William Olaf Hancock - Publications

Affiliations: 
Pennsylvania State University, State College, PA, United States 
Area:
Bioengineering, Biophysics, Cell Biology
Website:
https://www.bme.psu.edu/department/directory-detail-g.aspx?q=WOH1

121 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Ma TC, Gicking AM, Feng Q, Hancock WO. Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs. Biophysical Journal. 122: 3299-3313. PMID 37464742 DOI: 10.1016/j.bpj.2023.07.007  0.395
2023 Pyrpassopoulos S, Gicking AM, Zaniewski TM, Hancock WO, Ostap EM. KIF1A is kinetically tuned to be a superengaging motor under hindering loads. Proceedings of the National Academy of Sciences of the United States of America. 120: e2216903120. PMID 36598948 DOI: 10.1073/pnas.2216903120  0.317
2022 Zaniewski TM, Hancock WO. Positive charge in the K-loop of the kinesin-3 motor KIF1A regulates superprocessivity by enhancing microtubule affinity in the one-head-bound state. The Journal of Biological Chemistry. 102818. PMID 36549649 DOI: 10.1016/j.jbc.2022.102818  0.378
2022 Gicking AM, Ma TC, Feng Q, Jiang R, Badieyan S, Cianfrocco MA, Hancock WO. Kinesin-1, -2 and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport. Elife. 11. PMID 36125250 DOI: 10.7554/eLife.82228  0.394
2021 Jensen MA, Feng Q, Hancock WO, McKinley SA. A change point analysis protocol for comparing intracellular transport by different molecular motor combinations. Mathematical Biosciences and Engineering : Mbe. 18: 8962-8996. PMID 34814331 DOI: 10.3934/mbe.2021442  0.351
2021 Jiang R, Hancock WO. Measuring microtubule binding kinetics of membrane-bound kinesin motors using supported lipid bilayers. Star Protocols. 2: 100691. PMID 34382017 DOI: 10.1016/j.xpro.2021.100691  0.355
2020 Zaniewski TM, Gicking AM, Fricks J, Hancock WO. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle. The Journal of Biological Chemistry. 295: 17889-17903. PMID 33453805 DOI: 10.1074/jbc.RA120.014961  0.316
2020 Zaniewski TM, Gicking AM, Fricks J, Hancock WO. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominate one-head-bound state during its chemomechanical cycle. The Journal of Biological Chemistry. PMID 33082143 DOI: 10.1074/jbc.RA120.014961  0.316
2020 Tseng KF, Mickolajczyk KJ, Feng G, Feng Q, Kwok ES, Howe J, Barbar EJ, Dawson SC, Hancock WO, Qiu W. The Tail of Kinesin-14a in Giardia Is a Dual Regulator of Motility. Current Biology : Cb. PMID 32735815 DOI: 10.1016/J.Cub.2020.06.090  0.516
2020 Sonar P, Youyen W, Cleetus A, Wisanpitayakorn P, Mousavi SI, Stepp WL, Hancock WO, Tüzel E, Ökten Z. Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport. Current Biology : Cb. PMID 32142698 DOI: 10.1016/J.Cub.2020.01.046  0.484
2020 Howard J, Hancock WO. Three Beads Are Better Than One. Biophysical Journal. 118: 1-3. PMID 31951531 DOI: 10.1016/J.Bpj.2019.12.001  0.481
2020 Feng Q, Gicking A, Hancock WO. Dynactin p150 Promotes Processive Motility of DDB Complexes by Minimizing Diffusional Behavior of Dynein Biophysical Journal. 118: 176a. DOI: 10.1091/Mbc.E19-09-0495  0.353
2020 Youyen W, Sonar P, Wisanpitayakorn P, Feng Q, Mickolajczyk KJ, Hancock WO, Okten Z, Tüzel E. Three-Dimensional Model to Understand the Cooperative Transport of Pairs of Kinesin-2 Motors Biophysical Journal. 118: 431a. DOI: 10.1016/J.Bpj.2019.11.2424  0.44
2020 Jiang R, Feng Q, Jung Kang Y, Hancock WO. In vitro Reconstitution of Kinesin-Driven Vesicle Transport Biophysical Journal. 118: 430a. DOI: 10.1016/J.Bpj.2019.11.2419  0.314
2019 Jiang R, Vandal S, Park S, Majd S, Tüzel E, Hancock WO. Microtubule binding kinetics of membrane-bound kinesin-1 predicts high motor copy numbers on intracellular cargo. Proceedings of the National Academy of Sciences of the United States of America. PMID 31822619 DOI: 10.1073/Pnas.1916204116  0.488
2019 Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Biophysical Journal. PMID 31301807 DOI: 10.1016/J.Bpj.2019.06.010  0.319
2019 Chen GY, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa H, Hancock WO. Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Current Biology : Cb. PMID 31280993 DOI: 10.1016/J.Cub.2019.05.075  0.489
2019 Gicking AM, Wang P, Liu C, Mickolajczyk KJ, Guo L, Hancock WO, Qiu W. The Orphan Kinesin PAKRP2 Achieves Processive Motility via a Noncanonical Stepping Mechanism. Biophysical Journal. PMID 30902363 DOI: 10.1016/J.Bpj.2019.02.019  0.415
2019 Arpağ G, Norris SR, Mousavi SI, Soppina V, Verhey KJ, Hancock WO, Tüzel E. Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors. Biophysical Journal. PMID 30824116 DOI: 10.1016/J.Bpj.2019.01.036  0.498
2019 Ohashi KG, Han L, Mentley B, Wang J, Fricks J, Hancock WO. Load-dependent detachment kinetics play a key role in bidirectional cargo transport by kinesin and dynein. Traffic (Copenhagen, Denmark). PMID 30809891 DOI: 10.1111/Tra.12639  0.474
2019 Mickolajczyk KJ, Geyer EA, Kim T, Rice LM, Hancock WO. Direct observation of individual tubulin dimers binding to growing microtubules. Proceedings of the National Academy of Sciences of the United States of America. PMID 30804205 DOI: 10.1016/J.Bpj.2018.11.867  0.408
2019 Yildiz A, Hancock WO. Decision letter: Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity Elife. DOI: 10.7554/Elife.44146.028  0.411
2019 Jiang R, Park S, Vandal S, Tüzel E, Majd S, Hancock WO. Binding Kinetics between Membrane-Bound Kinesin Motors and Microtubules Biophysical Journal. 116: 411a. DOI: 10.1016/J.Bpj.2018.11.2218  0.439
2019 Cook AS, Mickolajczyk KJ, Jethva J, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping Dynamics from Brownian Dynamics Simulations and High-Resolution Tracking of Gold Nanoparticle-Labeled Motors Biophysical Journal. 116: 410a. DOI: 10.1016/J.Bpj.2018.11.2211  0.322
2019 Youyen W, Mousavi I, Mickolajczyk K, Hancock W, Tüzel E. Three-Dimensional Model of Cooperative Transport of Pairs of Kinesin-1 and −2 Motors Biophysical Journal. 116: 407a. DOI: 10.1016/J.Bpj.2018.11.2197  0.419
2018 Dumas ME, Chen GY, Kendrick ND, Xu G, Larsen SD, Jana S, Waterson AG, Bauer JA, Hancock W, Sulikowski GA, Ohi R. Dual inhibition of Kif15 by oxindole and quinazolinedione chemical probes. Bioorganic & Medicinal Chemistry Letters. PMID 30528696 DOI: 10.1016/J.Bmcl.2018.12.008  0.411
2018 Mickolajczyk KJ, Hancock WO. High-Resolution Single-Molecule Kinesin Assays at kHz Frame Rates. Methods in Molecular Biology (Clifton, N.J.). 1805: 123-138. PMID 29971716 DOI: 10.1007/978-1-4939-8556-2_7  0.365
2018 Gicking AM, Qiu W, Hancock WO. Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination. Molecular Biology of the Cell. 29: 1153-1156. PMID 29757705 DOI: 10.1091/Mbc.E17-10-0612  0.481
2018 Feng Q, Mickolajczyk KJ, Chen GY, Hancock WO. Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. Biophysical Journal. 114: 400-409. PMID 29401437 DOI: 10.1016/J.Bpj.2017.11.016  0.523
2018 Cleary JM, Hancock WO. Microfluidic Device to Measure Collective Force Dynamics of Kinesin Motor Proteins Biophysical Journal. 114: 647a. DOI: 10.1016/J.Bpj.2017.11.3493  0.394
2018 Hancock WO. Kinesin Motor Domain Dynamics during Single-Motor Stepping and Multi-motor Transport Biophysical Journal. 114: 556a. DOI: 10.1016/J.Bpj.2017.11.3039  0.458
2018 Chen G, Asenjo AB, Sosa HJ, Hancock WO. Mechanism of Microtubule Stabilization by Kinesin-5 Biophysical Journal. 114: 507a. DOI: 10.1016/J.Bpj.2017.11.2770  0.372
2017 Arellano-Santoyo H, Geyer EA, Stokasimov E, Chen GY, Su X, Hancock W, Rice LM, Pellman D. A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity. Developmental Cell. 42: 37-51.e8. PMID 28697331 DOI: 10.1016/J.Devcel.2017.06.011  0.477
2017 Mickolajczyk KJ, Hancock WO. Kinesin Processivity Is Determined by a Kinetic Race from a Vulnerable One-Head-Bound State. Biophysical Journal. 112: 2615-2623. PMID 28636917 DOI: 10.1016/J.Bpj.2017.05.007  0.503
2017 Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z. Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin. Nature Communications. 8: 14951. PMID 28393873 DOI: 10.1038/Ncomms14951  0.411
2017 Hoeprich GJ, Mickolajczyk KJ, Nelson SR, Hancock WO, Berger CL. The Axonal Transport Motor Kinesin-2 Navigates Microtubule Obstacles via Protofilament Switching. Traffic (Copenhagen, Denmark). PMID 28267259 DOI: 10.1111/Tra.12478  0.442
2017 Chen GY, Kang YJ, Gayek AS, Youyen W, Tuzel E, Ohi R, Hancock WO. Eg5 inhibitors have contrasting effects on microtubule stability and metaphase spindle integrity. Acs Chemical Biology. PMID 28165699 DOI: 10.1021/Acschembio.6B01040  0.456
2017 Chen G, Kang Y, Gayek AS, Youyen W, Tüzel E, Ohi R, Hancock WO. Eg5 Inhibitors have Contrasting Effects on Microtubule Stability and Spindle Integrity Depending on their Modes of Action Biophysical Journal. 112: 427a-428a. DOI: 10.1016/J.Bpj.2016.11.2284  0.422
2017 Arpag G, Norris S, Verhey K, Hancock WO, Tuzel E. Modeling Cargo Transport by Pairs of Kinesin-1 and -3 Motors Biophysical Journal. 112: 263a. DOI: 10.1016/J.Bpj.2016.11.1428  0.472
2016 Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, Goldman YE, Kukura P. Interferometric Scattering Microscopy for the Study of Molecular Motors. Methods in Enzymology. 581: 517-539. PMID 27793291 DOI: 10.1016/Bs.Mie.2016.08.016  0.413
2016 Chen GY, Mickolajczyk KJ, Hancock WO. The Kinesin-5 Chemomechanical Cycle is Dominated by a Two-heads-bound State. The Journal of Biological Chemistry. PMID 27402829 DOI: 10.1074/Jbc.M116.730697  0.463
2016 Engelke MF, Winding M, Yue Y, Shastry S, Teloni F, Reddy S, Blasius TL, Soppina P, Hancock WO, Gelfand VI, Verhey KJ. Engineered kinesin motor proteins amenable to small-molecule inhibition. Nature Communications. 7: 11159. PMID 27045608 DOI: 10.1038/Ncomms11159  0.444
2016 Hancock WO. The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus. Biophysical Journal. 110: 1216-25. PMID 27028632 DOI: 10.1016/J.Bpj.2016.02.025  0.429
2016 Weiner AT, Lanz MC, Goetschius DJ, Hancock WO, Rolls MM. Kinesin-2 and Apc function at dendrite branch points to resolve microtubule collisions. Cytoskeleton (Hoboken, N.J.). PMID 26785384 DOI: 10.1002/Cm.21270  0.44
2016 Chen G, Hancock WO. Understanding the Sequence of Chemomechanical Transitions in Kinesin-5 Biophysical Journal. 110: 461a. DOI: 10.1016/J.Bpj.2015.11.2467  0.459
2016 Hoeprich G, Mickolajczyk K, Hancock WO, Berger CL. Mechanism of Kinsein-2 Navigation Around Obstacles on the Microubule Surface Biophysical Journal. 110: 459a. DOI: 10.1016/J.Bpj.2015.11.2457  0.5
2015 Hancock WO. Aging Gracefully: A New Model of Microtubule Growth and Catastrophe. Biophysical Journal. 109: 2449-51. PMID 26682802 DOI: 10.1016/J.Bpj.2015.10.049  0.39
2015 Mickolajczyk KJ, Deffenbaugh NC, Ortega Arroyo J, Andrecka J, Kukura P, Hancock WO. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. Proceedings of the National Academy of Sciences of the United States of America. PMID 26676576 DOI: 10.1073/Pnas.1517638112  0.424
2015 Chen Y, Hancock WO. Kinesin-5 is a microtubule polymerase. Nature Communications. 6: 8160. PMID 26437877 DOI: 10.1038/Ncomms9160  0.502
2015 Andreasson JO, Milic B, Chen GY, Guydosh NR, Hancock WO, Block SM. Examining kinesin processivity within a general gating framework. Elife. 4. PMID 25902401 DOI: 10.7554/Elife.07403  0.467
2015 Andreasson JO, Shastry S, Hancock WO, Block SM. The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load. Current Biology : Cb. 25: 1166-75. PMID 25866395 DOI: 10.1016/J.Cub.2015.03.013  0.459
2015 Chen GY, Arginteanu DF, Hancock WO. Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating. The Journal of Biological Chemistry. 290: 10274-94. PMID 25657001 DOI: 10.1074/Jbc.M114.628032  0.504
2015 Mickolajczyk KJ, Andrecka J, Ortega-Arroyo J, Kukura P, Hancock WO. High Speed Microscopy for Observing the Stepping Behavior of Kinesin-1 Motors at Saturating ATP Biophysical Journal. 108: 138a. DOI: 10.1016/J.Bpj.2014.11.765  0.496
2015 Chen G, Arginteanu D, Hancock WO. Processivity of Kinesin-2 Results from Rear-Head Gating and Not Front-Head Gating Biophysical Journal. 108: 138a. DOI: 10.1016/J.Bpj.2014.11.764  0.506
2015 Hoeprich G, Hancock W, Berger C. Kinesin-2's Role in Intracellular Cargo Transport: Navigating the Complex Microtubule Landscape Biophysical Journal. 108: 135a-136a. DOI: 10.1016/J.Bpj.2014.11.750  0.506
2015 Chen Y, Hancock WO. Kinesin-5 Acts as a Microtubule Stabilizer, Polymerase and Plus-Tip Tracker Biophysical Journal. 108: 21a. DOI: 10.1016/J.Bpj.2014.11.138  0.519
2014 Arpaʇ G, Shastry S, Hancock WO, Tüzel E. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function Biophysical Journal. 107: 1896-1904. PMID 25418170 DOI: 10.1016/J.Bpj.2014.09.009  0.509
2014 Hancock WO. Mitotic kinesins: a reason to delve into kinesin-12. Current Biology : Cb. 24: R968-70. PMID 25291641 DOI: 10.1016/J.Cub.2014.09.011  0.32
2014 Milic B, Andreasson JO, Hancock WO, Block SM. Kinesin processivity is gated by phosphate release. Proceedings of the National Academy of Sciences of the United States of America. 111: 14136-40. PMID 25197045 DOI: 10.1073/Pnas.1410943111  0.473
2014 Hancock WO. Bidirectional cargo transport: moving beyond tug of war. Nature Reviews. Molecular Cell Biology. 15: 615-28. PMID 25118718 DOI: 10.1038/Nrm3853  0.47
2014 Hoeprich GJ, Thompson AR, McVicker DP, Hancock WO, Berger CL. Kinesin's neck-linker determines its ability to navigate obstacles on the microtubule surface. Biophysical Journal. 106: 1691-700. PMID 24739168 DOI: 10.1016/J.Bpj.2014.02.034  0.49
2014 Chen Y, Rolls MM, Hancock WO. An EB1-kinesin complex is sufficient to steer microtubule growth in vitro. Current Biology : Cb. 24: 316-21. PMID 24462004 DOI: 10.1016/J.Cub.2013.11.024  0.432
2014 Berger CL, Hoeprich GJ, Thompson AR, Hancock WO. Kinesin-2's Neck-Linker is Critical to Navigating Obstacles on the Microtubule Surface More Efficiently Than Kinesin-1 Biophysical Journal. 106: 781a. DOI: 10.1016/J.Bpj.2013.11.4283  0.512
2014 Chen Y, Hancock WO. A Chimeric Kinesin-5 Motor Tracks Plus-Ends of Microtubules Biophysical Journal. 106: 779a. DOI: 10.1016/J.Bpj.2013.11.4272  0.532
2013 Hughes J, Shastry S, Hancock WO, Fricks J. Estimating Velocity for Processive Motor Proteins with Random Detachment. Journal of Agricultural, Biological, and Environmental Statistics. 18: 204-217. PMID 23730145 DOI: 10.1007/S13253-013-0131-4  0.391
2013 Chen Y, Rolls MM, Hancock WO. +Tip-Kinesin Complexes Steer Microtubule Growth In Vitro Biophysical Journal. 104: 143a-144a. DOI: 10.1016/J.Bpj.2012.11.815  0.455
2013 Andreasson JO, Milic BV, Hancock WO, Block SM. Effects of Neck Linker Length on Kinesin-1 Force Generation and Motility Biophysical Journal. 104: 382a. DOI: 10.1016/J.Bpj.2012.11.2131  0.448
2013 Hancock WO, Deffenbaugh NC, Arginteanu D. Biochemical Investigations into the Kinesin-2 Chemomechanical Cycle Biophysical Journal. 104: 325a-326a. DOI: 10.1016/J.Bpj.2012.11.1808  0.522
2013 Arpag G, Shastry S, Hancock WO, Tuzel E. Experimental and Computational Investigations into Cooperative Cargo Transport by Mixtures of Kinesins from Different Families Biophysical Journal. 104. DOI: 10.1016/J.Bpj.2012.11.1806  0.515
2013 Hoeprich G, Jiang T, Hancock W, Berger C. Kinesin-2 Navigates Microtubule Obstacles more Efficiently than Kinesin-1 Biophysical Journal. 104: 324a. DOI: 10.1016/J.Bpj.2012.11.1797  0.469
2012 Verma V, Catchmark JM, Brown NR, Hancock WO. Microtubule asters as templates for nanomaterials assembly. Journal of Biological Engineering. 6: 23. PMID 23270559 DOI: 10.1186/1754-1611-6-23  0.386
2012 Hancock WO. Cytoskeletal organization: whirling to the beat. Current Biology : Cb. 22: R493-5. PMID 22720685 DOI: 10.1016/J.Cub.2012.04.045  0.301
2012 Hughes J, Hancock WO, Fricks J. Kinesins with extended neck linkers: a chemomechanical model for variable-length stepping. Bulletin of Mathematical Biology. 74: 1066-97. PMID 21997362 DOI: 10.1007/S11538-011-9697-6  0.429
2012 Hancock WO, Shastry S. The Length of the Neck Linker Domain Controls Processivity Across Diverse N-Terminal Kinesin Families Biophysical Journal. 102: 368a. DOI: 10.1016/J.Bpj.2011.11.2009  0.466
2011 Shastry S, Hancock WO. Interhead tension determines processivity across diverse N-terminal kinesins Proceedings of the National Academy of Sciences of the United States of America. 108: 16253-16258. PMID 21911401 DOI: 10.1073/Pnas.1102628108  0.466
2011 Malcos JL, Hancock WO. Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Applied Microbiology and Biotechnology. 90: 1-10. PMID 21327409 DOI: 10.1007/S00253-011-3140-7  0.4
2011 Uppalapati M, Huang YM, Aravamuthan V, Jackson TN, Hancock WO. "Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads. Integrative Biology : Quantitative Biosciences From Nano to Macro. 3: 57-64. PMID 21031221 DOI: 10.1039/C0Ib00065E  0.418
2011 Hughes J, Hancock WO, Fricks J. A matrix computational approach to kinesin neck linker extension. Journal of Theoretical Biology. 269: 181-94. PMID 20951143 DOI: 10.1016/J.Jtbi.2010.10.005  0.341
2011 Andreasson JO, Clancy BE, Hancock WO, Block SM. Mechanochemical Properties of the Kinesin-2 Motor, KIF3A/B, Studied by Optical Trapping Biophysical Journal. 100: 122a. DOI: 10.1016/J.Bpj.2010.12.875  0.486
2011 Shastry S, Hancock WO. Differences in Processivity between Kinesin Motor Families 1, 2, 3, 5 and 7 Result from Diversity in the Length of their Neck-Linker Domains Biophysical Journal. 100: 120a. DOI: 10.1016/J.Bpj.2010.12.862  0.47
2011 Hancock WO. Tethered Diffusion and Strain-Dependent Gating in Kinesin-2 Motors Biophysical Journal. 100: 2a. DOI: 10.1016/J.Bpj.2010.11.063  0.524
2010 Kutys ML, Fricks J, Hancock WO. Monte Carlo analysis of neck linker extension in kinesin molecular motors. Plos Computational Biology. 6: e1000980. PMID 21079666 DOI: 10.1371/Journal.Pcbi.1000980  0.464
2010 Shastry S, Hancock WO. Neck Linker Length Determines the Degree of Processivity in Kinesin-1 and Kinesin-2 Motors Current Biology. 20: 939-943. PMID 20471270 DOI: 10.1016/J.Cub.2010.03.065  0.483
2010 Shastry S, Hancock W. Neck-Linker Length is a Critical Determinant of Kinesin Processivity Biophysical Journal. 98: 369a-370a. DOI: 10.1016/J.Bpj.2009.12.1994  0.46
2009 Hariharan V, Hancock WO. Insights into the Mechanical Properties of the Kinesin Neck Linker Domain from Sequence Analysis and Molecular Dynamics Simulations. Cellular and Molecular Bioengineering. 2: 177-189. PMID 21544223 DOI: 10.1007/S12195-009-0059-5  0.445
2009 Bicek AD, Tüzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Molecular Biology of the Cell. 20: 2943-53. PMID 19403700 DOI: 10.1091/Mbc.E08-09-0909  0.403
2009 Ozeki T, Verma V, Uppalapati M, Suzuki Y, Nakamura M, Catchmark JM, Hancock WO. Surface-bound casein modulates the adsorption and activity of kinesin on SiO2 surfaces. Biophysical Journal. 96: 3305-18. PMID 19383474 DOI: 10.1016/J.Bpj.2008.12.3960  0.346
2009 Muthukrishnan G, Zhang Y, Shastry S, Hancock WO. The processivity of kinesin-2 motors suggests diminished front-head gating. Current Biology : Cb. 19: 442-7. PMID 19278641 DOI: 10.1016/J.Cub.2009.01.058  0.511
2009 Verma V, Hancock WO, Catchmark JM. Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility. Biomedical Microdevices. 11: 313-22. PMID 18989786 DOI: 10.1007/S10544-008-9237-9  0.47
2009 Tuzel E, Bicek AD, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ. Modeling of Motor Mediated Microtubule Bending Biophysical Journal. 96: 572a. DOI: 10.1016/J.Bpj.2008.12.3747  0.503
2009 Shastry S, Hancock WO. Neck-linker And Neck-coil both contribute to Kinesin Processivity Biophysical Journal. 96: 511a. DOI: 10.1016/J.Bpj.2008.12.2636  0.49
2009 Kutys ML, Hariharan V, Fricks J, Hancock WO. How Does The Tethered Kinesin Head Diffuse To The Next Microtubule Binding Site? Biophysical Journal. 96: 511a. DOI: 10.1016/J.Bpj.2008.12.2635  0.488
2008 Verma V, Hancock WO, Catchmark JM. The role of casein in supporting the operation of surface bound kinesin. Journal of Biological Engineering. 2: 14. PMID 18937863 DOI: 10.1186/1754-1611-2-14  0.449
2008 Hancock WO. Intracellular transport: kinesins working together. Current Biology : Cb. 18: R715-7. PMID 18727910 DOI: 10.1016/J.Cub.2008.07.068  0.461
2008 Uppalapati M, Huang YM, Jackson TN, Hancock WO. Microtubule alignment and manipulation using AC electrokinetics. Small (Weinheim An Der Bergstrasse, Germany). 4: 1371-81. PMID 18720434 DOI: 10.1002/Smll.200701088  0.411
2008 Uppalapati M, Huang YM, Jackson TN, Hancock WO. Enhancing the stability of kinesin motors for microscale transport applications. Lab On a Chip. 8: 358-61. PMID 18231678 DOI: 10.1039/B714989A  0.45
2008 Raab M, Hancock WO. Transport and detection of unlabeled nucleotide targets by microtubules functionalized with molecular beacons. Biotechnology and Bioengineering. 99: 764-73. PMID 17879297 DOI: 10.1002/Bit.21645  0.439
2007 Hutchins BM, Platt M, Hancock WO, Williams ME. Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small (Weinheim An Der Bergstrasse, Germany). 3: 126-31. PMID 17294483 DOI: 10.1002/Smll.200600410  0.444
2007 Huang YM, Uppalapati M, Hancock WO, Jackson TN. Microtubule transport, concentration and alignment in enclosed microfluidic channels. Biomedical Microdevices. 9: 175-84. PMID 17195111 DOI: 10.1007/S10544-006-9019-1  0.483
2007 Hancock WO. Protein‐based Nanotechnology: Kinesin–Microtubule‐driven Systems for Bioanalytical Applications Nanotechnologies For the Life Sciences. DOI: 10.1002/9783527610419.Ntls0042  0.466
2006 Muthukrishnan G, Hutchins BM, Williams ME, Hancock WO. Transport of semiconductor nanocrystals by kinesin molecular motors. Small (Weinheim An Der Bergstrasse, Germany). 2: 626-30. PMID 17193098 DOI: 10.1002/Smll.200500223  0.423
2006 Hutchins BM, Hancock WO, Williams ME. Magnet assisted fabrication of microtubule arrays. Physical Chemistry Chemical Physics : Pccp. 8: 3507-9. PMID 16871339 DOI: 10.1039/B605399H  0.376
2006 Hutchins B, Platt M, Hancock W, Williams M. Motility of CoFe2O4 nanoparticle-labelled microtubules in magnetic fields Micro & Nano Letters. 1: 47. DOI: 10.1049/Mnl:20065036  0.368
2005 Platt M, Muthukrishnan G, Hancock WO, Williams ME. Millimeter scale alignment of magnetic nanoparticle functionalized microtubules in magnetic fields. Journal of the American Chemical Society. 127: 15686-7. PMID 16277494 DOI: 10.1021/Ja055815S  0.32
2005 Huang Y, Uppalapati M, Hancock WO, Jackson TN. Microfabricated capped channels for biomolecular motor-based transport Ieee Transactions On Advanced Packaging. 28: 564-570. DOI: 10.1109/Tadvp.2005.858330  0.43
2005 Verma V, Hancock WO, Catchmark JM. Micro- and nanofabrication processes for hybrid synthetic and biological system fabrication Ieee Transactions On Advanced Packaging. 28: 584-593. DOI: 10.1109/Tadvp.2005.858302  0.43
2004 Zhang Y, Hancock WO. The two motor domains of KIF3A/B coordinate for processive motility and move at different speeds. Biophysical Journal. 87: 1795-804. PMID 15345558 DOI: 10.1529/Biophysj.104.039842  0.439
2004 Jia L, Moorjani SG, Jackson TN, Hancock WO. Microscale transport and sorting by kinesin molecular motors. Biomedical Microdevices. 6: 67-74. PMID 15307447 DOI: 10.1023/B:Bmmd.0000013368.89455.8D  0.436
2004 Muthukrishnan G, Roberts CA, Chen YC, Zahn JD, Hancock WO. Patterning surface-bound microtubules through reversible DNA hybridization Nano Letters. 4: 2127-2132. DOI: 10.1021/Nl048816B  0.451
2003 Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Molecular Cell. 11: 445-57. PMID 12620232 DOI: 10.1016/S1097-2765(03)00049-2  0.65
2003 Moorjani SG, Jia L, Jackson TN, Hancock WO. Lithographically Patterned Channels Spatially Segregate Kinesin Motor Activity and Effectively Guide Microtubule Movements Nano Letters. 3: 633-637. DOI: 10.1021/Nl034001B  0.432
2002 Marcus AI, Ambrose JC, Blickley L, Hancock WO, Cyr RJ. Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motility and the Cytoskeleton. 52: 144-50. PMID 12112142 DOI: 10.1002/Cm.10045  0.502
2002 Vinh DB, Kern JW, Hancock WO, Howard J, Davis TN. Reconstitution and characterization of budding yeast gamma-tubulin complex. Molecular Biology of the Cell. 13: 1144-57. PMID 11950928 DOI: 10.1091/Mbc.02-01-0607  0.57
2002 Brown TB, Hancock WO. A Polarized Microtubule Array for Kinesin-Powered Nanoscale Assembly and Force Generation Nano Letters. 2: 1131-1135. DOI: 10.1021/Nl025636Y  0.465
2000 Susalka SJ, Hancock WO, Pfister KK. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochimica Et Biophysica Acta. 1496: 76-88. PMID 10722878 DOI: 10.1016/S0167-4889(00)00010-0  0.419
1999 Coy DL, Hancock WO, Wagenbach M, Howard J. Kinesin's tail domain is an inhibitory regulator of the motor domain. Nature Cell Biology. 1: 288-92. PMID 10559941 DOI: 10.1038/13001  0.634
1999 Hancock WO, Howard J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proceedings of the National Academy of Sciences of the United States of America. 96: 13147-52. PMID 10557288 DOI: 10.1073/Pnas.96.23.13147  0.648
1998 Hancock WO, Howard J. Processivity of the motor protein kinesin requires two heads. The Journal of Cell Biology. 140: 1395-405. PMID 9508772 DOI: 10.1083/Jcb.140.6.1395  0.657
1997 Hancock WO, Huntsman LL, Gordon AM. Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. Journal of Muscle Research and Cell Motility. 18: 671-81. PMID 9429160 DOI: 10.1023/A:1018635907091  0.734
1996 Hancock WO, Martyn DA, Huntsman LL, Gordon AM. Influence of Ca2+ on force redevelopment kinetics in skinned rat myocardium. Biophysical Journal. 70: 2819-29. PMID 8744319 DOI: 10.1016/S0006-3495(96)79851-X  0.734
1993 Hancock WO, Martyn DA, Huntsman LL. Ca2+ and segment length dependence of isometric force kinetics in intact ferret cardiac muscle Circulation Research. 73: 603-611. PMID 8370118 DOI: 10.1161/01.Res.73.4.603  0.713
Show low-probability matches.