Yunlong Zi, Ph.D. - Publications

Affiliations: 
2005-2009 Materials Science and Engineering Tsinghua University, Beijing, China, Beijing, Beijing Shi, China 
 2009-2014 Physics and Astronomy Purdue University, West Lafayette, IN, United States 
 2014-2017 Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA 
 2017- Mechanical and Automation Engineering The Chinese University of Hong Kong, Hong Kong, Hong Kong 
Area:
Energy harvesting, nanogenerator, triboelectric
Website:
https://zilab.weebly.com/

99 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Dai J, Xia X, Zhang D, He S, Wan D, Chen F, Zi Y. High-performance self-desalination powered by triboelectric-electromagnetic hybrid nanogenerator. Water Research. 252: 121185. PMID 38295459 DOI: 10.1016/j.watres.2024.121185  0.335
2023 Chen C, Zhang H, Xu G, Hou T, Fu J, Wang H, Xia X, Yang C, Zi Y. Passive Internet of Events Enabled by Broadly Compatible Self-Powered Visualized Platform Toward Real-Time Surveillance. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2304352. PMID 37870202 DOI: 10.1002/advs.202304352  0.761
2023 He J, Guo X, Pan C, Cheng G, Zheng M, Zi Y, Cui H, Li X. High output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application. Nanotechnology. PMID 37339612 DOI: 10.1088/1361-6528/acdfd5  0.485
2023 Wen H, Yang X, Huang R, Zheng D, Yuan J, Hong H, Duan J, Zi Y, Tang Q. Universal Energy Solution for Triboelectric Sensors Toward the 5G Era and Internet of Things. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2302009. PMID 37246274 DOI: 10.1002/advs.202302009  0.342
2023 Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, ... ... Zi Y, et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. Acs Nano. PMID 37219021 DOI: 10.1021/acsnano.2c12458  0.75
2023 Xia X, Zhou Z, Shang Y, Yang Y, Zi Y. Metallic glass-based triboelectric nanogenerators. Nature Communications. 14: 1023. PMID 36823296 DOI: 10.1038/s41467-023-36675-x  0.488
2022 Xu G, Fu J, Li C, Li C, Wang H, Zi Y. Understanding the Time-Lag Behavior of the Breakdown-Discharge Voltage. Acs Applied Materials & Interfaces. PMID 36134895 DOI: 10.1021/acsami.2c11891  0.724
2022 Su L, Xiong Q, Wang H, Zi Y. Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). e2203510. PMID 36073821 DOI: 10.1002/advs.202203510  0.516
2022 Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang ZL. A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric" signal. Nature Communications. 13: 1391. PMID 35296663 DOI: 10.1038/s41467-022-29087-w  0.328
2022 Xu G, Guan D, Fu J, Li X, Li A, Ding W, Zi Y. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation. Acs Applied Materials & Interfaces. PMID 35073035 DOI: 10.1021/acsami.1c21359  0.769
2021 Wang L, Bian Y, Lim CK, Niu Z, Lee PKH, Chen C, Zhang L, Daoud WA, Zi Y. Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy. 85: 106015. PMID 36571102 DOI: 10.1016/j.nanoen.2021.106015  0.436
2021 Wang H, Wang J, Yao K, Fu J, Xia X, Zhang R, Li J, Xu G, Wang L, Yang J, Lai J, Dai Y, Zhang Z, Li A, Zhu Y, ... ... Zi Y, et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Science Advances. 7: eabi6751. PMID 34550743 DOI: 10.1126/sciadv.abi6751  0.782
2021 Wu H, Wang S, Wang Z, Zi Y. Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nature Communications. 12: 5470. PMID 34526498 DOI: 10.1038/s41467-021-25753-7  0.356
2021 Wang J, Wang H, Yin K, Zi Y. Tribo-Induced Color Tuner toward Smart Lighting and Self-Powered Wireless Sensing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 8: 2004970. PMID 34194937 DOI: 10.1002/advs.202004970  0.562
2021 Wang J, Wang H, Yin K, Zi Y. Tribo-Induced Color Tuner toward Smart Lighting and Self-Powered Wireless Sensing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 8: 2004970. PMID 34194937 DOI: 10.1002/advs.202004970  0.562
2021 Wang J, Liu P, Meng C, Kwok HS, Zi Y. Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. Acs Applied Materials & Interfaces. PMID 33913332 DOI: 10.1021/acsami.1c04048  0.46
2021 Guan D, Xu G, Xia X, Wang J, Zi Y. Boosting the Output Performance of the Triboelectric Nanogenerator through the Nonlinear Oscillator. Acs Applied Materials & Interfaces. PMID 33502169 DOI: 10.1021/acsami.0c21246  0.8
2020 Wang L, Liu Y, Liu Q, Zhu Y, Wang H, Xie Z, Yu X, Zi Y. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsystems & Nanoengineering. 6: 59. PMID 34567670 DOI: 10.1038/s41378-020-0154-2  0.618
2020 Fu J, Xu G, Li C, Xia X, Guan D, Li J, Huang Z, Zi Y. Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 7: 2001757. PMID 33344120 DOI: 10.1002/advs.202001757  0.789
2020 Wu H, Chen Z, Xu G, Xu J, Wang Z, Zi Y. Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. Acs Applied Materials & Interfaces. PMID 33264000 DOI: 10.1021/acsami.0c17601  0.506
2020 Wang L, Wang Y, Wang H, Xu G, Döring A, Daoud WA, Xu J, Rogach AL, Xi Y, Zi Y. Carbon Dot Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. Acs Nano. PMID 32686934 DOI: 10.1021/Acsnano.0C03986  0.686
2020 Zhang H, Marty F, Xia X, Zi Y, Bourouina T, Galayko D, Basset P. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nature Communications. 11: 3221. PMID 32591516 DOI: 10.1038/S41467-020-17019-5  0.607
2020 Wang H, Wang J, Xia X, Guan D, Zi Y. A Multifunctional Self-Powered Switch toward Delay-Characteristic Sensors. Acs Applied Materials & Interfaces. PMID 32337971 DOI: 10.1021/Acsami.0C03053  0.8
2020 Wang J, Meng C, Gu Q, Tseng MC, Tang ST, Kwok HS, Cheng J, Zi Y. Normally Transparent Tribo-Induced Smart Window. Acs Nano. PMID 32078294 DOI: 10.1021/Acsnano.0C00107  0.565
2020 Xia X, Wang H, Basset P, Zhu Y, Zi Y. An Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. Acs Applied Materials & Interfaces. PMID 31913007 DOI: 10.1021/Acsami.9B20060  0.686
2020 Wang L, Liu Y, Liu Q, Zhu Y, Wang H, Xie Z, Yu X, Zi Y. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing Microsystems & Nanoengineering. 6: 1-9. DOI: 10.1038/S41378-020-0154-2  0.584
2020 Xia X, Wang H, Guo H, Xu C, Zi Y. On the material-dependent charge transfer mechanism of the contact electrification Nano Energy. 78: 105343. DOI: 10.1016/J.Nanoen.2020.105343  0.591
2019 Fu J, Xia X, Xu G, Li X, Zi Y. On the Maximal Output Energy Density of Nanogenerators. Acs Nano. PMID 31609574 DOI: 10.1021/Acsnano.9B06272  0.786
2019 Xia X, Fu J, Zi Y. A universal standardized method for output capability assessment of nanogenerators. Nature Communications. 10: 4428. PMID 31562336 DOI: 10.1038/S41467-019-12465-2  0.704
2019 Gong Y, Yang Z, Shan X, Sun Y, Xie T, Zi Y. Capturing Flow Energy from Ocean and Wind Energies. 12: 2184. DOI: 10.3390/En12112184  0.395
2019 Li X, Lau TH, Guan D, Zi Y. A universal method for quantitative analysis of triboelectric nanogenerators Journal of Materials Chemistry A. 7: 19485-19494. DOI: 10.1039/C9Ta06525C  0.73
2019 Wang J, Wang H, Li X, Zi Y. Self-powered electrowetting optical switch driven by a triboelectric nanogenerator for wireless sensing Nano Energy. 66: 104140. DOI: 10.1016/J.Nanoen.2019.104140  0.688
2019 Chen J, Guo H, Wu Z, Xu G, Zi Y, Hu C, Wang ZL. Actuation and sensor integrated self-powered cantilever system based on TENG technology Nano Energy. 64: 103920. DOI: 10.1016/J.Nanoen.2019.103920  0.633
2019 Jiang J, Wang Q, Wang B, Dong J, Li Z, Li X, Zi Y, Li S, Wang X. Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane Nano Energy. 59: 545-552. DOI: 10.1016/J.Nanoen.2019.02.066  0.503
2019 Xu G, Li X, Xia X, Fu J, Ding W, Zi Y. On the force and energy conversion in triboelectric nanogenerators Nano Energy. 59: 154-161. DOI: 10.1016/J.Nanoen.2019.02.035  0.79
2019 Wang H, Zhu Q, Ding Z, Li Z, Zheng H, Fu J, Diao C, Zhang X, Tian J, Zi Y. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning Nano Energy. 57: 616-624. DOI: 10.1016/J.Nanoen.2018.12.078  0.692
2019 Chen F, Wu Y, Ding Z, Xia X, Li S, Zheng H, Diao C, Yue G, Zi Y. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing Nano Energy. 56: 241-251. DOI: 10.1016/J.Nanoen.2018.11.041  0.625
2019 Li X, Xu G, Xia X, Fu J, Huang L, Zi Y. Standardization of triboelectric nanogenerators: Progress and perspectives Nano Energy. 56: 40-55. DOI: 10.1016/J.Nanoen.2018.11.029  0.779
2019 Liu Y, Wang L, Zhao L, Yao K, Xie Z, Zi Y, Yu X. Thin, Skin‐Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing Advanced Electronic Materials. 6: 1901174. DOI: 10.1002/Aelm.201901174  0.514
2019 Liu Y, Zhao L, Wang L, Zheng H, Li D, Avila R, Lai KWC, Wang Z, Xie Z, Zi Y, Yu X. Skin‐Integrated Graphene‐Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing Advanced Materials Technologies. 4: 1900744. DOI: 10.1002/Admt.201900744  0.589
2019 Xu C, Zhang B, Wang AC, Cai W, Zi Y, Feng P, Wang ZL. Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification Advanced Functional Materials. 29: 1903142. DOI: 10.1002/Adfm.201903142  0.329
2019 Wu C, Tetik H, Cheng J, Ding W, Guo H, Tao X, Zhou N, Zi Y, Wu Z, Wu H, Lin D, Wang ZL. Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator Advanced Functional Materials. 29: 1901102. DOI: 10.1002/Adfm.201901102  0.302
2018 Cheng J, Ding W, Zi Y, Lu Y, Ji L, Liu F, Wu C, Wang ZL. Triboelectric microplasma powered by mechanical stimuli. Nature Communications. 9: 3733. PMID 30213932 DOI: 10.1038/S41467-018-06198-X  0.413
2018 Xu C, Wang AC, Zou H, Zhang B, Zhang C, Zi Y, Pan L, Wang P, Feng P, Lin Z, Wang ZL. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching down Electron Thermionic Emission in Contact-Electrification. Advanced Materials (Deerfield Beach, Fla.). e1803968. PMID 30091484 DOI: 10.1002/Adma.201803968  0.34
2018 Bernier MC, Li A, Winalski L, Zi Y, Li Y, Caillet C, Newton P, Wang ZL, Fernández FM. Triboelectric Nanogenerator (TENG) Mass Spectrometry of Falsified Antimalarials. Rapid Communications in Mass Spectrometry : Rcm. PMID 29935091 DOI: 10.1002/Rcm.8207  0.358
2018 Zheng H, Zi Y, He X, Guo H, Lai YC, Wang J, Zhang SL, Wu C, Cheng G, Wang ZL. Concurrent Harvesting Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. Acs Applied Materials & Interfaces. PMID 29659250 DOI: 10.1021/Acsami.8B01635  0.775
2018 Chen J, Oh SK, Zou H, Shervin S, Wang W, Pouladi S, Zi Y, Wang ZL, Ryou JH. High-output lead-free flexible piezoelectric generator using single-crystalline GaN thin film. Acs Applied Materials & Interfaces. PMID 29595054 DOI: 10.1021/Acsami.8B01281  0.528
2018 Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, Wang P, Wang YC, Feng P, Li D, Wang ZL. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Advanced Materials (Deerfield Beach, Fla.). PMID 29508454 DOI: 10.1002/Adma.201706790  0.395
2018 Wen Z, Fu J, Han L, Liu Y, Peng M, Zheng L, Zhu Y, Sun X, Zi Y. Toward self-powered photodetection enabled by triboelectric nanogenerators Journal of Materials Chemistry C. 6: 11893-11902. DOI: 10.1039/C8Tc02964D  0.629
2018 Ding W, Wu C, Zi Y, Zou H, Wang J, Cheng J, Wang AC, Wang ZL. Self-powered wireless optical transmission of mechanical agitation signals Nano Energy. 47: 566-572. DOI: 10.1016/J.Nanoen.2018.03.044  0.479
2018 Wu C, Ding W, Liu R, Wang J, Wang AC, Wang J, Li S, Zi Y, Wang ZL. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array Materials Today. 21: 216-222. DOI: 10.1016/J.Mattod.2018.01.006  0.41
2018 He X, Zou H, Geng Z, Wang X, Ding W, Hu F, Zi Y, Xu C, Zhang SL, Yu H, Xu M, Zhang W, Lu C, Wang ZL. A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products Advanced Functional Materials. 28: 1805540. DOI: 10.1002/Adfm.201805540  0.422
2018 Qin H, Cheng G, Zi Y, Gu G, Zhang B, Shang W, Yang F, Yang J, Du Z, Wang ZL. High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits Advanced Functional Materials. 28: 1805216. DOI: 10.1002/Adfm.201805216  0.487
2018 Zi Y, Wu C, Ding W, Wang X, Dai Y, Cheng J, Wang J, Wang Z, Wang ZL. Field Emission of Electrons Powered by a Triboelectric Nanogenerator Advanced Functional Materials. 28: 1800610. DOI: 10.1002/Adfm.201800610  0.385
2017 Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. Advanced Materials (Deerfield Beach, Fla.). PMID 28786510 DOI: 10.1002/Adma.201702648  0.54
2017 Zou H, Li X, Peng W, Wu W, Yu R, Wu C, Ding W, Hu F, Liu R, Zi Y, Wang ZL. Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode. Advanced Materials (Deerfield Beach, Fla.). PMID 28585269 DOI: 10.1002/Adma.201701412  0.623
2017 Wang X, Peng W, Yu R, Zou H, Dai Y, Zi Y, Wu C, Li S, Wang ZL. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based UV LED by the Piezo-Phototronic Effect. Nano Letters. PMID 28489398 DOI: 10.1021/Acs.Nanolett.7B01004  0.415
2017 Guo H, Yeh MH, Zi Y, Wen Z, Chen J, Liu G, Hu C, Wang ZL. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. Acs Nano. PMID 28401759 DOI: 10.1021/Acsnano.7B00866  0.53
2017 Li A, Zi Y, Guo H, Wang ZL, Fernández FM. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology. PMID 28250471 DOI: 10.1038/Nnano.2017.17  0.379
2017 Zi Y, Suslov S, Yang C. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires Towards Controlled Synthesis. Nano Letters. PMID 28103043 DOI: 10.1021/Acs.Nanolett.6B04817  0.399
2017 Zi Y, Wang ZL. Nanogenerators: An emerging technology towards nanoenergy Apl Materials. 5: 074103. DOI: 10.1063/1.4977208  0.524
2017 He X, Zi Y, Yu H, Zhang SL, Wang J, Ding W, Zou H, Zhang W, Lu C, Wang ZL. An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction Nano Energy. 39: 328-336. DOI: 10.1016/J.Nanoen.2017.06.046  0.507
2017 Xi Y, Wang J, Zi Y, Li X, Han C, Cao X, Hu C, Wang Z. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator Nano Energy. 38: 101-108. DOI: 10.1016/J.Nanoen.2017.04.053  0.473
2017 Wu C, Liu R, Wang J, Zi Y, Lin L, Wang ZL. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy Nano Energy. 32: 287-293. DOI: 10.1016/J.Nanoen.2016.12.061  0.494
2017 Zi Y, Guo H, Wang J, Wen Z, Li S, Hu C, Wang ZL. An inductor-free auto-power-management design built-in triboelectric nanogenerators Nano Energy. 31: 302-310. DOI: 10.1016/J.Nanoen.2016.11.025  0.511
2017 Ahmed A, Zhang SL, Hassan I, Saadatnia Z, Zi Y, Zu J, Wang ZL. A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays Extreme Mechanics Letters. 13: 25-35. DOI: 10.1016/J.Eml.2017.01.006  0.541
2017 Li S, Wang J, Peng W, Lin L, Zi Y, Wang S, Zhang G, Wang ZL. Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators Advanced Energy Materials. 7: 1602832. DOI: 10.1002/Aenm.201602832  0.532
2017 Xi Y, Guo H, Zi Y, Li X, Wang J, Deng J, Li S, Hu C, Cao X, Wang ZL. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor Advanced Energy Materials. 7: 1602397. DOI: 10.1002/Aenm.201602397  0.482
2017 Zi Y, Wu C, Ding W, Wang ZL. Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown Advanced Functional Materials. 27: 1700049. DOI: 10.1002/Adfm.201700049  0.499
2017 Zhang SL, Lai Y, He X, Liu R, Zi Y, Wang ZL. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement Advanced Functional Materials. 27: 1606695. DOI: 10.1002/Adfm.201606695  0.721
2016 Guo H, Yeh MH, Lai YC, Zi Y, Wu C, Wen Z, Hu C, Wang ZL. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. Acs Nano. 10: 10580-10588. PMID 27934070 DOI: 10.1021/Acsnano.6B06621  0.772
2016 Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, Deng J, Zhu L, Wang X, Hu C, Zhu L, Sun X, Wang ZL. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances. 2: e1600097. PMID 27819039 DOI: 10.1126/Sciadv.1600097  0.502
2016 Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications. 7: 12744. PMID 27677971 DOI: 10.1038/Ncomms12744  0.511
2016 Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang ZL. All-Elastomer-Based Triboelectric Nanogenerator as a Keyboard Cover to Harvest Typing Energy. Acs Nano. PMID 27490707 DOI: 10.1021/Acsnano.6B03926  0.495
2016 Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H, Wang J, Yeh MH, Zi Y, Liao Q, You Z, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances. 2: e1501624. PMID 27386560 DOI: 10.1126/Sciadv.1501624  0.624
2016 Wen Z, Guo H, Zi Y, Yeh MH, Wang X, Deng J, Wang J, Li S, Hu C, Zhu L, Wang ZL. Harvesting Broad Frequency-Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. Acs Nano. PMID 27267558 DOI: 10.1021/Acsnano.6B03293  0.573
2016 Zi Y, Guo H, Wen Z, Yeh MH, Hu C, Wang ZL. Harvesting Low-Frequency (< 5 Hertz) Irregular Mechanical Energy: A Possible Killer-Application of Triboelectric Nanogenerator. Acs Nano. PMID 27077467 DOI: 10.1021/Acsnano.6B01569  0.482
2016 Zi Y, Wang J, Wang S, Li S, Wen Z, Guo H, Wang ZL. Effective energy storage from a triboelectric nanogenerator. Nature Communications. 7: 10987. PMID 26964693 DOI: 10.1038/Ncomms10987  0.516
2016 Li S, Zhou Y, Zi Y, Zhang G, Wang ZL. Excluding Contact Electrification in Surface Potential Measurement Using Scanning Kelvin Probe Microscopy. Acs Nano. PMID 26824304 DOI: 10.1021/Acsnano.5B07418  0.365
2016 Wang S, Zi Y, Zhou YS, Li S, Fan F, Lin L, Wang ZL. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators Journal of Materials Chemistry A. 4: 3728-3734. DOI: 10.1039/C5Ta10239A  0.753
2016 Ahmed A, Saadatnia Z, Hassan I, Zi Y, Xi Y, He X, Zu J, Wang ZL. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy Advanced Energy Materials. 7: 1601705. DOI: 10.1002/Aenm.201601705  0.487
2016 Jiang T, Tang W, Chen X, Bao Han C, Lin L, Zi Y, Wang ZL. Figures-of-Merit for Rolling-Friction-Based Triboelectric Nanogenerators Advanced Materials Technologies. 1: 1600017. DOI: 10.1002/Admt.201600017  0.482
2016 He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL. A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics Advanced Functional Materials. 27: 1604378. DOI: 10.1002/Adfm.201604378  0.449
2016 Wang J, Wen Z, Zi Y, Lin L, Wu C, Guo H, Xi Y, Xu Y, Wang ZL. Self-Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System Advanced Functional Materials. DOI: 10.1002/Adfm.201600021  0.551
2016 Wang J, Wen Z, Zi Y, Zhou P, Lin J, Guo H, Xu Y, Wang ZL. All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors Advanced Functional Materials. 26: 1070-1076. DOI: 10.1002/Adfm.201504675  0.451
2015 Zi Y, Niu S, Wang J, Wen Z, Tang W, Wang ZL. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications. 6: 8376. PMID 26406279 DOI: 10.1038/Ncomms9376  0.486
2015 Lin T, Ramadurgam S, Liao CS, Zi Y, Yang C. Fabrication of Sub-25 nm Diameter GaSb Nanopillar Arrays by Nanoscale Self-Mask Effect. Nano Letters. 15: 4993-5000. PMID 26218265 DOI: 10.1021/Acs.Nanolett.5B00967  0.43
2015 Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, Yi F, Li S, Wang ZL. A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics. Advanced Materials (Deerfield Beach, Fla.). PMID 26175123 DOI: 10.1002/Adma.201501934  0.466
2015 Li S, Wang S, Zi Y, Wen Z, Lin L, Zhang G, Wang ZL. Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. Acs Nano. PMID 26098784 DOI: 10.1021/Acsnano.5B02575  0.424
2015 Yang PK, Lin L, Yi F, Li X, Pradel KC, Zi Y, Wu CI, He JH, Zhang Y, Wang ZL. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring. Advanced Materials (Deerfield Beach, Fla.). 27: 3817-24. PMID 25981405 DOI: 10.1002/Adma.201500652  0.518
2015 Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang PK, Yi F, Wang ZL. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Advanced Materials (Deerfield Beach, Fla.). 27: 2340-7. PMID 25727070 DOI: 10.1002/Adma.201500121  0.611
2015 Chen J, Yang J, Li Z, Fan X, Zi Y, Jing Q, Guo H, Wen Z, Pradel KC, Niu S, Wang ZL. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. Acs Nano. 9: 3324-31. PMID 25719956 DOI: 10.1021/Acsnano.5B00534  0.551
2015 Guo H, Wen Z, Zi Y, Yeh MH, Wang J, Zhu L, Hu C, Wang ZL. A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments Advanced Energy Materials. DOI: 10.1002/Aenm.201501593  0.536
2015 Yi F, Lin L, Niu S, Yang PK, Wang Z, Chen J, Zhou Y, Zi Y, Wang J, Liao Q, Zhang Y, Wang ZL. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors Advanced Functional Materials. 25: 3688-3696. DOI: 10.1002/Adfm.201500428  0.588
2014 Delker CJ, Zi Y, Yang C, Janes DB. Current and noise properties of InAs nanowire transistors with asymmetric contacts induced by gate overlap Ieee Transactions On Electron Devices. 61: 884-889. DOI: 10.1109/Ted.2013.2296298  0.387
2013 Zi Y, Jung K, Zakharov D, Yang C. Understanding self-aligned planar growth of InAs nanowires. Nano Letters. 13: 2786-91. PMID 23634940 DOI: 10.1021/Nl4010332  0.419
2013 Delker CJ, Zi Y, Yang C, Janes DB. Low-frequency noise contributions from channel and contacts in InAs nanowire transistors Ieee Transactions On Electron Devices. 60: 2900-2905. DOI: 10.1109/Ted.2013.2274009  0.359
2012 Zhao Y, Candebat D, Delker C, Zi Y, Janes D, Appenzeller J, Yang C. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Letters. 12: 5331-6. PMID 22950905 DOI: 10.1021/Nl302684S  0.616
2012 Zi Y, Zhao Y, Candebat D, Appenzeller J, Yang C. Synthesis of antimony-based nanowires using the simple vapor deposition method. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. 13: 2585-8. PMID 22438329 DOI: 10.1002/Cphc.201101042  0.582
Show low-probability matches.