Year |
Citation |
Score |
2017 |
Wierman JC. On bond percolation threshold bounds for Archimedean lattices with degree three Journal of Physics a: Mathematical and Theoretical. 50: 295001. DOI: 10.1088/1751-8121/Aa76F0 |
0.586 |
|
2016 |
Wierman JC. Tight bounds for the bond percolation threshold of the (3, 122) lattice Journal of Physics a: Mathematical and Theoretical. 49: 475002. DOI: 10.1088/1751-8113/49/47/475002 |
0.51 |
|
2015 |
Wierman JC, Yu G, Huang T. A disproof of Tsallis' bond percolation threshold conjecture for the kagome lattice Electronic Journal of Combinatorics. 22: 1-15. DOI: 10.37236/5117 |
0.569 |
|
2012 |
Ziff RM, Scullard CR, Wierman JC, Sedlock MRA. The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices Journal of Physics a: Mathematical and Theoretical. 45. DOI: 10.1088/1751-8113/45/49/494005 |
0.52 |
|
2011 |
Wierman JC, Ziff RM. Self-dual planar hypergraphs and exact bond percolation thresholds Electronic Journal of Combinatorics. 18. DOI: 10.37236/548 |
0.513 |
|
2010 |
Markström K, Wierman JC. Aperiodic non-isomorphic lattices with equivalent percolation and random-cluster models Electronic Journal of Combinatorics. 17: 1-14. DOI: 10.37236/320 |
0.522 |
|
2009 |
Sedlock MR, Wierman JC. Equality of bond-percolation critical exponents for pairs of dual lattices. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 79: 051119. PMID 19518428 DOI: 10.1103/Physreve.79.051119 |
0.513 |
|
2009 |
Xiang P, Wierman JC. A CLT for a one-dimensional class cover problem Statistics and Probability Letters. 79: 223-233. DOI: 10.1016/j.spl.2008.07.045 |
0.513 |
|
2008 |
Wierman JC, Xiang P. A general SLLN for the one-dimensional class cover problem Statistics and Probability Letters. 78: 1110-1118. DOI: 10.1016/J.Spl.2007.11.005 |
0.562 |
|
2007 |
Wierman JC, Naor DP, Smalletz J. Incorporating variability into an approximation formula for bond percolation thresholds of planar periodic lattices. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 75: 011114. PMID 17358117 DOI: 10.1103/Physreve.75.011114 |
0.5 |
|
2007 |
May WD, Wierman JC. The application of non-crossing partitions to improving percolation threshold bounds Combinatorics Probability and Computing. 16: 285-307. DOI: 10.1017/S0963548306007905 |
0.693 |
|
2006 |
Ceyhan E, Priebe CE, Wierman JC. Relative density of the random r-factor proximity catch digraph for testing spatial patterns of segregation and association Computational Statistics and Data Analysis. 50: 1925-1964. DOI: 10.1016/J.Csda.2005.03.002 |
0.369 |
|
2005 |
Wierman JC, Naor DP, Cheng R. Improved site percolation threshold universal formula for two-dimensional matching lattices. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 72: 066116. PMID 16486019 DOI: 10.1103/Physreve.72.066116 |
0.487 |
|
2005 |
Wierman JC, Naor DP. Criteria for evaluation of universal formulas for percolation thresholds. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 71: 036143. PMID 15903529 DOI: 10.1103/Physreve.71.036143 |
0.448 |
|
2005 |
May WD, Wierman JC. Using symmetry to improve percolation threshold bounds Combinatorics Probability and Computing. 14: 549-566. DOI: 10.1017/S0963548305006802 |
0.742 |
|
2003 |
Wierman JC. Upper and lower bounds for the Kagomé lattice bond percolation critical probability Combinatorics Probability and Computing. 12: 95-111. DOI: 10.1017/S0963548302005370 |
0.573 |
|
2003 |
Wierman JC. Pairs of graphs with site and bond percolation critical probabilities in opposite orders Discrete Applied Mathematics. 129: 545-548. DOI: 10.1016/S0166-218X(03)00183-5 |
0.489 |
|
2002 |
Wierman JC. Percolation threshold is not a decreasing function of the average coordination number. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 66: 046125. PMID 12443277 DOI: 10.1103/Physreve.66.046125 |
0.511 |
|
2002 |
Wierman JC. Accuracy of universal formulas for percolation thresholds based on dimension and coordination number. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 66: 027105. PMID 12241321 DOI: 10.1103/Physreve.66.027105 |
0.444 |
|
2002 |
Wierman JC. On the range of bond percolation thresholds for fully triangulated graphs Journal of Physics a: Mathematical and General. 35: 959-964. DOI: 10.1088/0305-4470/35/4/308 |
0.543 |
|
2002 |
Wierman JC. An improved upper bound for the hexagonal lattice site percolation critical probability Combinatorics Probability and Computing. 11: 629-643. DOI: 10.1017/S0963548302005345 |
0.507 |
|
2002 |
DeVinney J, Wierman JC. A SLLN for a one-dimensional class cover problem Statistics and Probability Letters. 59: 425-435. DOI: 10.1016/S0167-7152(02)00243-2 |
0.422 |
|
2002 |
Wierman JC. Bond Percolation Critical Probability Bounds for Three Archimedean Lattices Random Structures and Algorithms. 20: 507-518. DOI: 10.1002/Rsa.10029 |
0.536 |
|
1999 |
Alm SE, Wierman JC. Inequalities for Means of Restricted First-Passage Times in Percolation Theory Combinatorics Probability and Computing. 8: 307-315. DOI: 10.1017/S0963548399003843 |
0.344 |
|
1995 |
Wierman JC. Substitution Method Critical Probability Bounds for the Square Lattice Site Percolation Model Combinatorics, Probability and Computing. 4: 181-188. DOI: 10.1017/S0963548300001565 |
0.439 |
|
1994 |
Luczak T, Pittel B, Wierman JC. The structure of a random graph at the point of the phase transition Transactions of the American Mathematical Society. 341: 721-748. DOI: 10.1090/S0002-9947-1994-1138950-5 |
0.338 |
|
1994 |
Wierman JC. Equality of directional critical exponents in multiparameter percolation models Journal of Physics a: Mathematical and General. 27: 1851-1858. DOI: 10.1088/0305-4470/27/6/012 |
0.423 |
|
1993 |
Appel MJB, Wierman JC. AB percolation on bond-decorated graphs Journal of Applied Probability. 30: 153-166. DOI: 10.2307/3214628 |
0.518 |
|
1992 |
Wierman JC. Equality of the Bond Percolation Critical Exponents for Two Pairs of Dual Lattices Combinatorics, Probability and Computing. 1: 95-105. DOI: 10.1017/S0963548300000092 |
0.484 |
|
1989 |
Bollobás B, Wierman JC. Subgraph Counts and Containment Probabilities of Balanced and Unbalanced Subgraphs in a Large Random Grapha Annals of the New York Academy of Sciences. 576: 63-70. DOI: 10.1111/J.1749-6632.1989.Tb16383.X |
0.356 |
|
1989 |
Luczak T, Wierman JC. Counterexamples in AB percolation Journal of Physics a: General Physics. 22: 185-191. DOI: 10.1088/0305-4470/22/2/008 |
0.419 |
|
1989 |
Scheinerman ER, Wierman JC. Optimal and near-optimal broadcast in random graphs Discrete Applied Mathematics. 25: 289-297. DOI: 10.1016/0166-218X(89)90007-3 |
0.346 |
|
1989 |
Łuczak T, Wierman JC. The chromatic number of random graphs at the double-jump threshold Combinatorica. 9: 39-49. DOI: 10.1007/Bf02122682 |
0.393 |
|
1988 |
Wierman JC. On AB percolation on bipartite graphs Journal of Physics a: Mathematical and General. 21: 1945-1949. DOI: 10.1088/0305-4470/21/8/034 |
0.423 |
|
1988 |
Wierman JC. AB percolation on close-packed graphs Journal of Physics a: Mathematical and General. 21: 1939-1944. DOI: 10.1088/0305-4470/21/8/033 |
0.461 |
|
1988 |
Wierman JC. Bond percolation critical probability bounds derived by edge contraction Journal of Physics a: General Physics. 21: 1487-1492. DOI: 10.1088/0305-4470/21/6/026 |
0.505 |
|
1988 |
Luczak T, Wierman JC. Critical probability bounds for two-dimensional site percolation models Journal of Physics a: General Physics. 21: 3131-3138. DOI: 10.1088/0305-4470/21/14/014 |
0.437 |
|
1988 |
Nowicki K, Wierman JC. Subgraph counts in random graphs using incomplete u-statistics methods Discrete Mathematics. 72: 299-310. DOI: 10.1016/0012-365X(88)90220-8 |
0.357 |
|
1988 |
Scheinerman ER, Wierman JC. On circle containment orders Order. 4: 315-318. DOI: 10.1007/Bf00714474 |
0.438 |
|
1987 |
Wierman JC, Appel MJ. Infinite AB percolation clusters exist on the triangular lattice Journal of Physics a: Mathematical and General. 20: 2533-2537. DOI: 10.1088/0305-4470/20/9/037 |
0.398 |
|
1987 |
Appel MJ, Wierman JC. On the absence of infinite AB percolation clusters in bipartite graphs Journal of Physics a: Mathematical and General. 20: 2527-2531. DOI: 10.1088/0305-4470/20/9/036 |
0.464 |
|
1987 |
Scheinerman ER, Wierman JC. Infinite AB percolation clusters exist Journal of Physics a: Mathematical and General. 20: 1305-1307. DOI: 10.1088/0305-4470/20/5/042 |
0.354 |
|
1987 |
Wierman JC. Directed Site Percolation and Dual Filling Models North-Holland Mathematics Studies. 144: 339-352. DOI: 10.1016/S0304-0208(08)73065-2 |
0.4 |
|
1987 |
Gimbel J, Kurtz D, Lesniak L, Scheinerman ER, Wierman JC. Hamiltonian Closure in Random Graphs North-Holland Mathematics Studies. 144: 59-67. DOI: 10.1016/S0304-0208(08)73048-2 |
0.341 |
|
1985 |
Wierman JC. Critical Percolation Probabilities North-Holland Mathematics Studies. 118: 349-359. DOI: 10.1016/S0304-0208(08)73632-6 |
0.456 |
|
1984 |
Wierman JC. A bond percolation critical probability determination based on the star-triangle transformation Journal of Physics a: General Physics. 17: 1525-1530. DOI: 10.1088/0305-4470/17/7/020 |
0.433 |
|
1984 |
Wierman JC. Mixed percolation on the square lattice Journal of Applied Probability. 21: 247-259. DOI: 10.1017/S0021900200024657 |
0.451 |
|
1983 |
Wierman JC. On square lattice directed percolation and resistance models Journal of Physics a: General Physics. 16: 3545-3551. DOI: 10.1088/0305-4470/16/15/019 |
0.472 |
|
1980 |
Gray L, Wierman JC, Smythe RT. Lower bounds for the critical probability in percolation models with oriented bonds Journal of Applied Probability. 17: 979-986. DOI: 10.2307/3213207 |
0.449 |
|
1980 |
Wierman JC. Weak moment conditions for time coordinates in first-passage percolation models Journal of Applied Probability. 17: 968-978. DOI: 10.1017/S0021900200097254 |
0.36 |
|
1977 |
Smythe RT, Wierman JC. First-passage percolation on the square lattice. I Advances in Applied Probability. 9: 38-54. DOI: 10.2307/1425815 |
0.311 |
|
1977 |
Chan Y, Wierman J. On the Berry-Esseen Theorem for $U$-Statistics The Annals of Probability. 5: 136-139. DOI: 10.1214/Aop/1176995897 |
0.309 |
|
1977 |
Wierman JC. On critical probabilities in percolation theory Journal of Mathematical Physics. 19: 1979-1982. DOI: 10.1063/1.523894 |
0.435 |
|
Show low-probability matches. |