He W, Liu Z, Wang X, Tian Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions Journal of Catalysis. 361: 168-176. DOI: 10.1016/J.Jcat.2018.02.020  0.392
2018 Yan W, Wu W, Wang K, Tang Z, Chen S. Oxygen reduction reaction and hydrogen evolution reaction catalyzed by carbon-supported molybdenum-coated palladium nanocubes International Journal of Hydrogen Energy. 43: 17132-17141. DOI: 10.1016/J.Ijhydene.2018.07.097  0.395
2018 Li T, Tang Z, Wang K, Wu W, Chen S, Wang C. Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction International Journal of Hydrogen Energy. 43: 4932-4941. DOI: 10.1016/J.Ijhydene.2018.01.107  0.355
2018 Wang K, Tang Z, Wu W, Xi P, Liu D, Ding Z, Chen X, Wu X, Chen S. Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability Electrochimica Acta. 284: 119-127. DOI: 10.1016/J.Electacta.2018.07.154  0.35
2018 Wu W, Tang Z, Wang K, Liu Z, Li L, Chen S. Peptide templated AuPt alloyed nanoparticles as highly efficient Bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction Electrochimica Acta. 260: 168-176. DOI: 10.1016/J.Electacta.2017.11.057  0.457
2018 Wang L, Peng J, Tang Z, Kang X, Fu M, Chen S. Styrene oxidation catalyzed by Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl nanoclusters: Impacts of capping ligands, particle size and charge state Applied Catalysis a: General. 557: 1-6. DOI: 10.1016/J.Apcata.2018.03.001  0.36
2017 Wang N, Li L, Zhao D, Kang X, Tang Z, Chen S. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small (Weinheim An Der Bergstrasse, Germany). PMID 28692744 DOI: 10.1002/Smll.201701025  0.382
2017 Pan Q, Zheng F, Ou X, Yang C, Xiong X, Tang Z, Zhao L, Liu M. MoS2 Decorated Fe3O4/Fe1–xS@C Nanosheets as High-Performance Anode Materials for Lithium Ion and Sodium Ion Batteries Acs Sustainable Chemistry & Engineering. 5: 4739-4745. DOI: 10.1021/Acssuschemeng.7B00119  0.396
2017 Wang L, Tang Z, Yan W, Wang Q, Yang H, Chen S. Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media Journal of Power Sources. 343: 458-466. DOI: 10.1016/J.Jpowsour.2017.01.081  0.424
2017 Yang H, Tang Z, Yan W, Wang L, Wang Q, Zhang Y, Liu Z, Chen S. Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects Journal of Alloys and Compounds. 702: 146-152. DOI: 10.1016/J.Jallcom.2017.01.199  0.468
2017 Zhang Y, Zhao L, Walton J, Liu Z, Tang Z. Facile fabrication of PtPd alloyed worm-like nanoparticles for electrocatalytic reduction of oxygen International Journal of Hydrogen Energy. 42: 17112-17121. DOI: 10.1016/J.Ijhydene.2017.05.167  0.403
2017 Wang Q, Yang H, Zhou Z, Wang L, Yan W, Wu W, Chen S, Liu Z, Tang Z. Peptide A4 based AuAg alloyed nanoparticle networks for electrocatalytic reduction of oxygen International Journal of Hydrogen Energy. 42: 11295-11303. DOI: 10.1016/J.Ijhydene.2017.02.173  0.416
2017 Yan W, Tang Z, Wang L, Wang Q, Yang H, Chen S. PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction International Journal of Hydrogen Energy. 42: 218-227. DOI: 10.1016/J.Ijhydene.2016.09.041  0.38
2017 Yang L, Zhou W, Jia J, Xiong T, Zhou K, Feng C, Zhou J, Tang Z, Chen S. Nickel nanoparticles partially embedded into carbon fiber cloth via metal-mediated pitting process as flexible and efficient electrodes for hydrogen evolution reactions Carbon. 122: 710-717. DOI: 10.1016/J.Carbon.2017.07.027  0.348
2017 Yang H, Wen C, Tang Z, Wang L, Wang Q, Yan W, Wu W, Chen S. Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media Journal of Materials Science. 52: 8016-8026. DOI: 10.1007/S10853-017-1004-Y  0.371
2017 Li D, Tang Z, Chen S, Tian Y, Wang X. Peptide‐FlgA3‐Based Gold Palladium Bimetallic Nanoparticles That Catalyze the Oxygen Reduction Reaction in Alkaline Solution Chemcatchem. 9: 2980-2987. DOI: 10.1002/Cctc.201700299  0.474
2016 Wang L, Tang Z, Yan W, Yang H, Wang Q, Chen S. Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size. Acs Applied Materials & Interfaces. PMID 27454707 DOI: 10.1021/Acsami.6B02223  0.444
2016 Wang C, Li N, Wang Q, Tang Z. Hybrid Nanomaterials Based on Graphene and Gold Nanoclusters for Efficient Electrocatalytic Reduction of Oxygen. Nanoscale Research Letters. 11: 336. PMID 27431494 DOI: 10.1186/S11671-016-1552-0  0.39
2016 Zhou W, Xiong T, Shi C, Zhou J, Zhou K, Zhu N, Li L, Tang Z, Chen S. Bioreduction of Precious Metals by Microorganism: Efficient Gold@N-Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie (International Ed. in English). PMID 27218302 DOI: 10.1002/Anie.201602627  0.444
2016 Zhou Y, Zhou W, Hou D, Li G, Wan J, Feng C, Tang Z, Chen S. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small (Weinheim An Der Bergstrasse, Germany). PMID 27061759 DOI: 10.1002/Smll.201503100  0.363
2016 Wang Q, Wang L, Tang Z, Wang F, Yan W, Yang H, Zhou W, Li L, Kang X, Chen S. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets. Nanoscale. PMID 26940367 DOI: 10.1039/C6Nr00400H  0.428
2016 Niu W, Li L, Liu J, Wang N, Li W, Tang Z, Zhou W, Chen S. Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. Small (Weinheim An Der Bergstrasse, Germany). PMID 26895489 DOI: 10.1002/Smll.201503542  0.342
2016 Lu J, Xiong T, Zhou W, Yang L, Tang Z, Chen S. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. Acs Applied Materials & Interfaces. PMID 26886556 DOI: 10.1021/Acsami.6B00233  0.305
2016 Lim CK, Li X, Li Y, Drew KL, Palafox-Hernandez JP, Tang Z, Baev A, Kuzmin AN, Knecht MR, Walsh TR, Swihart MT, Ågren H, Prasad PN. Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces. Nanoscale. PMID 26830974 DOI: 10.1039/C5Nr07973J  0.607
2016 Li N, Tang Z, Wang L, Wang Q, Yan W, Yang H, Chen S, Wang C. In situ preparation of multi-wall carbon nanotubes/Au composites for oxygen electroreduction Rsc Advances. 6: 91209-91215. DOI: 10.1039/C6Ra16533H  0.387
2016 Lu J, Zhou W, Wang L, Jia J, Ke Y, Yang L, Zhou K, Liu X, Tang Z, Li L, Chen S. Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron-Embedded Porous Carbons Derived from Metal-Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions Acs Catalysis. 6: 1045-1053. DOI: 10.1021/Acscatal.5B02302  0.46
2016 Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction Nano Energy. 28: 143-150. DOI: 10.1016/J.Nanoen.2016.08.040  0.399
2016 Yang L, Zhou W, Lu J, Hou D, Ke Y, Li G, Tang Z, Kang X, Chen S. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution Nano Energy. 22: 490-498. DOI: 10.1016/J.Nanoen.2016.02.056  0.346
2016 Yang H, Tang Z, Wang L, Zhou W, Li L, Zhang Y, Chen S. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions Materials Science and Engineering B: Solid-State Materials For Advanced Technology. 210: 37-42. DOI: 10.1016/J.Mseb.2016.04.001  0.4
2015 Palafox-Hernandez JP, Lim CK, Tang Z, Drew KL, Hughes ZE, Li Y, Swihart MT, Prasad PN, Knecht MR, Walsh TR. Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. Acs Applied Materials & Interfaces. PMID 26684587 DOI: 10.1021/Acsami.5B11989  0.661
2015 Bedford NM, Hughes ZE, Tang Z, Li Y, Briggs BD, Ren Y, Swihart MT, Petkov VG, Naik RR, Knecht MR, Walsh TR. Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. Journal of the American Chemical Society. PMID 26679562 DOI: 10.1021/Jacs.5B09529  0.744
2015 Du N, Knecht MR, Swihart MT, Tang Z, Walsh TR, Zhang A. Identifying Affinity Classes of Inorganic Materials Binding Sequences via a Graph-Based Model. Ieee/Acm Transactions On Computational Biology and Bioinformatics / Ieee, Acm. 12: 193-204. PMID 26357089 DOI: 10.1109/Tcbb.2014.2321158  0.589
2015 Tang Z, Lim CK, Palafox-Hernandez JP, Drew KL, Li Y, Swihart MT, Prasad PN, Walsh TR, Knecht MR. Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces. Nanoscale. 7: 13638-45. PMID 26205625 DOI: 10.1039/C5Nr02311D  0.65
2015 Ahuja T, Wang D, Tang Z, Robinson DA, Padelford JW, Wang G. Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters. Physical Chemistry Chemical Physics : Pccp. PMID 26138500 DOI: 10.1039/C5Cp02685G  0.304
2015 Wang N, Niu W, Li L, Liu J, Tang Z, Zhou W, Chen S. Oxygen electroreduction promoted by quasi oxygen vacancies in metal oxide nanoparticles prepared by photoinduced chlorine doping. Chemical Communications (Cambridge, England). 51: 10620-3. PMID 26009233 DOI: 10.1039/C5Cc02808F  0.373
2015 Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. Journal of the American Chemical Society. 137: 5555-62. PMID 25860843 DOI: 10.1021/Jacs.5B02027  0.372
2015 Yang L, Zhou W, Hou D, Zhou K, Li G, Tang Z, Li L, Chen S. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale. 7: 5203-8. PMID 25700339 DOI: 10.1039/C4Nr06754A  0.372
2015 Huang J, Hou D, Zhou Y, Zhou W, Li G, Tang Z, Li L, Chen S. MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution Journal of Materials Chemistry A. 3: 22886-22891. DOI: 10.1039/C5Ta07234D  0.347
2015 Wang L, Tang Z, Liu X, Niu W, Zhou K, Yang H, Zhou W, Li L, Chen S. Ordered mesoporous carbons-supported gold nanoparticles as highly efficient electrocatalysts for oxygen reduction reaction Rsc Advances. 5: 103421-103427. DOI: 10.1039/C5Ra20955B  0.438
2015 Zhou W, Zhou J, Zhou Y, Lu J, Zhou K, Yang L, Tang Z, Li L, Chen S. N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production Chemistry of Materials. 27: 2026-2032. DOI: 10.1021/Acs.Chemmater.5B00331  0.411
2015 Zhou Y, Leng Y, Zhou W, Huang J, Zhao M, Zhan J, Feng C, Tang Z, Chen S, Liu H. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction Nano Energy. 16: 357-366. DOI: 10.1016/J.Nanoen.2015.07.008  0.379
2014 Conroy CV, Jiang J, Zhang C, Ahuja T, Tang Z, Prickett CA, Yang JJ, Wang G. Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions. Nanoscale. 6: 7416-23. PMID 24879334 DOI: 10.1039/C4Nr00827H  0.329
2014 Li Y, Tang Z, Prasad PN, Knecht MR, Swihart MT. Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale. 6: 3165-72. PMID 24496609 DOI: 10.1039/C3Nr06201E  0.654
2014 Palafox-Hernandez JP, Tang Z, Hughes ZE, Li Y, Swihart MT, Prasad PN, Walsh TR, Knecht MR. Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: A thermodynamic basis for biological selectivity of inorganic materials Chemistry of Materials. 26: 4960-4969. DOI: 10.1021/Cm501529U  0.656
2013 Tang Z, Palafox-Hernandez JP, Law WC, Hughes ZE, Swihart MT, Prasad PN, Knecht MR, Walsh TR. Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. Acs Nano. 7: 9632-46. PMID 24124916 DOI: 10.1021/Nn404427Y  0.638
2012 Tang Z, Ahuja T, Wang S, Wang G. Near infrared luminescence of gold nanoclusters affected by the bonding of 1,4-dithiolate durene and monothiolate phenylethanethiolate. Nanoscale. 4: 4119-24. PMID 22643767 DOI: 10.1039/C2Nr30504F  0.377
2011 Tang Z, Robinson DA, Bokossa N, Xu B, Wang S, Wang G. Mixed dithiolate durene-DT and monothiolate phenylethanethiolate protected Au130 nanoparticles with discrete core and core-ligand energy states. Journal of the American Chemical Society. 133: 16037-44. PMID 21919537 DOI: 10.1021/Ja203878Q  0.387
2011 Tang Z, Xu B, Wu B, Robinson DA, Bokossa N, Wang G. Monolayer reactions of protected Au nanoclusters with monothiol tiopronin and 2,3-dithiol dimercaptopropanesulfonate. Langmuir : the Acs Journal of Surfaces and Colloids. 27: 2989-96. PMID 21314173 DOI: 10.1021/La1045628  0.368
2010 Tang Z, Xu B, Wu B, Germann MW, Wang G. Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. Journal of the American Chemical Society. 132: 3367-74. PMID 20158181 DOI: 10.1021/Ja9076149  0.375
Show low-probability matches.