Michael Frenklach - Publications

Affiliations: 
University of California, Berkeley, Berkeley, CA, United States 
Area:
Mechanical Engineering, Biostatistics Biology

113 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Semenikhin AS, Savchenkova AS, Chechet IV, Matveev SG, Frenklach M, Mebel AM. On the mechanism of soot nucleation. II. E-bridge formation at the PAH bay. Physical Chemistry Chemical Physics : Pccp. PMID 32706010 DOI: 10.1039/D0Cp02554B  0.349
2020 Frenklach M, Mebel AM. On the mechanism of soot nucleation. Physical Chemistry Chemical Physics : Pccp. 22: 5314-5331. PMID 32096528 DOI: 10.1039/D0Cp00116C  0.377
2020 Cheng S, Yang Y, Brear MJ, Frenklach M. Quantifying uncertainty in kinetic simulation of engine autoignition Combustion and Flame. 216: 174-184. DOI: 10.1016/J.Combustflame.2020.02.025  0.38
2020 Wick A, Frenklach M, Pitsch H. Systematic assessment of the Method of Moments with Interpolative Closure and guidelines for its application to soot particle dynamics in laminar and turbulent flames Combustion and Flame. 214: 450-463. DOI: 10.1016/J.Combustflame.2020.01.007  0.302
2019 Frenklach M, Wang H. Detailed surface and gas-phase chemical kinetics of diamond deposition. Physical Review. B, Condensed Matter. 43: 1520-1545. PMID 9997403 DOI: 10.1103/Physrevb.43.1520  0.344
2019 Valencia-López AM, Bustamante F, Loukou A, Stelzner B, Trimis D, Frenklach M, Slavinskaya NA. Effect of benzene doping on soot precursors formation in non-premixed flames of producer gas (PG) Combustion and Flame. 207: 265-280. DOI: 10.1016/J.Combustflame.2019.05.044  0.395
2019 Frenklach M. New form for reduced modeling of soot oxidation: Accounting for multi-site kinetics and surface reactivity Combustion and Flame. 201: 148-159. DOI: 10.1016/J.Combustflame.2018.12.023  0.37
2018 Oreluk J, Liu Z, Hegde A, Li W, Packard A, Frenklach M, Zubarev D. Diagnostics of Data-Driven Models: Uncertainty Quantification of PM7 Semi-Empirical Quantum Chemical Method. Scientific Reports. 8: 13248. PMID 30185953 DOI: 10.1038/S41598-018-31677-Y  0.337
2018 Semenikhin AS, Savchenkova AS, Chechet IV, Matveev SG, Liu Z, Frenklach M, Mebel AM. Rate constants for H abstraction from benzo(a)pyrene and chrysene: a theoretical study. Physical Chemistry Chemical Physics : Pccp. 19: 25401-25413. PMID 28894870 DOI: 10.1039/C7Cp05560A  0.329
2018 Mirzayeva A, Slavinskaya NA, Abbasi M, Starcke JH, Li W, Frenklach M. Uncertainty Quantification in Chemical Modeling Eurasian Chemico-Technological Journal. 20: 33-43. DOI: 10.18321/Ectj706  0.462
2018 Hegde A, Li W, Oreluk J, Packard A, Frenklach M. Consistency Analysis for Massively Inconsistent Datasets in Bound-to-Bound Data Collaboration Siam/Asa Journal On Uncertainty Quantification. 6: 429-456. DOI: 10.1137/16M1110005  0.312
2018 Iavarone S, Oreluk J, Smith SST, Hegde A, Li W, Packard A, Frenklach M, Smith PPJ, Contino F, Parente A. Application of Bound-to-Bound Data Collaboration approach for development and uncertainty quantification of a reduced char combustion model Fuel. 232: 769-779. DOI: 10.1016/J.Fuel.2018.05.113  0.447
2018 Frenklach M, Liu Z, Singh RI, Galimova GR, Azyazov VN, Mebel AM. Detailed, sterically-resolved modeling of soot oxidation: Role of O atoms, interplay with particle nanostructure, and emergence of inner particle burning Combustion and Flame. 188: 284-306. DOI: 10.1016/J.Combustflame.2017.10.012  0.379
2017 Slavinskaya NA, Abbasi M, Starcke JH, Whitside R, Mirzayeva A, Riedel U, Li W, Oreluk J, Hegde A, Packard A, Frenklach M, Gerasimov G, Shatalov O. Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion Energy & Fuels. 31: 2274-2297. DOI: 10.1021/Acs.Energyfuels.6B02319  0.467
2016 Pakhira S, Singh RI, Olatunji-Ojo OA, Frenklach M, Lester WA. A QMC Study of the Reactions of CH with Acrolein: Major and Minor Channels. The Journal of Physical Chemistry. A. PMID 27046018 DOI: 10.1021/Acs.Jpca.5B11527  0.341
2016 Frenklach M, Packard A, Garcia-Donato G, Paulo R, Sacks J. Comparison of Statistical and Deterministic Frameworks of Uncertainty Quantification Siam/Asa Journal On Uncertainty Quantification. 4: 875-901. DOI: 10.1137/15M1019131  0.368
2016 Singh R, Frenklach M. A mechanistic study of the influence of graphene curvature on the rate of high-temperature oxidation by molecular oxygen Carbon. 101: 203-212. DOI: 10.1016/J.Carbon.2016.01.090  0.353
2015 Singh RI, Mebel AM, Frenklach M. Oxidation of Graphene-Edge Six- and Five-Member Rings by Molecular Oxygen. The Journal of Physical Chemistry. A. 119: 7528-47. PMID 25894330 DOI: 10.1021/Acs.Jpca.5B00868  0.384
2015 Barker JR, Frenklach M, Golden DM. When Rate Constants Are Not Enough. The Journal of Physical Chemistry. A. 119: 7451-61. PMID 25867137 DOI: 10.1021/Acs.Jpca.5B00640  0.361
2015 Pakhira S, Lengeling BS, Olatunji-Ojo O, Caffarel M, Frenklach M, Lester WA. A Quantum Monte Carlo Study of the Reactions of CH with Acrolein. The Journal of Physical Chemistry. A. 119: 4214-23. PMID 25826390 DOI: 10.1021/Acs.Jpca.5B00919  0.366
2015 Whitesides R, Frenklach M. Effect of Reaction Kinetics on Graphene-Edge Morphology and Composition Zeitschrift FüR Physikalische Chemie. 229: 597-614. DOI: 10.1515/Zpch-2014-0633  0.763
2015 Frenklach M, Schuetz CA, Ping J. Migration mechanism of aromatic-edge growth Proceedings of the Combustion Institute. 30: 1389-1396. DOI: 10.1016/j.proci.2004.07.048  0.541
2014 Edwards DE, Zubarev DY, Packard A, Lester WA, Frenklach M. Interval prediction of molecular properties in parametrized quantum chemistry. Physical Review Letters. 112: 253003. PMID 25014809 DOI: 10.1103/Physrevlett.112.253003  0.318
2014 Edwards DE, Zubarev DY, Lester WA, Frenklach M. Pathways to soot oxidation: reaction of OH with phenanthrene radicals. The Journal of Physical Chemistry. A. 118: 8606-13. PMID 24761798 DOI: 10.1021/Jp5033178  0.39
2012 Zubarev DY, Frenklach M, Lester WA. From aromaticity to self-organized criticality in graphene. Physical Chemistry Chemical Physics : Pccp. 14: 12075-8. PMID 22872129 DOI: 10.1039/C2Cp41675A  0.304
2012 You X, Packard A, Frenklach M. Process informatics tools for predictive modeling: Hydrogen combustion International Journal of Chemical Kinetics. 44: 101-116. DOI: 10.1002/Kin.20627  0.421
2012 Dato A, Radmilovic V, Frenklach M. Synthesis, Characterization, and Biomedical Applications of Graphene Nanotechnologies For the Life Sciences. DOI: 10.1002/9783527610419.Ntls0230  0.772
2011 You X, Zubarev DY, Lester WA, Frenklach M. Thermal decomposition of pentacene oxyradicals. The Journal of Physical Chemistry. A. 115: 14184-90. PMID 22054037 DOI: 10.1021/Jp208974B  0.311
2010 Whitesides R, Frenklach M. Detailed kinetic Monte Carlo simulations of graphene-edge growth. The Journal of Physical Chemistry. A. 114: 689-703. PMID 20000728 DOI: 10.1021/Jp906541A  0.779
2010 Dato A, Frenklach M. Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors New Journal of Physics. 12: 125013. DOI: 10.1088/1367-2630/12/12/125013  0.773
2010 Zubarev DY, Robertson N, Domin D, McClean J, Wang J, Lester WA, Whitesides R, You X, Frenklach M. Local electronic structure and stability of pentacene oxyradicals Journal of Physical Chemistry C. 114: 5429-5437. DOI: 10.1021/Jp9058615  0.76
2010 Russi T, Packard A, Frenklach M. Uncertainty quantification: Making predictions of complex reaction systems reliable Chemical Physics Letters. 499: 1-8. DOI: 10.1016/J.Cplett.2010.09.009  0.788
2010 Kress ME, Tielens AGGM, Frenklach M. The ‘soot line’: Destruction of presolar polycyclic aromatic hydrocarbons in the terrestrial planet-forming region of disks Advances in Space Research. 46: 44-49. DOI: 10.1016/J.Asr.2010.02.004  0.333
2009 Dato A, Lee Z, Jeon KJ, Erni R, Radmilovic V, Richardson TJ, Frenklach M. Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications (Cambridge, England). 6095-7. PMID 19809655 DOI: 10.1039/B911395A  0.77
2009 Lee Z, Jeon KJ, Dato A, Erni R, Richardson TJ, Frenklach M, Radmilovic V. Direct imaging of soft-hard interfaces enabled by graphene. Nano Letters. 9: 3365-9. PMID 19591495 DOI: 10.1021/Nl901664K  0.759
2009 Lee Z, Dato A, Jeon KJ, Erni R, Richardson TJ, Frenklach M, Radmilovic V. Atomic resolution imaging and spectroscopy of graphene using the team 0.5 Microscopy and Microanalysis. 15: 124-125. DOI: 10.1017/S1431927609098985  0.762
2008 Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Substrate-free gas-phase synthesis of graphene sheets. Nano Letters. 8: 2012-6. PMID 18529034 DOI: 10.1021/Nl8011566  0.771
2008 Russi T, Packard A, Feeley R, Frenklach M. Sensitivity analysis of uncertainty in model prediction. The Journal of Physical Chemistry. A. 112: 2579-88. PMID 18303866 DOI: 10.1021/Jp076861C  0.764
2008 Domin D, Lester WA, Whitesides R, Frenklach M. Isomer energy differences for the C4H3 and C4H5 isomers using diffusion Monte Carlo. The Journal of Physical Chemistry. A. 112: 2065-8. PMID 18201074 DOI: 10.1021/Jp709940S  0.727
2008 Whitesides R, Domin D, Salomón-Ferrer R, Lester WA, Frenklach M. Graphene layer growth chemistry: five- and six-member ring flip reaction. The Journal of Physical Chemistry. A. 112: 2125-30. PMID 18085755 DOI: 10.1021/Jp075785A  0.765
2007 Lee JC, Najm HN, Lefantzi S, Ray J, Frenklach M, Valorani M, Goussis DA. A CSP and tabulation-based adaptive chemistry model Combustion Theory and Modelling. 11: 73-102. DOI: 10.1080/13647830600763595  0.338
2007 Frenklach M, Packard A, Feeley R. Chapter 6 Optimization of Reaction Models with Solution Mapping Comprehensive Chemical Kinetics. 42: 243-291. DOI: 10.1016/S0069-8040(07)42006-4  0.81
2006 Feeley R, Frenklach M, Onsum M, Russi T, Arkin A, Packard A. Model discrimination using data collaboration. The Journal of Physical Chemistry. A. 110: 6803-13. PMID 16722696 DOI: 10.1021/Jp056309S  0.754
2006 Smith GP, Frenklach M, Feeley R, Packard A, Seiler P. A system analysis approach for atmospheric observations and models: Mesospheric HOx dilemma Journal of Geophysical Research. 111. DOI: 10.1029/2005Jd006846  0.789
2006 Seiler PJ, Frenklach M, Packard A, Feeley R. Numerical approaches for collaborative data processing Optimization and Engineering. 7: 459-478. DOI: 10.1007/S11081-006-0350-4  0.784
2005 Netto A, Frenklach M. Kinetic Monte Carlo simulations of CVD diamond growth—Interlay among growth, etching, and migration Diamond and Related Materials. 14: 1630-1646. DOI: 10.1016/J.Diamond.2005.05.009  0.339
2005 Balthasar M, Frenklach M. Detailed kinetic modeling of soot aggregate formation in laminar premixed flames Combustion and Flame. 140: 130-145. DOI: 10.1016/J.Combustflame.2004.11.004  0.307
2004 Feeley R, Seiler P, Packard aA, Frenklach M. Consistency of a Reaction Dataset Journal of Physical Chemistry A. 108: 9573-9583. DOI: 10.1021/Jp047524W  0.815
2004 Frenklach M, Ping J. On the role of surface migration in the growth and structure of graphene layers Carbon. 42: 1209-1212. DOI: 10.1016/J.Carbon.2004.01.025  0.394
2004 Frenklach M, Packard A, Seiler PJ, Feeley R. Collaborative data processing in developing predictive models of complex reaction systems International Journal of Chemical Kinetics. 36: 57-66. DOI: 10.1002/Kin.10172  0.787
2003 Schuetz CA, Frenklach M, Kollias AC, Lester WA. Geometry optimization in quantum Monte Carlo with solution mapping: Application to formaldehyde Journal of Chemical Physics. 119: 9386-9392. DOI: 10.1063/1.1614212  0.611
2003 Eiteneer B, Frenklach M. Experimental and modeling study of shock‐tube oxidation of acetylene International Journal of Chemical Kinetics. 35: 391-414. DOI: 10.1002/Kin.10141  0.795
2002 Frenklach M. Reaction mechanism of soot formation in flames Physical Chemistry Chemical Physics. 4: 2028-2037. DOI: 10.1039/B110045A  0.335
2000 Eiteneer B, Frenklach M. Comment on “Rate Constants for CH3 + O2 → CH3O + O at High Temperature and Evidence for H2CO + O2 → HCO + HO2” and “Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O” Journal of Physical Chemistry A. 104: 9797-9799. DOI: 10.1021/Jp993621R  0.741
2000 Appel J, Bockhorn H, Frenklach M. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons Combustion and Flame. 121: 122-136. DOI: 10.1016/S0010-2180(99)00135-2  0.429
1999 Moriarty NW, Brown NJ, Frenklach M. Hydrogen Migration In The Phenylethen-2-Yl Radical Journal of Physical Chemistry A. 103: 7127-7135. DOI: 10.1021/Jp991481F  0.36
1999 Tonse SR, Moriarty NW, Brown NJ, Frenklach M. PRISM: Piecewise Reusable Implementation of Solution Mapping. An Economical Strategy for Chemical Kinetics Israel Journal of Chemistry. 39: 97-106. DOI: 10.1002/Ijch.199900010  0.315
1998 Frenklach M. Simulation of surface reactions Pure and Applied Chemistry. 70: 477-484. DOI: 10.1351/Pac199870020477  0.335
1998 Golden DM, Smith GP, Mcewen AB, Yu C-, Eiteneer B, Frenklach M, Vaghjiani GL, Ravishankara AR, Tully FP. OH(OD) + CO: Measurements and an Optimized RRKM Fit Journal of Physical Chemistry A. 102: 8598-8606. DOI: 10.1021/Jp982110M  0.759
1998 Eiteneer B, Yu C-, Goldenberg M, Frenklach M. Determination of Rate Coefficients for Reactions of Formaldehyde Pyrolysis and Oxidation in the Gas Phase Journal of Physical Chemistry A. 102: 5196-5205. DOI: 10.1021/Jp981184V  0.784
1998 Brown NJ, Revzan KL, Frenklach M. Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor Symposium (International) On Combustion. 27: 1573-1580. DOI: 10.1016/S0082-0784(98)80566-3  0.303
1998 Kazakov A, Frenklach M. Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames Combustion and Flame. 114: 484-501. DOI: 10.1016/S0010-2180(97)00322-2  0.335
1997 Frenklach M, Skokov S. Surface Migration in Diamond Growth Journal of Physical Chemistry B. 101: 3025-3036. DOI: 10.1021/Jp9638043  0.311
1997 Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames Combustion and Flame. 110: 173-221. DOI: 10.1016/S0010-2180(97)00068-0  0.403
1996 Hunter TB, Litzinger TA, Wang H, Frenklach M. Ethane oxidation at elevated pressures in the intermediate temperature regime: Experiments and modeling Combustion and Flame. 104: 505-523. DOI: 10.1016/0010-2180(95)00154-9  0.403
1996 Frenklach M, Ting L, Wang H, Rabinowitz MJ. Silicon Particle Formation in Pyrolysis of Silane and Disilane Israel Journal of Chemistry. 36: 293-303. DOI: 10.1002/Ijch.199600041  0.31
1995 Frenklach M. A One-Dimensional Stochastic Model of Diamond Growth Mrs Proceedings. 399: 83. DOI: 10.1557/Proc-399-83  0.314
1995 Kazakov A, Wang H, Frenklach M. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar Combustion and Flame. 100: 111-120. DOI: 10.1016/0010-2180(94)00086-8  0.347
1995 Goldenberg M, Frenklach M. A post-processing method for feature sensitivity coefficients International Journal of Chemical Kinetics. 27: 1135-1142. DOI: 10.1002/Kin.550271110  0.319
1994 Frenklach M. Chemical Reaction Mechanisms of Diamond Growth Mrs Proceedings. 339. DOI: 10.1557/Proc-339-255  0.332
1994 Cadwell BJ, Wang H, Feigelson ED, Frenklach M. Induced nucleation of carbon dust in red giant stars The Astrophysical Journal. 429: 285. DOI: 10.1086/174318  0.301
1994 Frenklach M, Skokov S, Weiner B. An atomistic model for stepped diamond growth Nature. 372: 535-537. DOI: 10.1038/372535A0  0.323
1994 Wang H, Frenklach M. Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals The Journal of Physical Chemistry. 98: 11465-11489. DOI: 10.1021/J100095A033  0.385
1994 Kazakov A, Wang H, Frenklach M. Parametrization of Chemically Activated Reactions Involving Isomerization The Journal of Physical Chemistry. 98: 10598-10605. DOI: 10.1021/J100092A034  0.336
1994 Skokov S, Weiner B, Frenklach M. Elementary reaction mechanism for growth of diamond (100) surfaces from methyl radicals The Journal of Physical Chemistry. 98: 7073-7082. DOI: 10.1021/J100079A030  0.326
1994 Skokov S, Weiner B, Frenklach M. Elementary reaction mechanism of diamond growth from acetylene The Journal of Physical Chemistry. 98: 8-11. DOI: 10.1021/J100052A003  0.351
1994 WANG H, FRENKLACH M. Transport properties of polycyclic aromatic hydrocarbons for flame modeling☆ Combustion and Flame. 96: 163-170. DOI: 10.1016/0010-2180(94)90167-8  0.314
1994 Hunter TB, Wang H, Litzinger TA, Frenklach M. The oxidation of methane at elevated pressures: Experiments and modeling Combustion and Flame. 97: 201-224. DOI: 10.1016/0010-2180(94)90005-1  0.397
1993 Frenklach M, Huang D, Thomas RE, Rudder RA, Markunas RJ. Activation energy and mechanism of CO desorption from (100) diamond surface Applied Physics Letters. 63: 3090-3092. DOI: 10.1063/1.110217  0.317
1993 Wang H, Weiner B, Frenklach M. Theoretical study of reaction between phenylvinyleum ion and acetylene The Journal of Physical Chemistry. 97: 10364-10371. DOI: 10.1021/J100142A017  0.31
1993 Zhao XG, Carmer CS, Weiner B, Frenklach M. Molecular dynamics with the AM1 potential : reactions on diamond surfaces The Journal of Physical Chemistry. 97: 1639-1648. DOI: 10.1021/J100110A028  0.301
1993 Markatou P, Wang H, Frenklach M. A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene Combustion and Flame. 93: 467-482. DOI: 10.1016/0010-2180(93)90146-T  0.401
1993 Wang H, Frenklach M. Modification of Troe's fall-off broadening Chemical Physics Letters. 205: 271-276. DOI: 10.1016/0009-2614(93)89242-A  0.342
1992 Frenklach M. Monte Carlo simulation of hydrogen reactions with the diamond surface. Physical Review B. 45: 9455-9458. PMID 10000819 DOI: 10.1103/Physrevb.45.9455  0.318
1992 Frenklach M. Monte Carlo simulation of diamond growth by methyl and acetylene reactions Journal of Chemical Physics. 97: 5794-5802. DOI: 10.1063/1.463738  0.346
1992 Cline B, Howard W, Wang H, Spear KE, Frenklach M. Cyclic deposition of diamond : experimental testing of model predictions Journal of Applied Physics. 72: 5926-5940. DOI: 10.1063/1.351901  0.364
1992 Huang D, Frenklach M. Energetics of surface reactions on (100) diamond plane The Journal of Physical Chemistry. 96: 1868-1875. DOI: 10.1021/J100183A065  0.327
1992 Frenklach M, Wang H, Rabinowitz MJ. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane Progress in Energy and Combustion Science. 18: 47-73. DOI: 10.1016/0360-1285(92)90032-V  0.39
1991 Morgan WA, Feigelson ED, Wang H, Frenklach M. A New Mechanism for the Formation of Meteoritic Kerogen-Like Material Science. 252: 109-112. PMID 17739082 DOI: 10.1126/Science.252.5002.109  0.305
1991 Wang H, Frenklach M. Analysis of cyclic deposition of diamond Journal of Applied Physics. 70: 7132-7136. DOI: 10.1063/1.349796  0.404
1991 Wang H, Frenklach M. Detailed reduction of reaction mechanisms for flame modeling Combustion and Flame. 87: 365-370. DOI: 10.1016/0010-2180(91)90120-Z  0.396
1990 Pratsinis SE, Bai H, Biswas P, Frenklach M, Mastrangelo SVR. Kinetics of Titanium(IV) Chloride Oxidation Journal of the American Ceramic Society. 73: 2158-2162. DOI: 10.1111/J.1151-2916.1990.Tb05295.X  0.339
1990 Frenklach M. Production Of Polycyclic Aromatic Hydrocarbons In Chlorine Containing Environments Combustion Science and Technology. 74: 283-296. DOI: 10.1080/00102209008951693  0.33
1989 Frenklach M, Feigelson ED. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes The Astrophysical Journal. 341: 372-384. DOI: 10.1086/167501  0.356
1989 Frenklach M. The role of hydrogen in vapor deposition of diamond Journal of Applied Physics. 65: 5142-5149. DOI: 10.1063/1.343193  0.361
1989 Carmer CS, Frenklach M. Formation of silicon carbide particles behind shock waves Applied Physics Letters. 54: 1430-1432. DOI: 10.1063/1.100688  0.304
1988 Frenklach M, Spear KE. Growth mechanism of vapor-deposited diamond Journal of Materials Research. 3: 133-140. DOI: 10.1557/Jmr.1988.0133  0.333
1987 Frenklach M, Warnatz J. Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame Combustion Science and Technology. 51: 265-283. DOI: 10.1080/00102208708960325  0.404
1987 Frenklach M, Harris SJ. Aerosol dynamics modeling using the method of moments Journal of Colloid and Interface Science. 118: 252-261. DOI: 10.1016/0021-9797(87)90454-1  0.304
1987 Hwang SM, Gardiner WC, Frenklach M, Hidaka Y. Induction zone exothermicity of acetylene ignition Combustion and Flame. 67: 65-75. DOI: 10.1016/0010-2180(87)90014-9  0.359
1986 Frenklach M, Clary DW, Yuan T, Gardiner WC, Stein SE. Mechanism of Soot Formation in Acetylene-Oxygen Mixtures Combustion Science and Technology. 50: 79-115. DOI: 10.1080/00102208608923927  0.352
1986 Frenklach M, Hsu JP, Miller DL, Matula RA. Shock-tube pyrolysis of chlorinated hydrocarbons: Formation of soot Combustion and Flame. 64: 141-155. DOI: 10.1016/0010-2180(86)90051-9  0.314
1985 Frenklach M. Computer modeling of infinite reaction sequences: A chemical lumping Chemical Engineering Science. 40: 1843-1849. DOI: 10.1016/0009-2509(85)80119-6  0.384
1985 Frenklach M, Miller DL. Statistically rigorous parameter estimation in dynamic modeling using approximate empirical models Aiche Journal. 31: 498-500. DOI: 10.1002/Aic.690310322  0.33
1984 Frenklach M. Systematic optimization of a detailed kinetic model using a methane ignition example Combustion and Flame. 58: 69-72. DOI: 10.1016/0010-2180(84)90079-8  0.333
1984 Frenklach M, Bornside DE. Shock-initiated ignition in methane-propane mixtures Combustion and Flame. 56: 1-27. DOI: 10.1016/0010-2180(84)90002-6  0.362
1983 Frenklach M, Clary D. Aspects of autocatalytic reaction kinetics Industrial & Engineering Chemistry Fundamentals. 22: 433-436. DOI: 10.1021/I100012A014  0.35
1983 Frenklach M, Taki S, Matula RA. A conceptual model for soot formation in pyrolysis of aromatic hydrocarbons Combustion and Flame. 49: 275-282. DOI: 10.1016/0010-2180(83)90170-0  0.34
1983 Frenklach M, Taki S, Durgaprasad MB, Matula RA. Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene Combustion and Flame. 54: 81-101. DOI: 10.1016/0010-2180(83)90024-X  0.333
1983 Miller D, Frenklach M. Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics International Journal of Chemical Kinetics. 15: 677-696. DOI: 10.1002/Kin.550150709  0.362
1983 MILLER D, FRENKLACH M. ChemInform Abstract: SENSITIVITY ANALYSIS AND PARAMETER ESTIMATION IN DYNAMIC MODELING OF CHEMICAL KINETICS Chemischer Informationsdienst. 14. DOI: 10.1002/Chin.198345092  0.339
1981 Frenklach M, Lee JH, White JN, Gardiner WC. Oxidation of hydrogen sulfide Combustion and Flame. 41: 1-16. DOI: 10.1016/0010-2180(81)90035-3  0.304
1980 Lifshitz A, Frenklach M. Oxidation of cyanogen. II. The mechanism of the oxidation International Journal of Chemical Kinetics. 12: 159-168. DOI: 10.1002/Kin.550120303  0.361
Show low-probability matches.