Garnett Bryant - Publications

Affiliations: 
Physics University of Maryland, College Park, College Park, MD 

63 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Ho DQ, Hu R, To DQ, Bryant GW, Janotti A. Emerging Nontrivial Topology in Ultrathin Films of Rare-Earth Pnictides. Acs Nano. 17: 20991-20998. PMID 37870504 DOI: 10.1021/acsnano.3c03307  0.312
2022 Wang X, Khatami E, Fei F, Wyrick J, Namboodiri P, Kashid R, Rigosi AF, Bryant G, Silver R. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots. Nature Communications. 13: 6824. PMID 36369280 DOI: 10.1038/s41467-022-34220-w  0.458
2019 Wyrick J, Wang X, Kashid RV, Namboodiri P, Schmucker SW, Hagmann JA, Liu K, Stewart MD, Richter CA, Bryant GW, Silver RM. Atom‐by‐Atom Fabrication of Single and Few Dopant Quantum Devices Advanced Functional Materials. 29: 1903475. DOI: 10.1002/Adfm.201903475  0.385
2018 Carter SG, Bracker AS, Bryant GW, Kim M, Kim CS, Zalalutdinov MK, Yakes MK, Czarnocki C, Casara J, Scheibner M, Gammon D. Spin-Mechanical Coupling of an InAs Quantum Dot Embedded in a Mechanical Resonator. Physical Review Letters. 121: 246801. PMID 30608739 DOI: 10.1103/Physrevlett.121.246801  0.373
2016 Ma X, Bryant GW, Doty MF. Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields. Physical Review. B. 93. PMID 32118123 DOI: 10.1103/Physrevb.93.245402  0.405
2016 Eggleton B, Bryant G, Majumdar A. Special issue: Quantum photonics Nanophotonics. 5: III. DOI: 10.1515/Nanoph-2016-0355  0.486
2015 Townsend E, Debrecht A, Bryant GW. Approaching the quantum limit for nanoplasmonics Journal of Materials Research. 30: 2389-2399. DOI: 10.1557/jmr.2015.232  0.347
2014 Townsend E, Bryant GW. Which resonances in small metallic nanoparticles are plasmonic? Journal of Optics (United Kingdom). 16. DOI: 10.1088/2040-8978/16/11/114022  0.304
2014 Esteban R, Aizpurua J, Bryant GW. Strong coupling of single emitters interacting with phononic infrared antennae New Journal of Physics. 16. DOI: 10.1088/1367-2630/16/1/013052  0.33
2014 Bryant GW, Waks E, Krenn JR. Plasmonics: The rise of quantum effects Optics and Photonics News. 25: 50-53.  0.587
2013 Bryant GW, Malkova N, Sims J. Mechanism for controlling the exciton fine structure in quantum dots using electric fields: Manipulation of exciton orientation and exchange splitting at the atomic scale Physical Review B - Condensed Matter and Materials Physics. 88. DOI: 10.1103/PhysRevB.88.161301  0.499
2013 Artuso RD, Bryant GW. Quantum dot-quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model Physical Review B - Condensed Matter and Materials Physics. 87. DOI: 10.1103/Physrevb.87.125423  0.782
2012 Cohen-Hoshen E, Bryant GW, Pinkas I, Sperling J, Bar-Joseph I. Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. Nano Letters. 12: 4260-4. PMID 22738161 DOI: 10.1021/Nl301917D  0.597
2012 Townsend E, Bryant GW. Plasmonic properties of metallic nanoparticles: the effects of size quantization. Nano Letters. 12: 429-34. PMID 22181554 DOI: 10.1021/nl2037613  0.561
2012 Artuso RD, Bryant GW. Hybrid quantum dot-metal nanoparticle systems: Connecting the dots Acta Physica Polonica A. 122: 289-293. DOI: 10.12693/Aphyspola.122.289  0.809
2011 Bryant GW, Zieliński M, Malkova N, Sims J, Jaskólski W, Aizpurua J. Controlling the optics of quantum dots with nanomechanical strain Physical Review B - Condensed Matter and Materials Physics. 84. DOI: 10.1103/Physrevb.84.235412  0.393
2011 Artuso RD, Bryant GW, Garcia-Etxarri A, Aizpurua J. Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems Physical Review B - Condensed Matter and Materials Physics. 83. DOI: 10.1103/Physrevb.83.235406  0.779
2011 Malkova N, Bryant GW. Negative-band-gap quantum dots Aip Conference Proceedings. 1416: 62-67. DOI: 10.1063/1.3671699  0.337
2011 Bryant GW, Artuso RD, Garcia-Etxarri A, Aizpurua J. Using local fields to tailor hybrid quantum dot-metal nanoparticle systems: Connecting the dots Optics Infobase Conference Papers 0.801
2011 Bryant GW, Artuso RD, Garcia-Etxarri A, Aizpurua J. Using local fields to tailor hybrid quantum dot-metal nanoparticle systems: Connecting the dots Optics Infobase Conference Papers 0.801
2010 Bryant GW, Zieli?ski M, Malkova N, Sims J, Jaskólski W, Aizpurua J. Effect of mechanical strain on the optical properties of quantum dots: controlling exciton shape, orientation, and phase with a mechanical strain. Physical Review Letters. 105: 067404. PMID 20868012 DOI: 10.1103/Physrevlett.105.067404  0.413
2010 Artuso RD, Bryant GW. Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/Physrevb.82.195419  0.786
2010 Malkova N, Bryant GW. Negative-band-gap quantum dots: Gap collapse, intrinsic surface states, excitonic response, and excitonic insulator phase Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/PhysRevB.82.155314  0.502
2009 Hromada I, Malkova N, Wang X, Bryant G, Chen Z. Optical shockley-like surface states in photonic superlattices Optics and Photonics News. 20: 23. DOI: 10.1364/Opn.20.12.000023  0.326
2009 Malkova N, Hromada I, Wang X, Bryant G, Chen Z. Transition between Tamm-like and Shockley-like surface states in optically induced photonic superlattices Physical Review a - Atomic, Molecular, and Optical Physics. 80. DOI: 10.1103/Physreva.80.043806  0.302
2008 Artuso RD, Bryant GW. Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. Nano Letters. 8: 2106-11. PMID 18558787 DOI: 10.1021/Nl800921Z  0.785
2008 Bryant GW, García de Abajo FJ, Aizpurua J. Mapping the plasmon resonances of metallic nanoantennas. Nano Letters. 8: 631-6. PMID 18189444 DOI: 10.1021/Nl073042V  0.326
2008 Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics Laser and Photonics Reviews. 2: 136-159. DOI: 10.1002/Lpor.200810003  0.374
2007 Bryant GW, Díaz JG, Zieliński M, Jaskólski W. Controlling the optical properties of quantum dots and nanocrystals using size, composition and strain Proceedings of Spie - the International Society For Optical Engineering. 6481. DOI: 10.1117/12.697327  0.326
2006 Romero I, Aizpurua J, Bryant GW, García De Abajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express. 14: 9988-99. PMID 19529393 DOI: 10.1364/Oe.14.009988  0.356
2006 Zhang W, Govorov AO, Bryant GW. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Physical Review Letters. 97: 146804. PMID 17155282 DOI: 10.1103/Physrevlett.97.146804  0.443
2006 Lee J, Javed T, Skeini T, Govorov AO, Bryant GW, Kotov NA. Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. Angewandte Chemie (International Ed. in English). 45: 4819-23. PMID 16802399 DOI: 10.1002/Anie.200600356  0.377
2006 Bryant GW, Romero I, García De Abajo FJ, Aizpurua J. Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: N nanorod-end effects Proceedings of Spie - the International Society For Optical Engineering. 6323. DOI: 10.1117/12.680701  0.396
2006 Jaskólski W, Zieliński M, Bryant GW, Aizpurua J. Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots: Tight-binding approach Physical Review B - Condensed Matter and Materials Physics. 74. DOI: 10.1103/Physrevb.74.195339  0.478
2006 Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, Slocik JM, Naik RR. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies Nano Letters. 6: 984-994. DOI: 10.1021/Nl0602140  0.426
2006 Bryant GW, Aizpurua J. Tuning the nanooptics of metallic nanorods: Size, geometry and end effects Optics Infobase Conference Papers 0.349
2005 Zieliński M, Jaskólski W, Aizpurua J, Bryant GW. Strain and spin-orbit effects in self-assembled quantum dots Acta Physica Polonica A. 108: 929-940. DOI: 10.12693/Aphyspola.108.929  0.441
2005 Aizpurua J, Bryant GW, Richter LJ, García De Abajo FJ, Kelley BK, Mallouk T. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy Physical Review B - Condensed Matter and Materials Physics. 71. DOI: 10.1103/Physrevb.71.235420  0.402
2004 Strózecka A, Jaskólski W, Zieliński M, Bryant GW. Stark effect in semiconductor nanocrystals: Tight-binding approach Vacuum. 74: 259-262. DOI: 10.1016/j.vacuum.2003.12.135  0.378
2004 Jaskólski W, Zieliński M, Bryant GW. Coupling and strain effects in vertically stacked double InAs/GaAs quantum dots: Tight-binding approach Acta Physica Polonica A. 106: 193-205.  0.489
2003 Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FJ. Optical properties of gold nanorings. Physical Review Letters. 90: 057401. PMID 12633394 DOI: 10.1103/Physrevlett.90.057401  0.313
2003 Bryant GW, Aizpurua J, Jaskólski W, Zieliński M. Tunnel-coupled quantum dots: Atomistic theory of quantum dot molecules and arrays Conference On Quantum Electronics and Laser Science (Qels) - Technical Digest Series. 89: QTuK5/1-QTuK5/2. DOI: 10.1557/Proc-737-E1.2  0.548
2003 Díaz JG, Planelles J, Jaskólski W, Aizpurua J, Bryant GW. Nanocrystal molecules and chains Journal of Chemical Physics. 119: 7484-7490. DOI: 10.1063/1.1605940  0.393
2003 Jaskólski W, Zieliński M, Bryant GW. Electronic properties of quantum-dot molecules Physica E: Low-Dimensional Systems and Nanostructures. 17: 40-41. DOI: 10.1016/S1386-9477(02)00729-4  0.532
2003 Bryant GW, Aizpurua J, Jaskólski W, Zieliński M. Tunnel-coupled quantum dots: Atomistic theory of quantum dot molecules and arrays Conference On Quantum Electronics and Laser Science (Qels) - Technical Digest Series. 89: QTuK5/1-QTuK5/2.  0.477
2003 Bryant GW, Jaskólski W. Tight-binding theory of quantum-dot quantum wells: Single-particle effects and near-band-edge structure Physical Review B - Condensed Matter and Materials Physics. 67: 2053201-20532017.  0.486
2002 Xie R, Bryant GW, Lee S, Jaskólski W. Electron-hole correlations and optical excitonic gaps in quantum-dot quantum wells: Tight-binding approach Physical Review B. 65. DOI: 10.1103/Physrevb.65.235306  0.382
2002 Bryant GW, Jaskolski W. Electronic structure of quantum-dot molecules and solids Physica E: Low-Dimensional Systems and Nanostructures. 13: 293-296. DOI: 10.1016/S1386-9477(01)00540-9  0.438
2002 Bryant GW. Exciton states in quantum dot solids: excitation transfer and dynamic decorrelation Physica B: Condensed Matter. 314: 15-19. DOI: 10.1016/S0921-4526(01)01457-0  0.42
2001 Liu A, Rahmani A, Bryant GW, Richter LJ, Stranick SJ. Modeling illumination-mode near-field optical microscopy of Au nanoparticles Journal of the Optical Society of America a: Optics and Image Science, and Vision. 18: 704-716. DOI: 10.1364/Josaa.18.000704  0.307
2001 Lee S, Jönsson L, Wilkins JW, Bryant GW, Klimeck G. Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions Physical Review B. 63. DOI: 10.1103/Physrevb.63.195318  0.423
2001 Little RB, El-Sayed MA, Bryant GW, Burke S. Formation of quantum-dot quantum-well heteronanostructures with large lattice mismatch: ZnS/CdS/ZnS The Journal of Chemical Physics. 114: 1813-1822. DOI: 10.1063/1.1333758  0.468
2001 Bryant GW, Jaskólski W. Designing quantum dots and quantum-dot solids Physica E: Low-Dimensional Systems and Nanostructures. 11: 72-77. DOI: 10.1016/S1386-9477(01)00179-5  0.525
2001 Rahmani A, Bryant G. Modification of Spontaneous Emission of Quantum Dots: Purcell Effect in Semiconductor Microcavities Physica Status Solidi (B). 224: 807-810. DOI: 10.1002/(SICI)1521-3951(200104)224:3<807::AID-PSSB807>3.0.CO;2-D  0.482
2001 Bryant G, Jask�lski W. Designing Nanocrystal Nanosystems: Quantum-Dot Quantum-Wells to Quantum-Dot Solids Physica Status Solidi (B). 224: 751-755. DOI: 10.1002/(SICI)1521-3951(200104)224:3<751::AID-PSSB751>3.0.CO;2-L  0.536
1999 Liu A, Bryant GW. Near-field second-harmonic generation of semiconductor quantum dots Physical Review B. 59: 2245-2253. DOI: 10.1103/PhysRevB.59.2245  0.553
1999 Bryant G, Liu A. Second-harmonic generation of semiconductor quantum dots studied by near-field optical microscopy Superlattices and Microstructures. 25: 361-365. DOI: 10.1006/spmi.1998.0659  0.517
1998 Jaskólski W, Bryant GW. Multiband theory of quantum-dot quantum wells: Dim excitons, bright excitons, and charge separation in heteronanostructures Physical Review B. 57: R4237-R4240. DOI: 10.1103/PhysRevB.57.R4237  0.511
1998 Banin U, Lee CJ, Guzelian AA, Kadavanich AV, Alivisatos AP, Jaskolski W, Bryant GW, Efros AL, Rosen M. Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory Journal of Chemical Physics. 109: 2306-2309. DOI: 10.1063/1.476797  0.309
1998 Bryant GW. Probing quantum nanostructures with near-field optical microscopy and vice versa Applied Physics Letters. 72: 768-770. DOI: 10.1063/1.120868  0.495
1993 Bryant GW, Bradshaw JL, Leavitt RP, Tobin MS, Pham JT. Determining band offsets with triple quantum-well structures Applied Physics Letters. 63: 1357-1359. DOI: 10.1063/1.109676  0.398
1987 MacDonald A, Bryant GW. Charge-density-wave states in multiple-quantum-well systems Superlattices and Microstructures. 3: 257-260. DOI: 10.1016/0749-6036(87)90068-1  0.432
1984 Bryant GW. Hydrogenic impurity states in quantum-well wires Physical Review B. 29: 6632-6639. DOI: 10.1103/PhysRevB.29.6632  0.404
Show low-probability matches.