129 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Wang H, Wang S, Song Y, Zhao Y, Li Z, Shen Y, Peng Z, Gao D, Wang G, Bao X. Boosting Electrocatalytic Ethylene Epoxidation by Single Atom Modulation. Angewandte Chemie (International Ed. in English). e202402950. PMID 38512110 DOI: 10.1002/anie.202402950  0.689
2024 Fang W, Guo W, Lu R, Yan Y, Liu X, Wu D, Li FM, Zhou Y, He C, Xia C, Niu H, Wang S, Liu Y, Mao Y, Zhang C, ... ... Wang G, et al. Durable CO conversion in the proton-exchange membrane system. Nature. 626: 86-91. PMID 38297172 DOI: 10.1038/s41586-023-06917-5  0.339
2023 Li X, Wang M, Fu J, Lu F, Li Z, Wang G. Sulfurized NiFe O Electrocatalyst with In Situ Formed Fe-NiOOH Nanoparticles to Realize Industrial-Level Oxygen Evolution. Small (Weinheim An Der Bergstrasse, Germany). e2310040. PMID 38150619 DOI: 10.1002/smll.202310040  0.315
2023 Song Y, Min J, Guo Y, Li R, Zou G, Li M, Zang Y, Feng W, Yao X, Liu T, Zhang X, Yu J, Liu Q, Zhang P, Yu R, ... ... Wang G, et al. Surface Activation by Single Ru Atoms for Enhanced High-Temperature CO2 Electrolysis. Angewandte Chemie (International Ed. in English). e202313361. PMID 38088045 DOI: 10.1002/anie.202313361  0.514
2023 Rong Y, Liu T, Sang J, Li R, Wei P, Li H, Dong A, Che L, Fu Q, Gao D, Wang G. Directing the Selectivity of CO Electrolysis to Acetate by Constructing Metal-Organic Interfaces. Angewandte Chemie (International Ed. in English). e202309893. PMID 37747793 DOI: 10.1002/anie.202309893  0.609
2023 Shen Y, Liu T, Li R, Lv H, Ta N, Zhang X, Song Y, Liu Q, Feng W, Wang G, Bao X. electrochemical reconstruction of SrFeIrMoO perovskite cathode for CO electrolysis in solid oxide electrolysis cells. National Science Review. 10: nwad078. PMID 37565207 DOI: 10.1093/nsr/nwad078  0.481
2023 Wang M, Chen H, Wang M, Wang J, Tuo Y, Li W, Zhou S, Kong L, Liu G, Jiang L, Wang G. Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in-Situ Evolved CuO/SnO2 Heterostructure. Angewandte Chemie (International Ed. in English). e202306456. PMID 37485764 DOI: 10.1002/anie.202306456  0.39
2023 Liu Q, Shen F, Song G, Liu T, Feng W, Li R, Zhang X, Li M, He L, Zheng X, Yin S, Yin G, Song Y, Wang G, Bao X. Tailoring Ion Ordering in Perovskite Oxide for High-Temperature Oxygen Evolution Reaction. Angewandte Chemie (International Ed. in English). e202307057. PMID 37285520 DOI: 10.1002/anie.202307057  0.419
2023 Fu Y, Wang S, Wang Y, Wei P, Shao J, Liu T, Wang G, Bao X. Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis. Angewandte Chemie (International Ed. in English). e202303327. PMID 37119055 DOI: 10.1002/anie.202303327  0.504
2023 Wei P, Li H, Li R, Wang Y, Liu T, Cai R, Gao D, Wang G, Bao X. The Role of Interfacial Water in CO Electrolysis over Ni-N-C Catalyst in a Membrane Electrode Assembly Electrolyzer. Small (Weinheim An Der Bergstrasse, Germany). e2300856. PMID 36932891 DOI: 10.1002/smll.202300856  0.705
2023 Wei P, Gao D, Liu T, Li H, Sang J, Wang C, Cai R, Wang G, Bao X. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO/CO electrolysis. Nature Nanotechnology. PMID 36635334 DOI: 10.1038/s41565-022-01286-y  0.694
2022 Zang Y, Liu T, Wei P, Li H, Wang Q, Wang G, Bao X. Selective CO2 Electroreduction to Ethanol over Carbon-Coated CuOx Catalyst. Angewandte Chemie (International Ed. in English). PMID 35909076 DOI: 10.1002/anie.202209629  0.548
2021 Sang J, Wei P, Liu T, Lv H, Ni X, Gao D, Zhang J, Li H, Zang Y, Yang F, Liu Z, Wang G, Bao X. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products​. Angewandte Chemie (International Ed. in English). PMID 34859554 DOI: 10.1002/anie.202114238  0.698
2021 Lin L, Li H, Wang Y, Li H, Wei P, Nan B, Si R, Wang G, Bao X. Temperature-Dependent CO2 Electroreduction over Fe-N-C and Ni-N-C Single-Atom Catalysts. Angewandte Chemie (International Ed. in English). PMID 34651393 DOI: 10.1002/anie.202113135  0.507
2021 Song Y, Wang Y, Shao J, Ye K, Wang Q, Wang G. Boosting CO Electroreduction via Construction of a Stable ZnS/ZnO Interface. Acs Applied Materials & Interfaces. PMID 34636530 DOI: 10.1021/acsami.1c15669  0.366
2021 Lv H, Lin L, Zhang X, Li R, Song Y, Matsumoto H, Ta N, Zeng C, Fu Q, Wang G, Bao X. Promoting exsolution of RuFe alloy nanoparticles on SrFeRuMoO via repeated redox manipulations for CO electrolysis. Nature Communications. 12: 5665. PMID 34580312 DOI: 10.1038/s41467-021-26001-8  0.47
2021 Li H, Liu T, Wei P, Lin L, Gao D, Wang G, Bao X. High-Rate CO2 Electroreduction to C2+ Products over a Copper-Copper Iodide Catalyst. Angewandte Chemie (International Ed. in English). PMID 33837619 DOI: 10.1002/anie.202102657  0.683
2021 Liu T, Wang G, Bao X. Electrochemical CO2 Reduction Reaction on 3d Transition Metal Single-Atom Catalysts Supported on Graphdiyne: A DFT Study The Journal of Physical Chemistry C. 125: 26013-26020. DOI: 10.1021/acs.jpcc.1c07681  0.344
2021 Lin L, Liu T, Xiao J, Li H, Wei P, Gao D, Nan B, Si R, Wang G, Bao X. Corrigendum: Enhancing CO 2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst Angewandte Chemie International Edition. 60: 3851-3851. DOI: 10.1002/anie.202100362  0.378
2021 Li H, Liu T, Wei P, Lin L, Gao D, Wang G, Bao X. High‐Rate CO 2 Electroreduction to C 2+ Products over a Copper‐Copper Iodide Catalyst Angewandte Chemie. 133: 14450-14454. DOI: 10.1002/ange.202102657  0.326
2021 Lin L, Liu T, Xiao J, Li H, Wei P, Gao D, Nan B, Si R, Wang G, Bao X. Berichtigung: Enhancing CO 2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst Angewandte Chemie. 133: 3895-3895. DOI: 10.1002/ange.202100362  0.378
2020 Lin L, Liu T, Xiao J, Li H, Wei P, Gao D, Nan B, Si R, Wang G, Bao X. Enhancing CO2 Electroreduction to Methane with Cobalt Phthalocyanine and Zinc-Nitrogen-Carbon Tandem Catalyst. Angewandte Chemie (International Ed. in English). PMID 32886835 DOI: 10.1002/Anie.202009191  0.727
2020 Feng W, Song Y, Zhang X, Lv H, Liu Q, Wang G, Bao X. Pt-Decorated Ceria Enhances CO2 Electroreduction in Solid Oxide Electrolysis Cells. Chemsuschem. PMID 32459062 DOI: 10.1002/Cssc.202001002  0.585
2020 Lv H, Liu T, Zhang X, Song Y, Matsumoto H, Ta N, Zeng C, Wang G, Bao X. Atomic-Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3-δ with Efficient CO2 Electrolysis. Angewandte Chemie (International Ed. in English). PMID 32452143 DOI: 10.1002/Anie.202006536  0.527
2020 Li X, Li X, Liu C, Huang H, Gao P, Ahmad F, Luo L, Ye Y, Geng Z, Wang G, Si R, Ma C, Yang J, Zeng J. Atomic-level construction of tensile strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Letters. PMID 31967840 DOI: 10.1021/Acs.Nanolett.9B05024  0.481
2020 Ye K, Zhou Z, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In Situ Reconstruction of Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction. Angewandte Chemie (International Ed. in English). PMID 31944516 DOI: 10.1002/Anie.201916538  0.718
2020 Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Ta N, Liu W, Gao D, Wang G, Bao X. In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co-Doped Sr Fe Mo O Cathode for CO Electrolysis. Advanced Materials (Deerfield Beach, Fla.). e1906193. PMID 31894628 DOI: 10.1002/Adma.201906193  0.672
2020 Garg S, Li M, Weber AZ, Ge L, Li L, Rudolph V, Wang G, Rufford TE. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials Journal of Materials Chemistry. 8: 1511-1544. DOI: 10.1039/C9Ta13298H  0.301
2020 Shao J, Wang Y, Gao D, Ye K, Wang Q, Wang G. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide Chinese Journal of Catalysis. 41: 1393-1400. DOI: 10.1016/S1872-2067(20)63577-X  0.689
2020 Ye K, Cao A, Shao J, Wang G, Si R, Ta N, Xiao J, Wang G. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity Chinese Science Bulletin. 65: 711-719. DOI: 10.1016/J.Scib.2020.01.020  0.399
2020 Zhou Y, Lin L, Song Y, Zhang X, Lv H, Liu Q, Zhou Z, Ta N, Wang G, Bao X. Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells Nano Energy. 71: 104598. DOI: 10.1016/J.Nanoen.2020.104598  0.555
2020 Wang Q, Tao H, Li Z, Wang G. Effect of iron precursor on the activity and stability of PtFe/C catalyst for oxygen reduction reaction Journal of Alloys and Compounds. 814: 152212. DOI: 10.1016/j.jallcom.2019.152212  0.33
2020 Wei P, Li H, Lin L, Gao D, Zhang X, Gong H, Qing G, Cai R, Wang G, Bao X. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers Science China Chemistry. 63: 1711-1715. DOI: 10.1007/S11426-020-9825-9  0.644
2019 Garg S, Li M, Rufford TE, Ge L, Rudolph V, Knibbe R, Konarova M, Wang G. Catalyst-electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO2 Reduction. Chemsuschem. PMID 31646740 DOI: 10.1002/Cssc.201902433  0.325
2019 Song Y, Lin L, Feng W, Zhang X, Dong Q, Li X, Lv H, Liu Q, Yang F, Liu Z, Wang G, Bao X. Interfacial Enhancement by r-Al2O3 of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. Angewandte Chemie (International Ed. in English). PMID 31468666 DOI: 10.1002/Anie.201908388  0.526
2019 Gao J, Yun W, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, ... Wang G, et al. Construction of sp3/sp2 carbon interface in 3D N-doped nanocarbon for the oxygen reduction reaction. Angewandte Chemie (International Ed. in English). PMID 31444841 DOI: 10.1002/Anie.201907915  0.376
2019 Lin L, Li H, Yan C, Li H, Si R, Li M, Xiao J, Wang G, Bao X. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO Electroreduction. Advanced Materials (Deerfield Beach, Fla.). e1903470. PMID 31441152 DOI: 10.1002/Adma.201903470  0.565
2019 Song Y, Zhang X, Xie K, Wang G, Bao X. High-Temperature CO Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. Advanced Materials (Deerfield Beach, Fla.). e1902033. PMID 31282069 DOI: 10.1002/Adma.201902033  0.509
2019 Song Y, Zhou S, Dong Q, Li Y, Zhang X, Ta N, Liu Z, Zhao J, Yang F, Wang G, Bao X. Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie (International Ed. in English). PMID 30737877 DOI: 10.1002/Anie.201814612  0.539
2019 Wang G, Takeguchi T, Yamanaka T, Muhamad EN, Ueda W. Improving CO Tolerance of Pt2Ru3/C Catalyst by the Addition of Tin Oxide Ecs Transactions. 28: 307-312. DOI: 10.1149/1.3502362  0.344
2019 Yamanaka T, Takeguchi T, Wang G, Muhamad EN, Ueda W. In Situ Observation of CO Oxidation by Anode PtRu/C Catalysts for Polymer Electrolyte Fuel Cells Ecs Transactions. 28: 283-288. DOI: 10.1149/1.3502359  0.318
2019 Muhamad EN, Takeguchi T, Wang G, Yamanaka T, Ueda W. Prospective of Pd/MOx as Alternative Pt Anode Catalyst for Polymer Electrolyte Fuel Cell Ecs Transactions. 28: 253-258. DOI: 10.1149/1.3502356  0.322
2019 Takeguchi T, Wang G, Muhamad E, Ueda W. The Effect of Modification of PtRu Anode Catalyst with SnO2 on CO Tolerance Ecs Transactions. 16: 713-716. DOI: 10.1149/1.2981907  0.371
2019 Lv H, Lin L, Zhang X, Gao D, Song Y, Zhou Y, Liu Q, Wang G, Bao X. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6−δ perovskite for efficient electrochemical CO2 reduction reaction Journal of Materials Chemistry A. 7: 11967-11975. DOI: 10.1039/C9Ta03065D  0.71
2019 Yan C, Lin L, Wang G, Bao X. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction Chinese Journal of Catalysis. 40: 23-37. DOI: 10.1016/S1872-2067(18)63161-4  0.574
2019 Song Y, Zhang X, Zhou Y, Lv H, Liu Q, Feng W, Wang G, Bao X. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode Journal of Energy Chemistry. 35: 181-187. DOI: 10.1016/J.Jechem.2019.03.013  0.539
2019 Lv H, Zhou Y, Zhang X, Song Y, Liu Q, Wang G, Bao X. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electroreduction in solid oxide electrolysis cell Journal of Energy Chemistry. 35: 71-78. DOI: 10.1016/J.Jechem.2018.11.002  0.604
2019 Yan C, Ye Y, Lin L, Wu H, Jiang Q, Wang G, Bao X. Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment Catalysis Today. 330: 252-258. DOI: 10.1016/J.Cattod.2018.03.062  0.582
2019 Yang D, Wang G, Wang X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion Science China. Materials. 62: 1369-1373. DOI: 10.1007/S40843-019-9455-3  0.343
2018 Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Oxygen Vacancy Enhances CO Production over ZnO Nanosheets towards CO2 Electrochemical Reduction. Angewandte Chemie (International Ed. in English). PMID 29645366 DOI: 10.1002/Anie.201711255  0.435
2018 Cao Y, Geng Z, Chen W, Cai F, Wang G, Wang Z, Zeng J. Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward COelectrochemical reduction. Chemical Communications (Cambridge, England). PMID 29542763 DOI: 10.1039/C8Cc00644J  0.389
2018 Wang G, Xu S, Wang L, Liu Z, Dong X, Wang L, Zheng A, Meng X, Xiao FS. Fish-in-hole: rationally positioning palladium into traps of zeolite crystals for sinter-resistant catalysts. Chemical Communications (Cambridge, England). PMID 29537028 DOI: 10.1039/c8cc00513c  0.328
2018 Yan C, Lin L, Gao D, Wang G, Bao X. Selective CO2 electroreduction over an oxide-derived gallium catalyst Journal of Materials Chemistry A. 6: 19743-19749. DOI: 10.1039/C8Ta08613C  0.726
2018 Song Y, Zhou Z, Zhang X, Zhou Y, Gong H, Lv H, Liu Q, Wang G, Bao X. Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell Journal of Materials Chemistry. 6: 13661-13667. DOI: 10.1039/C8Ta02858C  0.558
2018 Yan C, Li H, Ye Y, Wu H, Cai F, Si R, Xiao J, Miao S, Xie S, Yang F, Li Y, Wang G, Bao X. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction Energy and Environmental Science. 11: 1204-1210. DOI: 10.1039/C8Ee00133B  0.611
2018 Gao D, Zhou H, Cai F, Wang J, Wang G, Bao X. Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction Acs Catalysis. 8: 1510-1519. DOI: 10.1021/Acscatal.7B03612  0.738
2018 Jiang X, Li H, Xiao J, Gao D, Si R, Yang F, Li Y, Wang G, Bao X. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs Nano Energy. 52: 345-350. DOI: 10.1016/J.Nanoen.2018.07.047  0.728
2018 Zhou Y, Zhou Z, Song Y, Zhang X, Guan F, Lv H, Liu Q, Miao S, Wang G, Bao X. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell Nano Energy. 50: 43-51. DOI: 10.1016/J.Nanoen.2018.04.054  0.57
2018 Zhang X, Song Y, Guan F, Zhou Y, Lv H, Liu Q, Wang G, Bao X. (La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell Journal of Power Sources. 400: 104-113. DOI: 10.1016/J.Jpowsour.2018.08.017  0.486
2018 Zhang X, Song Y, Guan F, Zhou Y, Lv H, Wang G, Bao X. Enhancing electrocatalytic CO 2 reduction in solid oxide electrolysis cell with Ce 0.9 Mn 0.1 O 2−δ nanoparticles-modified LSCM-GDC cathode Journal of Catalysis. 359: 8-16. DOI: 10.1016/J.Jcat.2017.12.027  0.575
2018 Song Y, Zhang X, Zhou Y, Jiang Q, Guan F, Lv H, Wang G, Bao X. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer Energy Storage Materials. 13: 207-214. DOI: 10.1016/J.Ensm.2018.01.013  0.591
2018 Sun M, Lv Y, Song Y, Wu H, Wang G, Zhang H, Chen M, Fu Q, Bao X. CO-tolerant PtRu@h-BN/C core–shell electrocatalysts for proton exchange membrane fuel cells Applied Surface Science. 450: 244-250. DOI: 10.1016/J.Apsusc.2018.04.170  0.611
2018 Sun M, Dong J, Lv Y, Zhao S, Meng C, Song Y, Wang G, Li J, Fu Q, Tian Z, Bao X. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells Nano Research. 11: 3490-3498. DOI: 10.1007/S12274-018-2029-5  0.537
2017 Cai F, Gao D, Zhou H, Wang G, He T, Gong H, Miao S, Yang F, Wang J, Bao X. Correction: Electrochemical promotion of catalysis over Pd nanoparticles for CO reduction. Chemical Science. 8: 3277. PMID 30123477 DOI: 10.1039/C7Sc90011B  0.649
2017 Cai F, Gao D, Zhou H, Wang G, He T, Gong H, Miao S, Yang F, Wang J, Bao X. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chemical Science. 8: 2569-2573. PMID 28553489 DOI: 10.1039/C6Sc04966D  0.715
2017 Wang L, Wang G, Zhang J, Bian C, Meng X, Xiao FS. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst. Nature Communications. 8: 15240. PMID 28504259 DOI: 10.1038/ncomms15240  0.347
2017 Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X. Enhancing CO2 Electroreduction with the Metal-Oxide Interface. Journal of the American Chemical Society. PMID 28391686 DOI: 10.1021/Jacs.7B00102  0.721
2017 Wang L, Zhang J, Wang G, Zhang W, Wang C, Bian C, Xiao FS. Selective hydrogenolysis of carbon-oxygen bonds with formic acid over a Au-Pt alloy catalyst. Chemical Communications (Cambridge, England). PMID 28197561 DOI: 10.1039/c6cc09599b  0.379
2017 Jiang X, Wu H, Chang S, Si R, Miao S, Huang W, Li Y, Wang G, Bao X. Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles Journal of Materials Chemistry. 5: 19371-19377. DOI: 10.1039/C7Ta06114E  0.562
2017 Wang Q, Wang G, Tao H, Li Z, Han L. Highly CO tolerant PtRu/PtNi/C catalyst for polymer electrolyte membrane fuel cell Rsc Advances. 7: 8453-8459. DOI: 10.1039/C6RA28198B  0.329
2017 Wang C, Liu Z, Wang L, Dong X, Zhang J, Wang G, Han S, Meng X, Zheng A, Xiao F. Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts Acs Catalysis. 8: 474-481. DOI: 10.1021/ACSCATAL.7B03443  0.303
2017 Ye Y, Li H, Cai F, Yan C, Si R, Miao S, Li Y, Wang G, Bao X. Two-Dimensional Mesoporous Carbon Doped with Fe–N Active Sites for Efficient Oxygen Reduction Acs Catalysis. 7: 7638-7646. DOI: 10.1021/Acscatal.7B02101  0.601
2017 Ye Y, Cai F, Li H, Wu H, Wang G, Li Y, Miao S, Xie S, Si R, Wang J, Bao X. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction Nano Energy. 38: 281-289. DOI: 10.1016/J.Nanoen.2017.05.042  0.568
2017 Wu H, Jiang X, Ye Y, Yan C, Xie S, Miao S, Wang G, Bao X. Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc–air battery Journal of Energy Chemistry. 26: 1181-1186. DOI: 10.1016/J.Jechem.2017.09.022  0.604
2017 Zhang X, Song Y, Wang G, Bao X. Co-electrolysis of CO 2 and H 2 O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes Journal of Energy Chemistry. 26: 839-853. DOI: 10.1016/J.Jechem.2017.07.003  0.515
2017 Ye Y, Cai F, Yan C, Li Y, Wang G, Bao X. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction☆ Journal of Energy Chemistry. 26: 1174-1180. DOI: 10.1016/J.Jechem.2017.06.013  0.622
2017 Cai F, Gao D, Si R, Ye Y, He T, Miao S, Wang G, Bao X. Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate Electrochemistry Communications. 76: 1-5. DOI: 10.1016/J.Elecom.2017.01.009  0.715
2017 Gao D, Cai F, Wang G, Bao X. Nanostructured heterogeneous catalysts for electrochemical reduction of CO 2 Current Opinion in Green and Sustainable Chemistry. 3: 39-44. DOI: 10.1016/J.Cogsc.2016.10.004  0.75
2017 Gao D, Zhou H, Cai F, Wang D, Hu Y, Jiang B, Cai W, Chen X, Si R, Yang F, Miao S, Wang J, Wang G, Bao X. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles Nano Research. 10: 2181-2191. DOI: 10.1007/S12274-017-1514-6  0.682
2017 Zhang J, Xie B, Wang L, Yi X, Wang C, Wang G, Dai Z, Zheng A, Xiao F. Back Cover: Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones (ChemCatChem 14/2017) Chemcatchem. 9: 2891-2891. DOI: 10.1002/CCTC.201701098  0.352
2016 Zhang Z, Luo Z, Chen B, Wei C, Zhao J, Chen J, Zhang X, Lai Z, Fan Z, Tan C, Zhao M, Lu Q, Li B, Zong Y, Yan C, ... Wang G, et al. One-Pot Synthesis of Highly Anisotropic Five-Fold-Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials (Deerfield Beach, Fla.). PMID 27511958 DOI: 10.1002/Adma.201603075  0.461
2016 Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J, Xie S, Si R, Yang F, Miao S, Guo X, Wang G, Bao X. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries Energy and Environmental Science. 9: 3736-3745. DOI: 10.1039/C6Ee01867J  0.553
2016 Yuan L, Jiang L, Zhang T, Wang G, Wang S, Bao X, Sun G. Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity Catalysis Science & Technology. 6: 7163-7171. DOI: 10.1039/C6Cy01174H  0.566
2016 Li J, Wang J, Gao D, Li X, Miao S, Wang G, Bao X. Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction Catalysis Science and Technology. 6: 2949-2954. DOI: 10.1039/C5Cy01539A  0.694
2016 Wu H, Wang J, Wang G, Cai F, Ye Y, Jiang Q, Sun S, Miao S, Bao X. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer Nano Energy. 30: 801-809. DOI: 10.1016/J.Nanoen.2016.09.016  0.534
2016 Yin Z, Gao D, Yao S, Zhao B, Cai F, Lin L, Tang P, Zhai P, Wang G, Ma D, Bao X. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO Nano Energy. 27: 35-43. DOI: 10.1016/J.Nanoen.2016.06.035  0.765
2016 Jiang X, Cai F, Gao D, Dong J, Miao S, Wang G, Bao X. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide Electrochemistry Communications. 68: 67-70. DOI: 10.1016/J.Elecom.2016.05.003  0.706
2016 Hu ZP, Zhu YP, Gao ZM, Wang G, Liu Y, Liu X, Yuan ZY. CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation Chemical Engineering Journal. 302: 23-32. DOI: 10.1016/j.cej.2016.05.008  0.408
2016 Zhang J, Xie B, Wang L, Yi X, Wang C, Wang G, Dai Z, Zheng A, Xiao F. Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones Chemcatchem. 9: 2661-2667. DOI: 10.1002/cctc.201600739  0.352
2015 Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. Journal of the American Chemical Society. 137: 4288-91. PMID 25746233 DOI: 10.1021/Jacs.5B00046  0.693
2015 Wang J, Wu H, Gao D, Miao S, Wang G, Bao X. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery Nano Energy. 13: 387-396. DOI: 10.1016/J.Nanoen.2015.02.025  0.712
2015 Li J, Gao D, Wang J, Miao S, Wang G, Bao X. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium Journal of Energy Chemistry. 24: 608-613. DOI: 10.1016/J.Jechem.2015.08.003  0.695
2015 Gao D, Wang J, Wu H, Jiang X, Miao S, Wang G, Bao X. PH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles Electrochemistry Communications. 55: 1-5. DOI: 10.1016/J.Elecom.2015.03.008  0.693
2014 Wang J, Wang G, Miao S, Li J, Bao X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discussions. 176: 135-51. PMID 25612219 DOI: 10.1039/C4Fd00123K  0.562
2014 Wang J, Gao D, Wang G, Miao S, Wu H, Li J, Bao X. Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis J. Mater. Chem. A. 2: 20067-20074. DOI: 10.1039/C4Ta04337E  0.746
2014 Gao D, Cai F, Xu Q, Wang G, Pan X, Bao X. Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane Journal of Energy Chemistry. 23: 694-700. DOI: 10.1016/S2095-4956(14)60201-1  0.742
2014 Wang J, Wang G, Miao S, Jiang X, Li J, Bao X. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction Carbon. 75: 381-389. DOI: 10.1016/J.Carbon.2014.04.017  0.555
2014 Li J, Wang G, Wang J, Miao S, Wei M, Yang F, Yu L, Bao X. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction Nano Research. 7: 1519-1527. DOI: 10.1007/S12274-014-0513-0  0.595
2013 Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie (International Ed. in English). 52: 371-5. PMID 23225769 DOI: 10.1002/Anie.201204958  0.623
2013 Wang Q, Wang G, Sasaki K, Takeguchi T, Yamanaka T, Sadakane M, Ueda W. Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template Journal of Power Sources. 241: 728-735. DOI: 10.1016/J.Jpowsour.2013.06.020  0.459
2011 Wang G, Takeguchi T, Muhamad EN, Yamanaka T, Ueda W. Effect of Addition of SnO x to the Pt2Ru3/C Catalyst on CO Tolerance for the Polymer Electrolyte Fuel Cell Journal of the Electrochemical Society. 158. DOI: 10.1149/1.3552942  0.417
2011 Wang G, Takeguchi T, Muhamad EN, Yamanaka T, Ueda W. Investigation of grain boundary formation in PtRu/C catalyst obtained in a polyol process with post-treatment International Journal of Hydrogen Energy. 36: 3322-3332. DOI: 10.1016/J.Ijhydene.2010.12.102  0.462
2010 Yamanaka T, Takeguchi T, Wang G, Muhamad EN, Ueda W. Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells Journal of Power Sources. 195: 6398-6404. DOI: 10.1016/J.Jpowsour.2010.04.007  0.45
2010 Wang G, Sun G, Wang Q, Wang S, Sun H, Xin Q. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance International Journal of Hydrogen Energy. 35: 11245-11253. DOI: 10.1016/J.Ijhydene.2010.07.045  0.661
2010 Wang G, Takeguchi T, Yamanaka T, Muhamad EN, Mastuda M, Ueda W. Effect of preparation atmosphere of Pt–SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation Applied Catalysis B-Environmental. 98: 86-93. DOI: 10.1016/J.Apcatb.2010.05.016  0.476
2009 Muhamad EN, Takeguchi T, Wang F, Wang G, Yamanaka T, Ueda W. A Comparative Study of Variously Prepared Carbon-Supported Pt / MoO x Anode Catalysts for a Polymer Electrolyte Fuel Cell Journal of the Electrochemical Society. 156. DOI: 10.1149/1.3223970  0.531
2009 Wang G, Takeguchi T, Muhamad EN, Yamanaka T, Sadakane M, Ueda W. Preparation of Well-Alloyed PtRu/C Catalyst by Sequential Mixing of the Precursors in a Polyol Method Journal of the Electrochemical Society. 156. DOI: 10.1149/1.3223666  0.465
2009 Wang G, Takeguchi T, Zhang Y, Muhamad EN, Sadakane M, Ye S, Ueda W. Effect of SnO[sub 2] Deposition Sequence in SnO[sub 2]-Modified PtRu/C Catalyst Preparation on Catalytic Activity for Methanol Electro-Oxidation Journal of the Electrochemical Society. 156: B862. DOI: 10.1149/1.3133249  0.497
2009 Muhamad EN, Takeguchi T, Wang G, Anzai Y, Ueda W. Electrochemical Characteristics of Pd Anode Catalyst Modified with TiO2 Nanoparticles in Polymer Electrolyte Fuel Cell Journal of the Electrochemical Society. 156. DOI: 10.1149/1.3005567  0.451
2008 Wang Q, Sun GQ, Jiang LH, Zhu MY, Wang GX, Xin Q, Sun SG, Chen QS, Jiang YX, Chen SP. [Ethanol electrooxidation on carbon supported PtSn catalyst: in situ TRFTIR study]. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu. 28: 47-50. PMID 18422117  0.589
2008 Wang G, Sun G, Wang Q, Wang S, Guo J, Gao Y, Xin Q. Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer Journal of Power Sources. 180: 176-180. DOI: 10.1016/J.Jpowsour.2008.02.040  0.647
2008 Wang Q, Sun GQ, Cao L, Jiang LH, Wang GX, Wang SL, Yang SH, Xin Q. High performance direct ethanol fuel cell with double-layered anode catalyst layer Journal of Power Sources. 177: 142-147. DOI: 10.1016/J.Jpowsour.2007.11.040  0.577
2007 Mao Q, Sun G, Wang S, Sun H, Wang G, Gao Y, Ye A, Tian Y, Xin Q. Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes Electrochimica Acta. 52: 6763-6770. DOI: 10.1016/J.Electacta.2007.04.120  0.617
2006 Chen W, Sun G, Liang Z, Mao Q, Li H, Wang G, Xin Q, Chang H, Pak C, Seung D. The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell Journal of Power Sources. 160: 933-939. DOI: 10.1016/J.Jpowsour.2006.02.069  0.629
2006 Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, Jiang L, Zhou B, Xin Q. Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells Carbon. 44: 152-157. DOI: 10.1016/J.Carbon.2005.06.047  0.686
2005 Wang G, Sun G, Zhou Z, Liu J, Wang Q, Wang S, Guo J, Yang S, Xin Q, Yi B. Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support Electrochemical and Solid State Letters. 8. DOI: 10.1149/1.1828343  0.685
2005 Wei Y, Liu Z, Wang G, Qi Y, Xu L, Xie P, He Y. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature Studies in Surface Science and Catalysis. 158: 1223-1230. DOI: 10.1016/S0167-2991(05)80468-9  0.371
2005 Sun H, Sun G, Wang S, Liu J, Zhao X, Wang G, Xu H, Hou S, Xin Q. Pd electroless plated Nafion® membrane for high concentration DMFCs Journal of Membrane Science. 259: 27-33. DOI: 10.1016/J.Memsci.2005.02.017  0.562
2005 Song S, Wang G, Zhou W, Zhao X, Sun G, Xin Q, Kontou S, Tsiakaras P. The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance Journal of Power Sources. 140: 103-110. DOI: 10.1016/J.Jpowsour.2004.08.011  0.581
2005 Jiang L, Sun G, Zhao X, Zhou Z, Yan S, Tang S, Wang G, Zhou B, Xin Q. Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells Electrochimica Acta. 50: 2371-2376. DOI: 10.1016/J.Electacta.2004.10.050  0.66
2005 Wang S, Sun G, Wang G, Zhou Z, Zhao X, Sun H, Fan X, Yi B, Xin Q. Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure Electrochemistry Communications. 7: 1007-1012. DOI: 10.1016/J.Elecom.2005.07.003  0.625
2005 Jiang L, Sun G, Wang S, Wang G, Xin Q, Zhou Z, Zhou B. Electrode catalysts behavior during direct ethanol fuel cell life-time test Electrochemistry Communications. 7: 663-668. DOI: 10.1016/J.Elecom.2005.04.021  0.635
2004 Wang H, Liu Z, Sun C, Wang G. Selective synthesis of 2,5-dimethyl-2,4-hexadiene over molecular sieve catalysts in a liquid phase reaction Studies in Surface Science and Catalysis. 154: 2773-2780. DOI: 10.1016/S0167-2991(04)80553-6  0.424
2004 Liu J, Sun G, Zhao F, Wang G, Zhao G, Chen L, Yi B, Xin Q. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC Journal of Power Sources. 133: 175-180. DOI: 10.1016/J.Jpowsour.2004.02.009  0.531
2004 Zhou Z, Zhou W, Wang S, Wang G, Jiang L, Li H, Sun G, Xin Q. Preparation of highly active 40 wt.% Pt/C cathode electrocatalysts for DMFC via different routes Catalysis Today. 93: 523-528. DOI: 10.1016/J.Cattod.2004.06.121  0.679
2003 Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chemical Communications (Cambridge, England). 394-5. PMID 12613629 DOI: 10.1039/B211075J  0.647
2003 Zhou Z, Wang S, Zhou W, Jiang L, Wang G, Sun G, Zhou B, Xin Q. Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method Physical Chemistry Chemical Physics. 5: 5485-5488. DOI: 10.1039/B310721C  0.662
2001 Qi Y, Wang G, Liu Z, Xu L, Gao X, Cui W. 24-P-28-Coke species and coking mechanism of SAPO-34 in MTO process Studies in Surface Science and Catalysis. 135: 278. DOI: 10.1016/S0167-2991(01)81610-4  0.319
2001 Wei Y, Wang G, Liu Z, Sun C, Xu L. 24-O-01 - Dehydroisomerization of n-butane to isobutene over Pd modified silicoaluminophosphate molecular sieves Studies in Surface Science and Catalysis. 135: 145. DOI: 10.1016/S0167-2991(01)81229-5  0.322
Show low-probability matches.