Fraser Armstrong, Ph.D. - Publications

Affiliations: 
Inorganic Chemistry Laboratory University of Oxford, Oxford, United Kingdom 
Website:
http://research.chem.ox.ac.uk/fraser-armstrong.aspx

157 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2025 Megarity CF, Herold RA, Armstrong FA. Extending protein-film electrochemistry across enzymology and biological inorganic chemistry to investigate, track and control the reactions of non-redox enzymes and spectroscopically silent metals. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. PMID 40025220 DOI: 10.1007/s00775-025-02105-0  0.814
2025 Herold RA, Schofield CJ, Armstrong FA. Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics. Angewandte Chemie (International Ed. in English). e202414176. PMID 39876743 DOI: 10.1002/anie.202414176  0.826
2024 Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Communications Chemistry. 7: 132. PMID 38858478 DOI: 10.1038/s42004-024-01211-5  0.792
2024 Evans RM, Krahn N, Weiss J, Vincent KA, Söll D, Armstrong FA. Replacing a Cysteine Ligand by Selenocysteine in a [NiFe]-Hydrogenase Unlocks Hydrogen Production Activity and Addresses the Role of Concerted Proton-Coupled Electron Transfer in Electrocatalytic Reversibility. Journal of the American Chemical Society. PMID 38747098 DOI: 10.1021/jacs.4c03489  0.671
2023 Herold RA, Schofield CJ, Armstrong FA. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer-drug Kinetics. Angewandte Chemie (Weinheim An Der Bergstrasse, Germany). 135: e202309149. PMID 38529044 DOI: 10.1002/ange.202309149  0.799
2023 Schmidt A, Kalms J, Lorent C, Katz S, Frielingsdorf S, Evans RM, Fritsch J, Siebert E, Teutloff C, Armstrong FA, Zebger I, Lenz O, Scheerer P. Stepwise conversion of the Cys[4Fe-3S] to a Cys[4Fe-4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Chemical Science. 14: 11105-11120. PMID 37860641 DOI: 10.1039/d3sc03739h  0.32
2023 Herold RA, Schofield CJ, Armstrong FA. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer-drug Kinetics. Angewandte Chemie (International Ed. in English). e202309149. PMID 37607127 DOI: 10.1002/anie.202309149  0.799
2023 Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from . Chemical Science. 14: 8531-8551. PMID 37592998 DOI: 10.1039/d2sc05641k  0.812
2023 Liu X, Reinbold R, Liu S, Herold RA, Rabe P, Duclos S, Yadav RB, Abboud MI, Thieffine S, Armstrong FA, Brewitz L, Schofield CJ. Natural and Synthetic 2-Oxogluturate Derivatives are Substrates for Oncogenic Variants of Human Isocitrate Dehydrogenase 1 and 2. The Journal of Biological Chemistry. 102873. PMID 36621625 DOI: 10.1016/j.jbc.2023.102873  0.781
2022 Herold RA, Reinbold R, Schofield CJ, Armstrong FA. NADP(H)-dependent biocatalysis without adding NADP(H). Proceedings of the National Academy of Sciences of the United States of America. 120: e2214123120. PMID 36574703 DOI: 10.1073/pnas.2214123120  0.829
2022 Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chemical Reviews. PMID 36573907 DOI: 10.1021/acs.chemrev.2c00397  0.822
2022 Cheng B, Heath RS, Turner NJ, Armstrong FA, Megarity CF. Deracemisation and stereoinversion by a nanoconfined bidirectional enzyme cascade: dual control by electrochemistry and selective metal ion activation. Chemical Communications (Cambridge, England). PMID 36178369 DOI: 10.1039/d2cc03638j  0.376
2022 Reinbold R, Hvinden IC, Rabe P, Herold RA, Finch A, Wood J, Morgan M, Staudt M, Clifton IJ, Armstrong FA, McCullagh JSO, Redmond J, Bardella C, Abboud MI, Schofield CJ. Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors. Nature Communications. 13: 4785. PMID 35970853 DOI: 10.1038/s41467-022-32436-4  0.761
2022 Megarity CF, Weald TRI, Heath RS, Turner NJ, Armstrong FA. A Nanoconfined Four-Enzyme Cascade Simultaneously Driven by Electrical and Chemical Energy, with Built-in Rapid, Confocal Recycling of NADP(H) and ATP. Acs Catalysis. 12: 8811-8821. PMID 35966600 DOI: 10.1021/acscatal.2c00999  0.332
2021 Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chemical Science. 12: 12959-12970. PMID 34745526 DOI: 10.1039/d1sc01734a  0.789
2021 Armstrong FA. Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes. Electrochimica Acta. 390: 138836. PMID 34511630 DOI: 10.1016/j.electacta.2021.138836  0.357
2021 Herold RA, Reinbold R, Megarity CF, Abboud MI, Schofield CJ, Armstrong FA. Exploiting Electrode Nanoconfinement to Investigate the Catalytic Properties of Isocitrate Dehydrogenase (IDH1) and a Cancer-Associated Variant. The Journal of Physical Chemistry Letters. 12: 6095-6101. PMID 34170697 DOI: 10.1021/acs.jpclett.1c01517  0.812
2021 Evans RM, Krahn N, Murphy BJ, Lee H, Armstrong FA, Söll D. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33753519 DOI: 10.1073/pnas.2100921118  0.376
2021 Morello G, Megarity CF, Armstrong FA. The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades. Nature Communications. 12: 340. PMID 33436601 DOI: 10.1038/s41467-020-20403-w  0.388
2020 Cheng B, Wan L, Armstrong FA. Progress in Scaling up and Streamlining a Nanoconfined, Enzyme-Catalyzed Electrochemical Nicotinamide Recycling System for Biocatalytic Synthesis. Chemelectrochem. 7: 4672-4678. PMID 33381377 DOI: 10.1002/celc.202001166  0.404
2020 Megarity CF, Siritanaratkul B, Herold RA, Morello G, Armstrong FA. Electron flow between the worlds of Marcus and Warburg. The Journal of Chemical Physics. 153: 225101. PMID 33317312 DOI: 10.1063/5.0024701  0.79
2020 Lampret O, Duan J, Hofmann E, Winkler M, Armstrong FA, Happe T. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. PMID 32796105 DOI: 10.1073/Pnas.2007090117  0.332
2020 Zhang L, Morello G, Carr SB, Armstrong FA. Aerobic Photocatalytic H2 Production by a [NiFe] hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay. Journal of the American Chemical Society. PMID 32579353 DOI: 10.1021/jacs.0c04302  0.362
2019 Megarity C, Siritanaratkul B, Heath R, Wan L, Morello G, Fitzpatrick S, Booth R, Sills A, Robertson A, Warner J, Turner N, Armstrong FA. Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie (International Ed. in English). PMID 30633837 DOI: 10.1002/anie.201814370  0.811
2018 Evans RM, Siritanaratkul B, Megarity CF, Pandey K, Esterle TF, Badiani S, Armstrong FA. The value of enzymes in solar fuels research - efficient electrocatalysts through evolution. Chemical Society Reviews. PMID 30426997 DOI: 10.1039/c8cs00546j  0.82
2018 Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O-Tolerant [NiFe]-Hydrogenase. Journal of the American Chemical Society. PMID 30070475 DOI: 10.1021/jacs.8b04798  0.822
2018 Volbeda A, Mouesca JM, Darnault C, Roessler MM, Parkin A, Armstrong FA, Fontecilla-Camps JC. X-ray structural, functional and computational studies of the O-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe-4S] cluster. Chemical Communications (Cambridge, England). PMID 29888350 DOI: 10.1039/C8Cc02896F  0.781
2018 Armstrong FA, Evans RM, Megarity CF. Protein Film Electrochemistry of Iron-Sulfur Enzymes. Methods in Enzymology. 599: 387-407. PMID 29746247 DOI: 10.1016/bs.mie.2017.11.001  0.339
2018 Wan L, Megarity CF, Siritanaratkul B, Armstrong FA. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring. Chemical Communications (Cambridge, England). PMID 29319070 DOI: 10.1039/c7cc08859k  0.806
2017 Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA. Transfer of photosynthetic NADP/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chemical Science. 8: 4579-4586. PMID 30155220 DOI: 10.1039/c7sc00850c  0.815
2017 Ash PA, Carr SB, Reeve HA, Skorupskaitė A, Rowbotham JS, Shutt R, Frogley MD, Evans RM, Cinque G, Armstrong FA, Vincent KA. Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal. Chemical Communications (Cambridge, England). PMID 28504793 DOI: 10.1039/c7cc02591b  0.559
2017 Pandey K, Islam ST, Happe T, Armstrong FA. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. PMID 28348243 DOI: 10.1073/pnas.1619961114  0.351
2016 Brooke EJ, Evans RM, Islam ST, Roberts GM, Wehlin SA, Carr SB, Phillips SE, Armstrong FA. Importance of the Active Site "Canopy" Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry. PMID 28001048 DOI: 10.1021/acs.biochem.6b00868  0.333
2016 Armstrong FA, Evans RM, Hexter SV, Murphy BJ, Roessler MM, Wulff P. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Accounts of Chemical Research. PMID 27104487 DOI: 10.1021/acs.accounts.6b00027  0.484
2016 Wulff P, Thomas C, Sargent F, Armstrong FA. How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. PMID 26861789 DOI: 10.1007/s00775-015-1327-6  0.325
2015 Kelly CL, Pinske C, Murphy BJ, Parkin A, Armstrong F, Palmer T, Sargent F. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli. Biotechnology Reports (Amsterdam, Netherlands). 8: 94-104. PMID 26839796 DOI: 10.1016/J.Btre.2015.10.002  0.785
2015 Wang VC, Islam ST, Can M, Ragsdale SW, Armstrong FA. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase. The Journal of Physical Chemistry. B. PMID 26176986 DOI: 10.1021/Acs.Jpcb.5B03098  0.343
2015 Murphy BJ, Hidalgo R, Roessler MM, Evans RM, Ash PA, Myers WK, Vincent KA, Armstrong FA. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. Journal of the American Chemical Society. PMID 26103582 DOI: 10.1021/jacs.5b03182  0.786
2015 Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. Journal of the American Chemical Society. 137: 5381-9. PMID 25871921 DOI: 10.1021/ja513074m  0.308
2015 Bachmeier A, Armstrong F. Solar-driven proton and carbon dioxide reduction to fuels—lessons from metalloenzymes. Current Opinion in Chemical Biology. 25: 141-51. PMID 25621455 DOI: 10.1016/J.Cbpa.2015.01.001  0.402
2015 Sigfridsson KG, Leidel N, Sanganas O, Chernev P, Lenz O, Yoon KS, Nishihara H, Parkin A, Armstrong FA, Dementin S, Rousset M, De Lacey AL, Haumann M. Structural differences of oxidized iron-sulfur and nickel-iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy. Biochimica Et Biophysica Acta. 1847: 162-70. PMID 25316302 DOI: 10.1016/J.Bbabio.2014.06.011  0.766
2014 Hexter SV, Chung MW, Vincent KA, Armstrong FA. Unusual reaction of [NiFe]-hydrogenases with cyanide. Journal of the American Chemical Society. 136: 10470-7. PMID 25003708 DOI: 10.1021/ja504942h  0.657
2014 Wulff P, Day CC, Sargent F, Armstrong FA. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. 111: 6606-11. PMID 24715724 DOI: 10.1073/pnas.1322393111  0.31
2014 Evans RM, Armstrong FA. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1. Methods in Molecular Biology (Clifton, N.J.). 1122: 73-94. PMID 24639254 DOI: 10.1007/978-1-62703-794-5_6  0.405
2014 Hexter SV, Esterle TF, Armstrong FA. A unified model for surface electrocatalysis based on observations with enzymes Physical Chemistry Chemical Physics. 16: 11822-11833. PMID 24556983 DOI: 10.1039/c3cp55230f  0.37
2013 Bachmeier A, Wang VC, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. Journal of the American Chemical Society. 135: 15026-32. PMID 24070184 DOI: 10.1021/Ja4042675  0.758
2013 Wang VC, Ragsdale SW, Armstrong FA. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry. Chembiochem : a European Journal of Chemical Biology. 14: 1845-51. PMID 24002936 DOI: 10.1002/Cbic.201300270  0.331
2013 Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA. Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. Journal of the American Chemical Society. 135: 2694-707. PMID 23398301 DOI: 10.1021/Ja311055D  0.813
2013 Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. Journal of the American Chemical Society. 135: 2198-206. PMID 23368960 DOI: 10.1021/Ja308493K  0.305
2013 Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC. Crystal structure of the O2-Tolerant membrane-bound hydrogenase 1 from escherichia coli in complex with its cognate cytochrome b Structure. 21: 184-190. PMID 23260654 DOI: 10.1016/J.Str.2012.11.010  0.778
2012 Hexter SV, Grey F, Happe T, Climent V, Armstrong FA. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases Proceedings of the National Academy of Sciences of the United States of America. 109: 11516-11521. PMID 22802675 DOI: 10.1073/Pnas.1204770109  0.385
2012 Stevenson GP, Lee CY, Kennedy GF, Parkin A, Baker RE, Gillow K, Armstrong FA, Gavaghan DJ, Bond AM. Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude fourier transformed AC Voltammetry Langmuir. 28: 9864-9877. PMID 22607123 DOI: 10.1021/La205037E  0.78
2012 Foster CE, Krämer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA. Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. Journal of the American Chemical Society. 134: 7553-7. PMID 22512303 DOI: 10.1021/Ja302096R  0.788
2012 Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC. X-ray crystallographic and computational studies of the O 2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli Proceedings of the National Academy of Sciences of the United States of America. 109: 5305-5310. PMID 22431599 DOI: 10.1073/Pnas.1119806109  0.785
2012 Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications (Cambridge, England). 48: 58-60. PMID 22083268 DOI: 10.1039/C1Cc16107E  0.685
2012 Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent F. How Salmonella oxidises H(2) under aerobic conditions. Febs Letters. 586: 536-44. PMID 21827758 DOI: 10.1016/J.Febslet.2011.07.044  0.792
2012 Krishnan S, Armstrong FA. Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures Chemical Science. 3: 1015-1023. DOI: 10.1039/C2Sc01103D  0.599
2012 Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA. Enzymes and bio-inspired electrocatalysts in solar fuel devices Energy and Environmental Science. 5: 7470-7490. DOI: 10.1039/C2Ee21471G  0.709
2011 Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. Journal of the American Chemical Society. 133: 16881-92. PMID 21916508 DOI: 10.1021/Ja205393W  0.801
2011 Armstrong FA, Hirst J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proceedings of the National Academy of Sciences of the United States of America. 108: 14049-54. PMID 21844379 DOI: 10.1073/pnas.1103697108  0.38
2011 Reisner E, Armstrong FA. A TiO₂ nanoparticle system for sacrificial solar H₂ production prepared by rational combination of a hydrogenase with a ruthenium photosensitizer. Methods in Molecular Biology (Clifton, N.J.). 743: 107-17. PMID 21553186 DOI: 10.1007/978-1-61779-132-1_9  0.531
2011 Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nature Chemical Biology. 7: 310-8. PMID 21390036 DOI: 10.1038/Nchembio.555  0.587
2011 Wait AF, Brandmayr C, Stripp ST, Cavazza C, Fontecilla-Camps JC, Happe T, Armstrong FA. Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases. Journal of the American Chemical Society. 133: 1282-5. PMID 21204519 DOI: 10.1021/ja110103p  0.398
2011 Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA. CO2 photoreduction at enzyme-modified metal oxide nanoparticles Energy and Environmental Science. 4: 2393-2399. DOI: 10.1039/C0Ee00780C  0.316
2011 Lee CY, Stevenson GP, Parkin A, Roessler MM, Baker RE, Gillow K, Gavaghan DJ, Armstrong FA, Bond AM. Theoretical and experimental investigation of surface-confined two-center metalloproteins by large-amplitude Fourier transformed ac voltammetry Journal of Electroanalytical Chemistry. 656: 293-303. DOI: 10.1016/J.Jelechem.2010.08.012  0.78
2010 Cracknell JA, Friedrich B, Armstrong FA. Gas pressure effects on the rates of catalytic H(2) oxidation by hydrogenases. Chemical Communications (Cambridge, England). 46: 8463-5. PMID 20922264 DOI: 10.1039/C0Cc03292A  0.558
2010 Dos Santos L, Climent V, Blanford CF, Armstrong FA. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Physical Chemistry Chemical Physics : Pccp. 12: 13962-74. PMID 20852807 DOI: 10.1039/C0Cp00018C  0.34
2010 Danyal K, Inglet BS, Vincent KA, Barney BM, Hoffman BM, Armstrong FA, Dean DR, Seefeldt LC. Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP. Journal of the American Chemical Society. 132: 13197-9. PMID 20812745 DOI: 10.1021/Ja1067178  0.614
2010 Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA. Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. Journal of the American Chemical Society. 132: 2132-3. PMID 20121138 DOI: 10.1021/Ja910091Z  0.496
2010 Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes? Trends in Biotechnology. 28: 63-72. PMID 19963293 DOI: 10.1016/J.Tibtech.2009.11.001  0.332
2010 Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. The Journal of Biological Chemistry. 285: 3928-38. PMID 19917611 DOI: 10.1074/Jbc.M109.067751  0.822
2010 Wait AF, Parkin A, Morley GM, Dos Santos L, Armstrong FA. Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst Journal of Physical Chemistry C. 114: 12003-12009. DOI: 10.1021/Jp102616M  0.781
2010 Armstrong FA. The Importance of Enzymes: Benchmarks for Electrocatalysts Fuel Cell Science: Theory, Fundamentals, and Biocatalysis. 237-255. DOI: 10.1002/9780470630693.ch7  0.302
2009 Cracknell JA, Wait AF, Lenz O, Friedrich B, Armstrong FA. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. 106: 20681-6. PMID 19934053 DOI: 10.1073/Pnas.0905959106  0.594
2009 Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. Journal of the American Chemical Society. 131: 18457-66. PMID 19928857 DOI: 10.1021/Ja907923R  0.541
2009 Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. Journal of the American Chemical Society. 131: 14979-89. PMID 19824734 DOI: 10.1021/ja905388j  0.331
2009 Lazarus O, Woolerton TW, Parkin A, Lukey MJ, Reisner E, Seravalli J, Pierce E, Ragsdale SW, Sargent F, Armstrong FA. Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets. Journal of the American Chemical Society. 131: 14154-5. PMID 19807170 DOI: 10.1021/Ja905797W  0.814
2009 Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America. 106: 17331-6. PMID 19805068 DOI: 10.1073/pnas.0905343106  0.628
2009 Armstrong FA. Dynamic electrochemical experiments on hydrogenases. Photosynthesis Research. 102: 541-50. PMID 19455401 DOI: 10.1007/s11120-009-9428-0  0.343
2009 Reisner E, Fontecilla-Camps JC, Armstrong FA. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chemical Communications (Cambridge, England). 550-2. PMID 19283287 DOI: 10.1039/B817371K  0.542
2009 Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF. Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chemical Society Reviews. 38: 36-51. PMID 19088963 DOI: 10.1039/B801144N  0.824
2009 Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O. Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of ralstonia species. Coping with low level H2 in air. The Journal of Biological Chemistry. 284: 465-77. PMID 18990688 DOI: 10.1074/jbc.M803676200  0.656
2008 Blanford CF, Foster CE, Heath RS, Armstrong FA. Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discussions. 140: 319-35; discussion 4. PMID 19213324 DOI: 10.1039/B808939F  0.331
2008 Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. Journal of the American Chemical Society. 130: 13410-6. PMID 18781742 DOI: 10.1021/Ja803657D  0.788
2008 Goldet G, Wait AF, Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. Journal of the American Chemical Society. 130: 11106-13. PMID 18661984 DOI: 10.1021/Ja8027668  0.74
2008 Cracknell JA, Vincent KA, Armstrong FA. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chemical Reviews. 108: 2439-61. PMID 18620369 DOI: 10.1021/cr0680639  0.624
2008 Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Enzymatic oxidation of H2 in atmospheric O2: the electrochemistry of energy generation from trace H2 by aerobic microorganisms. Journal of the American Chemical Society. 130: 424-5. PMID 18088128 DOI: 10.1021/Ja078299+  0.744
2008 Butt JN, Armstrong FA. Voltammetry of adsorbed redox enzymes: Mechanisms in the potential dimension Bioinorganic Electrochemistry. 91-128. DOI: 10.1007/978-1-4020-6500-2_4  0.312
2007 Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA. Enzymatic catalysis on conducting graphite particles. Nature Chemical Biology. 3: 761-2. PMID 17994012 DOI: 10.1038/Nchembio.2007.47  0.673
2007 Vincent KA, Parkin A, Armstrong FA. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chemical Reviews. 107: 4366-413. PMID 17845060 DOI: 10.1021/cr050191u  0.77
2007 Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. Journal of the American Chemical Society. 129: 10328-9. PMID 17672466 DOI: 10.1021/Ja073643O  0.786
2007 Wijma HJ, Jeuken LJ, Verbeet MP, Armstrong FA, Canters GW. Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation. Journal of the American Chemical Society. 129: 8557-65. PMID 17579406 DOI: 10.1021/Ja071274Q  0.322
2007 Blanford CF, Heath RS, Armstrong FA. A stable electrode for high-potential, electrocatalytic O(2) reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chemical Communications (Cambridge, England). 1710-2. PMID 17457416 DOI: 10.1039/B703114A  0.306
2006 Parkin A, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. Journal of the American Chemical Society. 128: 16808-15. PMID 17177431 DOI: 10.1021/Ja064425I  0.809
2006 Vincent KA, Cracknell JA, Clark JR, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Electricity from low-level H2 in still air--an ultimate test for an oxygen tolerant hydrogenase. Chemical Communications (Cambridge, England). 5033-5. PMID 17146518 DOI: 10.1039/B614272A  0.729
2006 Vincent KA, Belsey NA, Lubitz W, Armstrong FA. Rapid and reversible reactions of [NiFe]-hydrogenases with sulfide. Journal of the American Chemical Society. 128: 7448-9. PMID 16756292 DOI: 10.1021/ja061732f  0.677
2006 Pankhurst KL, Mowat CG, Rothery EL, Hudson JM, Jones AK, Miles CS, Walkinshaw MD, Armstrong FA, Reid GA, Chapman SK. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. The Journal of Biological Chemistry. 281: 20589-97. PMID 16699170 DOI: 10.1074/Jbc.M603077200  0.62
2006 Maklashina E, Iverson TM, Sher Y, Kotlyar V, Andréll J, Mirza O, Hudson JM, Armstrong FA, Rothery RA, Weiner JH, Cecchini G. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain. The Journal of Biological Chemistry. 281: 11357-65. PMID 16484232 DOI: 10.1074/Jbc.M512544200  0.301
2005 Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA. Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. Journal of the American Chemical Society. 127: 18179-89. PMID 16366571 DOI: 10.1021/Ja055160V  0.81
2005 Vincent KA, Cracknell JA, Lenz O, Zebger I, Friedrich B, Armstrong FA. Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proceedings of the National Academy of Sciences of the United States of America. 102: 16951-4. PMID 16260746 DOI: 10.1073/Pnas.0504499102  0.734
2005 Vincent KA, Cracknell JA, Parkin A, Armstrong FA. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Dalton Transactions (Cambridge, England : 2003). 3397-403. PMID 16234917 DOI: 10.1039/B508520A  0.835
2005 Armstrong FA, Albracht SP. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 363: 937-54; discussion 1. PMID 15991402 DOI: 10.1098/Rsta.2004.1528  0.414
2005 Hudson JM, Heffron K, Kotlyar V, Sher Y, Maklashina E, Cecchini G, Armstrong FA. Electron transfer and catalytic control by the iron-sulfur clusters in a respiratory enzyme, E. coli fumarate reductase. Journal of the American Chemical Society. 127: 6977-89. PMID 15884941 DOI: 10.1021/ja043404q  0.326
2005 Lamle SE, Albracht SP, Armstrong FA. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide. Journal of the American Chemical Society. 127: 6595-604. PMID 15869280 DOI: 10.1021/Ja0424934  0.386
2005 Vincent KA, Armstrong FA. Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorganic Chemistry. 44: 798-809. PMID 15859247  0.671
2004 Lamle SE, Albracht SP, Armstrong FA. Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. Journal of the American Chemical Society. 126: 14899-909. PMID 15535717 DOI: 10.1021/Ja047939V  0.321
2004 Hoke KR, Cobb N, Armstrong FA, Hille R. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Biochemistry. 43: 1667-74. PMID 14769044 DOI: 10.1021/Bi0357154  0.364
2004 Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry. 43: 799-807. PMID 14730985 DOI: 10.1021/Bi035869J  0.564
2003 Vincent KA, Tilley GJ, Quammie NC, Streeter I, Burgess BK, Cheesman MR, Armstrong FA. Instantaneous, stoichiometric generation of powerfully reducing states of protein active sites using Eu(II) and polyaminocarboxylate ligands. Chemical Communications (Cambridge, England). 2590-1. PMID 14594295  0.594
2003 Léger C, Elliott SJ, Hoke KR, Jeuken LJ, Jones AK, Armstrong FA. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry. 42: 8653-62. PMID 12873124 DOI: 10.1021/Bi034789C  0.749
2003 Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SP, Armstrong FA. Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase. Journal of the American Chemical Society. 125: 8505-14. PMID 12848556 DOI: 10.1021/Ja035296Y  0.776
2003 Lamle SE, Vincent KA, Halliwell LM, Albracht SPJ, Armstrong FA. Hydrogenase on an electrode: A remarkable heterogeneous catalyst Journal of the Chemical Society. Dalton Transactions. 4152-4157. DOI: 10.1039/B306234C  0.679
2003 Vincent KA, Kadodia SM, Armstrong FA, Gurr SJ. Electrochemical insights into inhibition of multi-copper oxidases Journal of Inorganic Biochemistry. 96: 244. DOI: 10.1016/S0162-0134(03)80795-X  0.591
2003 Hoke KR, Elliott SJ, Armstrong FA. The effect of oxidation state on inhibition of nitrate reductase Journal of Inorganic Biochemistry. 96: 150. DOI: 10.1016/S0162-0134(03)80642-6  0.476
2002 Léger C, Jones AK, Roseboom W, Albracht SP, Armstrong FA. Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase. Biochemistry. 41: 15736-46. PMID 12501202 DOI: 10.1021/Bi026586E  0.678
2002 Elliott SJ, McElhaney AE, Feng C, Enemark JH, Armstrong FA. A voltammetric study of interdomain electron transfer within sulfite oxidase. Journal of the American Chemical Society. 124: 11612-3. PMID 12296723 DOI: 10.1021/Ja027776F  0.53
2002 Elliott SJ, Léger C, Pershad HR, Hirst J, Heffron K, Ginet N, Blasco F, Rothery RA, Weiner JH, Armstrong FA. Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochimica Et Biophysica Acta. 1555: 54-9. PMID 12206891 DOI: 10.1016/S0005-2728(02)00254-2  0.591
2002 Jones AK, Sillery E, Albracht SP, Armstrong FA. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chemical Communications (Cambridge, England). 866-7. PMID 12123018 DOI: 10.1039/B201337A  0.636
2002 Jeuken LJ, Jones AK, Chapman SK, Cecchini G, Armstrong FA. Electron-transfer mechanisms through biological redox chains in multicenter enzymes. Journal of the American Chemical Society. 124: 5702-13. PMID 12010043 DOI: 10.1021/ja012638w  0.631
2002 Léger C, Jones AK, Albracht SPJ, Armstrong FA. Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes Journal of Physical Chemistry B. 106: 13058-13063. DOI: 10.1021/Jp0265687  0.681
2001 Bateman L, Léger C, Goodin DB, Armstrong FA. A distal histidine mutant (H52Q) of yeast cytochrome c peroxidase catalyzes the oxidation of H(2)O(2) instead of its reduction. Journal of the American Chemical Society. 123: 9260-3. PMID 11562206 DOI: 10.1021/ja0158612  0.334
2001 Léger C, Heffron K, Pershad HR, Maklashina E, Luna-Chavez C, Cecchini G, Ackrell BA, Armstrong FA. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry. 40: 11234-45. PMID 11551223 DOI: 10.1021/bi010889b  0.369
2001 Heffron K, Léger C, Rothery RA, Weiner JH, Armstrong FA. Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry. 40: 3117-26. PMID 11258926 DOI: 10.1021/bi002452u  0.381
2000 Canters GW, Kolczak U, Armstrong F, Jeuken LJ, Camba R, Sola M. The effect of pH and ligand exchange on the redox properties of blue copper proteins. Faraday Discussions. 205-20; discussion 2. PMID 11197479 DOI: 10.1039/B003822I  0.333
2000 Armstrong FA, Camba R, Heering HA, Hirst J, Jeuken LJ, Jones AK, Léger C, McEvoy JP. Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Discussions. 191-203; discussion . PMID 11197478 DOI: 10.1039/B002290J  0.626
2000 Jones AK, Camba R, Reid GA, Chapman SK, Armstrong FA. Interruption and time-resolution of catalysis by a flavoenzyme using fast scan protein film voltammetry [4] Journal of the American Chemical Society. 122: 6494-6495. DOI: 10.1021/ja000848n  0.534
1999 Pershad HR, Hirst J, Cochran B, Ackrell BA, Armstrong FA. Voltammetric studies of bidirectional catalytic electron transport in Escherichia coli succinate dehydrogenase: comparison with the enzyme from beef heart mitochondria. Biochimica Et Biophysica Acta. 1412: 262-72. PMID 10482788 DOI: 10.1016/S0005-2728(99)00066-3  0.328
1999 Pershad HR, Duff JL, Heering HA, Duin EC, Albracht SP, Armstrong FA. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry. 38: 8992-9. PMID 10413472 DOI: 10.1021/Bi990108V  0.394
1999 Armstrong FA, Williams RJ. Thermodynamic influences on the fidelity of iron-sulphur cluster formation in proteins. Febs Letters. 451: 91-4. PMID 10371144 DOI: 10.1016/S0014-5793(99)00545-1  0.352
1999 Turner KL, Doherty MK, Heering HA, Armstrong FA, Reid GA, Chapman SK. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry. 38: 3302-9. PMID 10079073 DOI: 10.1021/bi9826308  0.313
1998 Heering HA, Hirst J, Armstrong FA. Interpreting the Catalytic Voltammetry of Electroactive Enzymes Adsorbed on Electrodes The Journal of Physical Chemistry B. 102: 6889-6902. DOI: 10.1021/jp981023r  0.334
1996 Van Dyke BR, Saltman P, Armstrong FA. Control of myoglobin electron-transfer rates by the distal (nonbound) histidine residue Journal of the American Chemical Society. 118: 3490-3492. DOI: 10.1021/ja954181u  0.339
1995 Hirst J, Sucheta A, Ackrell BA, Armstrong FA. The electrochemical mechanism of catalysis by an electron transport enzyme: Succinate dehydrogenase Journal of Inorganic Biochemistry. 59: 263. DOI: 10.1016/0162-0134(95)97366-X  0.301
1993 Sucheta A, Cammack R, Weiner J, Armstrong FA. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Biochemistry. 32: 5455-65. PMID 8499449 DOI: 10.1021/bi00071a023  0.408
1993 Ackrell BA, Armstrong FA, Cochran B, Sucheta A, Yu T. Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay. Febs Letters. 326: 92-4. PMID 8325393 DOI: 10.1016/0014-5793(93)81768-U  0.321
1993 Armstrong FA, Bond AM, Büchi FN, Hamnett A, Hill HA, Lannon AM, Lettington OC, Zoski CG. Electrocatalytic reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules. The Analyst. 118: 973-8. PMID 8214607 DOI: 10.1039/An9931800973  0.588
1992 Sucheta A, Ackrell BA, Cochran B, Armstrong FA. Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature. 356: 361-2. PMID 1549182 DOI: 10.1038/356361a0  0.4
1990 Armstrong FA, Butt JN, Govindaraju K, McGinnis J, Powls R, Sykes AG. Direct cyclic voltammetry of three ruthenium-modified electron-transfer proteins Inorganic Chemistry. 29: 4858-4862. DOI: 10.1021/ic00349a009  0.415
1989 Armstrong FA, Bond AM, Hill HAO, Oliver BN, Psalti ISM. Electrochemistry of cytochrome c, plastocyanin, and ferredoxin at edge- and basal-plane graphite electrodes interpreted via a model based on electron transfer at electroactive sites of microscopic dimensions in size Journal of the American Chemical Society. 111: 9185-9189. DOI: 10.1021/Ja00208A008  0.535
1989 Armstrong FA, Bond AM, Hill HAO, Psalti ISM, Zoski CG. A microscopic model of electron transfer at electroactive sites of molecular dimensions for reduction of cytochrome c at basal- and edge-plane graphite electrodes The Journal of Physical Chemistry. 93: 6485-6493. DOI: 10.1021/J100354A041  0.506
1988 Armstrong FA, Driscoll PC, Hill HA, Redfield C. Investigation of the function of plastocyanin by electrochemistry and nuclear-magnetic-resonance spectroscopy. Biochemical Society Transactions. 15: 767-72. PMID 3678593 DOI: 10.1042/bst0150767  0.389
1988 Armstrong FA, Hill HAO, Walton NJ. Direct electrochemistry of redox proteins Accounts of Chemical Research. 21: 407-413. DOI: 10.1021/ar00155a004  0.445
1987 Armstrong FA, Anthony Cox P, Hill HO, Lowe VJ, Nigel Oliver B. Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 217: 331-366. DOI: 10.1016/0022-0728(87)80228-0  0.47
1986 ARMSTRONG FA, HILL HAO, OLIVER BN, WHITFORD D. Direct electrochemistry of the ‘blue’ copper protein plastocyanin Biochemical Society Transactions. 14: 44-45. DOI: 10.1042/bst0140044  0.413
1985 ARMSTRONG FA, HILL HAO, OLIVER BN, WHITFORD D. ChemInform Abstract: Direct Electrochemistry of the Photosynthetic Blue Copper Protein Plastocyanin. Electrostatic Promotion of Rapid Charge Transfer at an Edge-Oriented Pyrolytic Graphite Electrode Chemischer Informationsdienst. 16. DOI: 10.1002/chin.198530083  0.476
1984 Armstrong FA, Hill HAO, Oliver BN, Walton NJ. Direct electrochemistry of redox proteins at pyrolytic graphite electrodes Journal of the American Chemical Society. 106: 921-923. DOI: 10.1021/ja00316a015  0.491
1983 Armstrong F, Shaw RW, Beinert H. Cytochrome c oxidase. Time dependence of optical and EPR spectral changes related to the 'oxygen-pulsed' form. Biochimica Et Biophysica Acta. 722: 61-71. PMID 6297568 DOI: 10.1016/0005-2728(83)90157-3  0.538
1982 Armstrong FA, Sykes A. Preparation and properties of a soluble polymeric aquo ion of molybdenum(V) Polyhedron. 1: 109-111. DOI: 10.1016/S0277-5387(00)81077-3  0.395
1982 ARMSTRONG FA, SYKES AG. ChemInform Abstract: PREPARATION AND PROPERTIES OF A SOLUBLE POLYMERIC AQUO ION OF MOLYBDENUM(V) Chemischer Informationsdienst. 13. DOI: 10.1002/chin.198225038  0.318
1981 Petrou AL, Armstrong FA, Sykes A, Harrington PC, Wilkins RG. Kinetics of the equilibration of oxygen with monomeric and octameric hemerythrin from Themiste zostericola Biochimica Et Biophysica Acta (Bba) - Protein Structure. 670: 377-384. DOI: 10.1016/0005-2795(81)90110-0  0.354
1980 Armstrong FA, Henderson RA, Sykes AG. Kinetic studies on reactions of iron-sulfur proteins. 3. Oxidation of the reduced form of Clostridium pasteurianum 8-iron ferredoxin with inorganic complexes. Observation of single-stage kinetics for a difunctional protein reactant Journal of the American Chemical Society. 102: 6545-6551. DOI: 10.1021/Ja00541A026  0.406
1980 ARMSTRONG FA, HENDERSON RA, SYKES AG. ChemInform Abstract: KINETIC STUDIES ON REACTIONS OF IRON-SULFUR PROTEINS. 2. AN EXTENSION OF THE RANGE OF OXIDANTS IN THE REACTION OF REDUCED PARSLEY 2-FE FERREDOXIN AND IDENTIFICATION OF SPECIFIC BINDING SITES USING REDOX INACTIVE CR(NH3)63+ (AND CR(EN) Chemischer Informationsdienst. 11. DOI: 10.1002/chin.198007310  0.424
1979 Butler J, Henderson RA, Armstrong FA, Sykes AG. Mechanism of formation, spectrum and reactivity of half-reduced eight-iron Clostridium pasteurianum ferredoxin in pulse-radiolysis studies and the non-co-operativity of the four-iron clusters. The Biochemical Journal. 183: 471-4. PMID 534509  0.425
1979 Armstrong FA, Henderson RA, Sykes AG. Kinetic studies on reactions of iron-sulfur proteins. 2. An extension of the range of oxidants in the reaction of reduced parsley 2-Fe ferredoxin and identification of specific binding sites using redox inactive Cr(NH3)63+ (and Cr(en)33+) Journal of the American Chemical Society. 101: 6912-6917. DOI: 10.1021/Ja00517A021  0.425
1979 ARMSTRONG FA, SYKES AG. ChemInform Abstract: Kinetic Studies on Reactions of Iron-Sulfur Proteins. Part 1. Oxidation of Reduced Parsley (and Spinach) 2-Iron Ferredoxins with Co(NH3)6)3+ dl- and d-Co(en)3)3+, Co(NH3)5Cl)2+ , Co(NH3)5C2O4)+ Co(dmgH)2 (C6H5NH2)2)+, and Co(edta)-. E Chemischer Informationsdienst. 10. DOI: 10.1002/chin.197909279  0.394
1978 Armstrong FA, Sykes AG. Kinetic studies on reactions of iron-sulfur proteins. 1. Oxidation of reduced parsley (and spinach) 2-iron ferredoxins with Co(NH3)63+, dl- and d- Co(en)33+, Co(NH3)5Cl2+, Co(NH3)5C2O4+, Co(dmgH)2(C6H5NH2)2+, and Co(edta)-. Evidence for protein-complex association Journal of the American Chemical Society. 100: 7710-7715. DOI: 10.1021/Ja00492A045  0.393
1978 Armstrong FA, Shibahara T, Sykes AG. Effect of .mu.-sulfido ligands on substitution at molybdenum(V). A temperature-jump study of the 1:1 equilibration of thiocyanate with di-.mu.-sulfido-bis[aquooxalatooxomolybdenum(V)] Inorganic Chemistry. 17: 189-191. DOI: 10.1021/Ic50179A036  0.315
Show low-probability matches.