Fraser Armstrong, Ph.D. - Publications

Affiliations: 
Inorganic Chemistry Laboratory University of Oxford, Oxford, United Kingdom 
Website:
http://research.chem.ox.ac.uk/fraser-armstrong.aspx

152 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Evans RM, Krahn N, Murphy BJ, Lee H, Armstrong FA, Söll D. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33753519 DOI: 10.1073/pnas.2100921118  0.48
2020 Zhang L, Morello G, Carr SB, Armstrong FA. Aerobic Photocatalytic H2 Production by a [NiFe] hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay. Journal of the American Chemical Society. PMID 32579353 DOI: 10.1021/jacs.0c04302  0.44
2020 Liu G, Beaton SE, Grieve AG, Evans R, Rogers M, Strisovsky K, Armstrong FA, Freeman M, Exley RM, Tang CM. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. The Embo Journal. e102922. PMID 32337752 DOI: 10.15252/embj.2019102922  0.44
2018 Zhang L, Can M, Ragsdale SW, Armstrong FA. Fast and Selective Photoreduction of CO to CO Catalyzed by a Complex of Carbon Monoxide Dehydrogenase, TiO, and Ag Nanoclusters. Acs Catalysis. 8: 2789-2795. PMID 31448153 DOI: 10.1021/Acscatal.7B04308  0.56
2018 Evans RM, Siritanaratkul B, Megarity CF, Pandey K, Esterle TF, Badiani S, Armstrong FA. The value of enzymes in solar fuels research - efficient electrocatalysts through evolution. Chemical Society Reviews. PMID 30426997 DOI: 10.1039/c8cs00546j  0.44
2018 Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O-Tolerant [NiFe]-Hydrogenase. Journal of the American Chemical Society. PMID 30070475 DOI: 10.1021/jacs.8b04798  0.88
2018 Volbeda A, Mouesca JM, Darnault C, Roessler MM, Parkin A, Armstrong FA, Fontecilla-Camps JC. X-ray structural, functional and computational studies of the O-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe-4S] cluster. Chemical Communications (Cambridge, England). PMID 29888350 DOI: 10.1039/C8Cc02896F  0.88
2018 Armstrong FA, Evans RM, Megarity CF. Protein Film Electrochemistry of Iron-Sulfur Enzymes. Methods in Enzymology. 599: 387-407. PMID 29746247 DOI: 10.1016/bs.mie.2017.11.001  0.44
2018 Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. The Structure of Hydrogenase-2 from. The Biochemical Journal. PMID 29555844 DOI: 10.1042/BCJ20180053  0.48
2017 Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA. Transfer of photosynthetic NADP/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chemical Science. 8: 4579-4586. PMID 30155220 DOI: 10.1039/c7sc00850c  0.36
2017 Honarmand Ebrahimi K, Carr SB, McCullagh J, Wickens J, Rees NH, Cantley J, Armstrong FA. The radical-SAM enzyme Viperin catalyzes reductive addition of a 5'-deoxyadenosyl radical to UDP-glucose in vitro. Febs Letters. PMID 28752893 DOI: 10.1002/1873-3468.12769  0.44
2017 Ash PA, Carr SB, Reeve HA, Skorupskaitė A, Rowbotham JS, Shutt R, Frogley MD, Evans RM, Cinque G, Armstrong FA, Vincent KA. Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal. Chemical Communications (Cambridge, England). PMID 28504793 DOI: 10.1039/c7cc02591b  0.88
2016 Brooke EJ, Evans RM, Islam ST, Roberts GM, Wehlin SA, Carr SB, Phillips SE, Armstrong FA. Importance of the Active Site "Canopy" Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry. PMID 28001048 DOI: 10.1021/acs.biochem.6b00868  0.44
2016 Megarity CF, Esselborn J, Hexter SV, Wittkamp F, Apfel UP, Happe T, Armstrong FA. Electrochemical Investigations of the Mechanism of Assembly of the Active-site H-Cluster of [FeFe]-hydrogenases. Journal of the American Chemical Society. PMID 27776209 DOI: 10.1021/jacs.6b09366  0.36
2016 Carr SB, Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Armstrong FA, Phillips SE. Hydrogen activation by [NiFe]-hydrogenases. Biochemical Society Transactions. 44: 863-8. PMID 27284053 DOI: 10.1042/BST20160031  0.48
2016 Armstrong FA, Evans RM, Hexter SV, Murphy BJ, Roessler MM, Wulff P. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Accounts of Chemical Research. PMID 27104487 DOI: 10.1021/acs.accounts.6b00027  0.88
2016 Wulff P, Thomas C, Sargent F, Armstrong FA. How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. PMID 26861789 DOI: 10.1007/s00775-015-1327-6  0.88
2015 Kelly CL, Pinske C, Murphy BJ, Parkin A, Armstrong F, Palmer T, Sargent F. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli. Biotechnology Reports (Amsterdam, Netherlands). 8: 94-104. PMID 26839796 DOI: 10.1016/J.Btre.2015.10.002  0.88
2015 Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Carr SB, Phillips SE, Armstrong FA. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nature Chemical Biology. PMID 26619250 DOI: 10.1038/nchembio.1976  0.48
2015 Wang VC, Islam ST, Can M, Ragsdale SW, Armstrong FA. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase. The Journal of Physical Chemistry. B. PMID 26176986 DOI: 10.1021/Acs.Jpcb.5B03098  0.88
2015 Murphy BJ, Hidalgo R, Roessler MM, Evans RM, Ash PA, Myers WK, Vincent KA, Armstrong FA. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. Journal of the American Chemical Society. PMID 26103582 DOI: 10.1021/jacs.5b03182  0.88
2015 Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. Journal of the American Chemical Society. 137: 5381-9. PMID 25871921 DOI: 10.1021/ja513074m  0.88
2015 Subramanian S, Duin EC, Fawcett SE, Armstrong FA, Meyer J, Johnson MK. Spectroscopic and redox studies of valence-delocalized [Fe2S2](+) centers in thioredoxin-like ferredoxins. Journal of the American Chemical Society. 137: 4567-80. PMID 25790339 DOI: 10.1021/Jacs.5B01869  0.88
2015 Sigfridsson KG, Leidel N, Sanganas O, Chernev P, Lenz O, Yoon KS, Nishihara H, Parkin A, Armstrong FA, Dementin S, Rousset M, De Lacey AL, Haumann M. Structural differences of oxidized iron-sulfur and nickel-iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy. Biochimica Et Biophysica Acta. 1847: 162-70. PMID 25316302 DOI: 10.1016/j.bbabio.2014.06.011  0.88
2015 Xu L, Armstrong FA. Pushing the limits for enzyme-based membrane-less hydrogen fuel cells-achieving useful power and stability Rsc Advances. 5: 3649-3656. DOI: 10.1039/c4ra13565b  0.88
2015 Bachmeier A, Armstrong F. Solar-driven proton and carbon dioxide reduction to fuels - lessons from metalloenzymes Current Opinion in Chemical Biology. 25: 141-151. DOI: 10.1016/j.cbpa.2015.01.001  0.88
2015 Bachmeier A, Siritanaratkul B, Armstrong FA. Enzymes as exploratory catalysts in artificial photosynthesis From Molecules to Materials: Pathways to Artificial Photosynthesis. 99-123. DOI: 10.1007/978-3-319-13800-8_4  0.88
2014 Wang VC, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Metal Ions in Life Sciences. 14: 71-97. PMID 25416391 DOI: 10.1007/978-94-017-9269-1_4  0.88
2014 Bachmeier A, Hall S, Ragsdale SW, Armstrong FA. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode. Journal of the American Chemical Society. 136: 13518-21. PMID 25237714 DOI: 10.1021/Ja506998B  0.88
2014 Bachmeier A, Murphy BJ, Armstrong FA. A multi-heme flavoenzyme as a solar conversion catalyst. Journal of the American Chemical Society. 136: 12876-9. PMID 25203312 DOI: 10.1021/ja507733j  0.88
2014 McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proceedings of the National Academy of Sciences of the United States of America. 111: E3948-56. PMID 25157147 DOI: 10.1073/pnas.1407927111  0.88
2014 Hexter SV, Chung MW, Vincent KA, Armstrong FA. Unusual reaction of [NiFe]-hydrogenases with cyanide. Journal of the American Chemical Society. 136: 10470-7. PMID 25003708 DOI: 10.1021/ja504942h  0.88
2014 Wulff P, Day CC, Sargent F, Armstrong FA. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. 111: 6606-11. PMID 24715724 DOI: 10.1073/pnas.1322393111  0.88
2014 Evans RM, Armstrong FA. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1. Methods in Molecular Biology (Clifton, N.J.). 1122: 73-94. PMID 24639254 DOI: 10.1007/978-1-62703-794-5_6  0.88
2014 Hexter SV, Esterle TF, Armstrong FA. A unified model for surface electrocatalysis based on observations with enzymes Physical Chemistry Chemical Physics. 16: 11822-11833. PMID 24556983 DOI: 10.1039/c3cp55230f  0.88
2014 Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chemical Reviews. 114: 4149-74. PMID 24521136 DOI: 10.1021/Cr400461P  0.88
2014 Murphy BJ, Sargent F, Armstrong FA. Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer Energy and Environmental Science. 7: 1426-1433. DOI: 10.1039/c3ee43652g  0.88
2014 Wang VCC, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases Metal Ions in Life Sciences. 14: 71-97. DOI: 10.1007/978-94-017-9269-1-4  0.88
2013 Bachmeier A, Wang VC, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. Journal of the American Chemical Society. 135: 15026-32. PMID 24070184 DOI: 10.1021/Ja4042675  0.88
2013 Wang VC, Ragsdale SW, Armstrong FA. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry. Chembiochem : a European Journal of Chemical Biology. 14: 1845-51. PMID 24002936 DOI: 10.1002/Cbic.201300270  0.88
2013 Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA. Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. Journal of the American Chemical Society. 135: 2694-707. PMID 23398301 DOI: 10.1021/ja311055d  0.88
2013 Armstrong FA. Copying biology's ways with hydrogen Science. 339: 658-659. PMID 23393255 DOI: 10.1126/science.1233210  0.88
2013 Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. Journal of the American Chemical Society. 135: 2198-206. PMID 23368960 DOI: 10.1021/Ja308493K  0.88
2013 Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC. Crystal structure of the O2-Tolerant membrane-bound hydrogenase 1 from escherichia coli in complex with its cognate cytochrome b Structure. 21: 184-190. PMID 23260654 DOI: 10.1016/j.str.2012.11.010  0.88
2013 Armstrong FA. Photons in biology Interface Focus. 3. DOI: 10.1098/rsfs.2013.0039  0.88
2013 Xu L, Armstrong FA. Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2-air mixtures Energy and Environmental Science. 6: 2166-2171. DOI: 10.1039/c3ee40791h  0.88
2013 Faunce TA, Lubitz W, Rutherford AW, MacFarlane D, Moore GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring S. Energy and environment policy case for a global project on artificial photosynthesis Energy and Environmental Science. 6: 695-698. DOI: 10.1039/C3Ee00063J  0.88
2012 Roessler MM, Evans RM, Davies RA, Harmer J, Armstrong FA. EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]-hydrogenase Hyd-1 from Escherichia coli and characterization of the unique [4Fe-3S] cluster by HYSCORE. Journal of the American Chemical Society. 134: 15581-94. PMID 22900997 DOI: 10.1021/ja307117y  0.88
2012 Hexter SV, Grey F, Happe T, Climent V, Armstrong FA. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases Proceedings of the National Academy of Sciences of the United States of America. 109: 11516-11521. PMID 22802675 DOI: 10.1073/pnas.1204770109  0.88
2012 Stevenson GP, Lee CY, Kennedy GF, Parkin A, Baker RE, Gillow K, Armstrong FA, Gavaghan DJ, Bond AM. Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude fourier transformed AC Voltammetry Langmuir. 28: 9864-9877. PMID 22607123 DOI: 10.1021/La205037E  0.88
2012 Foster CE, Krämer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA. Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. Journal of the American Chemical Society. 134: 7553-7. PMID 22512303 DOI: 10.1021/ja302096r  0.88
2012 Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC. X-ray crystallographic and computational studies of the O 2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli Proceedings of the National Academy of Sciences of the United States of America. 109: 5305-5310. PMID 22431599 DOI: 10.1073/pnas.1119806109  0.88
2012 Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases Journal of Biological Chemistry. 287: 1489-1499. PMID 22110126 DOI: 10.1074/jbc.M111.305797  0.88
2012 Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications (Cambridge, England). 48: 58-60. PMID 22083268 DOI: 10.1039/C1Cc16107E  0.88
2012 Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent F. How Salmonella oxidises H(2) under aerobic conditions. Febs Letters. 586: 536-44. PMID 21827758 DOI: 10.1016/j.febslet.2011.07.044  0.88
2012 Krishnan S, Armstrong FA. Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures Chemical Science. 3: 1015-1023. DOI: 10.1039/C2Sc01103D  0.88
2012 Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA. Enzymes and bio-inspired electrocatalysts in solar fuel devices Energy and Environmental Science. 5: 7470-7490. DOI: 10.1039/c2ee21471g  0.88
2012 Armstrong F, Que L. Editorial overview Current Opinion in Chemical Biology. 16: 1-2. DOI: 10.1016/j.cbpa.2012.03.011  0.88
2011 Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA. Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. Journal of the American Chemical Society. 133: 16881-92. PMID 21916508 DOI: 10.1021/ja205393w  0.88
2011 Armstrong FA, Hirst J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proceedings of the National Academy of Sciences of the United States of America. 108: 14049-54. PMID 21844379 DOI: 10.1073/pnas.1103697108  0.88
2011 Reisner E, Armstrong FA. A TiO₂ nanoparticle system for sacrificial solar H₂ production prepared by rational combination of a hydrogenase with a ruthenium photosensitizer. Methods in Molecular Biology (Clifton, N.J.). 743: 107-17. PMID 21553186 DOI: 10.1007/978-1-61779-132-1_9  0.88
2011 Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nature Chemical Biology. 7: 310-8. PMID 21390036 DOI: 10.1038/nchembio.555  0.88
2011 Wait AF, Brandmayr C, Stripp ST, Cavazza C, Fontecilla-Camps JC, Happe T, Armstrong FA. Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases. Journal of the American Chemical Society. 133: 1282-5. PMID 21204519 DOI: 10.1021/ja110103p  0.88
2011 Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA. CO2 photoreduction at enzyme-modified metal oxide nanoparticles Energy and Environmental Science. 4: 2393-2399. DOI: 10.1039/C0Ee00780C  0.88
2011 Lee CY, Stevenson GP, Parkin A, Roessler MM, Baker RE, Gillow K, Gavaghan DJ, Armstrong FA, Bond AM. Theoretical and experimental investigation of surface-confined two-center metalloproteins by large-amplitude Fourier transformed ac voltammetry Journal of Electroanalytical Chemistry. 656: 293-303. DOI: 10.1016/J.Jelechem.2010.08.012  0.88
2010 Cracknell JA, Friedrich B, Armstrong FA. Gas pressure effects on the rates of catalytic H(2) oxidation by hydrogenases. Chemical Communications (Cambridge, England). 46: 8463-5. PMID 20922264 DOI: 10.1039/c0cc03292a  0.88
2010 Dos Santos L, Climent V, Blanford CF, Armstrong FA. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Physical Chemistry Chemical Physics : Pccp. 12: 13962-74. PMID 20852807 DOI: 10.1039/C0Cp00018C  0.4
2010 Danyal K, Inglet BS, Vincent KA, Barney BM, Hoffman BM, Armstrong FA, Dean DR, Seefeldt LC. Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP. Journal of the American Chemical Society. 132: 13197-9. PMID 20812745 DOI: 10.1021/Ja1067178  0.88
2010 Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J. Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. Proceedings of the National Academy of Sciences of the United States of America. 107: 1930-5. PMID 20133838 DOI: 10.1073/pnas.0908050107  0.88
2010 Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA. Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. Journal of the American Chemical Society. 132: 2132-3. PMID 20121138 DOI: 10.1021/Ja910091Z  0.88
2010 Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes? Trends in Biotechnology. 28: 63-72. PMID 19963293 DOI: 10.1016/J.Tibtech.2009.11.001  0.4
2010 Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. The Journal of Biological Chemistry. 285: 3928-38. PMID 19917611 DOI: 10.1074/jbc.M109.067751  0.88
2010 Wait AF, Parkin A, Morley GM, Dos Santos L, Armstrong FA. Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst Journal of Physical Chemistry C. 114: 12003-12009. DOI: 10.1021/jp102616m  0.88
2010 Armstrong FA. The Importance of Enzymes: Benchmarks for Electrocatalysts Fuel Cell Science: Theory, Fundamentals, and Biocatalysis. 237-255. DOI: 10.1002/9780470630693.ch7  0.88
2010 Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions (The Journal Of Biological Chemistry (2010) 285, (3928-3938) DOI: 10.1074/jbc.A109.067751) Journal of Biological Chemistry. 285: 20421.  0.88
2009 Cracknell JA, Wait AF, Lenz O, Friedrich B, Armstrong FA. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America. 106: 20681-6. PMID 19934053 DOI: 10.1073/pnas.0905959106  0.88
2009 Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. Journal of the American Chemical Society. 131: 18457-66. PMID 19928857 DOI: 10.1021/ja907923r  0.88
2009 Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. Journal of the American Chemical Society. 131: 14979-89. PMID 19824734 DOI: 10.1021/ja905388j  0.88
2009 Lazarus O, Woolerton TW, Parkin A, Lukey MJ, Reisner E, Seravalli J, Pierce E, Ragsdale SW, Sargent F, Armstrong FA. Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets. Journal of the American Chemical Society. 131: 14154-5. PMID 19807170 DOI: 10.1021/Ja905797W  0.88
2009 Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America. 106: 17331-6. PMID 19805068 DOI: 10.1073/pnas.0905343106  0.88
2009 Armstrong FA. Dynamic electrochemical experiments on hydrogenases. Photosynthesis Research. 102: 541-50. PMID 19455401 DOI: 10.1007/s11120-009-9428-0  0.88
2009 Reisner E, Fontecilla-Camps JC, Armstrong FA. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chemical Communications (Cambridge, England). 550-2. PMID 19283287 DOI: 10.1039/b817371k  0.88
2009 Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF. Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chemical Society Reviews. 38: 36-51. PMID 19088963 DOI: 10.1039/b801144n  0.88
2009 Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O. Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of ralstonia species. Coping with low level H2 in air. The Journal of Biological Chemistry. 284: 465-77. PMID 18990688 DOI: 10.1074/jbc.M803676200  0.88
2008 Blanford CF, Foster CE, Heath RS, Armstrong FA. Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discussions. 140: 319-35; discussion 4. PMID 19213324 DOI: 10.1039/B808939F  0.4
2008 Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. Journal of the American Chemical Society. 130: 13410-6. PMID 18781742 DOI: 10.1021/ja803657d  0.88
2008 Goldet G, Wait AF, Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. Journal of the American Chemical Society. 130: 11106-13. PMID 18661984 DOI: 10.1021/ja8027668  0.88
2008 Armstrong FA, Fontecilla-Camps JC. Biochemistry. A natural choice for activating hydrogen. Science (New York, N.Y.). 321: 498-9. PMID 18653870 DOI: 10.1126/science.1161326  0.36
2008 Cracknell JA, Vincent KA, Armstrong FA. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chemical Reviews. 108: 2439-61. PMID 18620369 DOI: 10.1021/cr0680639  0.88
2008 Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Enzymatic oxidation of H2 in atmospheric O2: the electrochemistry of energy generation from trace H2 by aerobic microorganisms. Journal of the American Chemical Society. 130: 424-5. PMID 18088128 DOI: 10.1021/ja078299+  0.88
2008 Butt JN, Armstrong FA. Voltammetry of adsorbed redox enzymes: Mechanisms in the potential dimension Bioinorganic Electrochemistry. 91-128. DOI: 10.1007/978-1-4020-6500-2_4  0.88
2007 Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA. Enzymatic catalysis on conducting graphite particles. Nature Chemical Biology. 3: 761-2. PMID 17994012 DOI: 10.1038/Nchembio.2007.47  0.88
2007 Vincent KA, Parkin A, Armstrong FA. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chemical Reviews. 107: 4366-413. PMID 17845060 DOI: 10.1021/cr050191u  0.88
2007 Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. Journal of the American Chemical Society. 129: 10328-9. PMID 17672466 DOI: 10.1021/Ja073643O  0.88
2007 Wijma HJ, Jeuken LJ, Verbeet MP, Armstrong FA, Canters GW. Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation. Journal of the American Chemical Society. 129: 8557-65. PMID 17579406 DOI: 10.1021/Ja071274Q  0.88
2007 Blanford CF, Heath RS, Armstrong FA. A stable electrode for high-potential, electrocatalytic O(2) reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chemical Communications (Cambridge, England). 1710-2. PMID 17457416 DOI: 10.1039/B703114A  0.4
2006 Parkin A, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. Journal of the American Chemical Society. 128: 16808-15. PMID 17177431 DOI: 10.1021/ja064425i  0.88
2006 Vincent KA, Cracknell JA, Clark JR, Ludwig M, Lenz O, Friedrich B, Armstrong FA. Electricity from low-level H2 in still air--an ultimate test for an oxygen tolerant hydrogenase. Chemical Communications (Cambridge, England). 5033-5. PMID 17146518 DOI: 10.1039/b614272a  0.88
2006 Vincent KA, Belsey NA, Lubitz W, Armstrong FA. Rapid and reversible reactions of [NiFe]-hydrogenases with sulfide. Journal of the American Chemical Society. 128: 7448-9. PMID 16756292 DOI: 10.1021/ja061732f  0.88
2006 Pankhurst KL, Mowat CG, Rothery EL, Hudson JM, Jones AK, Miles CS, Walkinshaw MD, Armstrong FA, Reid GA, Chapman SK. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. The Journal of Biological Chemistry. 281: 20589-97. PMID 16699170 DOI: 10.1074/jbc.M603077200  0.88
2006 Fleming BD, Barlow NL, Zhang J, Bond AM, Armstrong FA. Application of power spectra patterns in Fourier transform square wave voltammetry to evaluate electrode kinetics of surface-confined proteins. Analytical Chemistry. 78: 2948-56. PMID 16642980 DOI: 10.1021/Ac051823F  0.88
2006 Wijma HJ, Jeuken LJ, Verbeet MP, Armstrong FA, Canters GW. A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase. The Journal of Biological Chemistry. 281: 16340-6. PMID 16613859 DOI: 10.1074/Jbc.M601610200  0.88
2006 Maklashina E, Iverson TM, Sher Y, Kotlyar V, Andréll J, Mirza O, Hudson JM, Armstrong FA, Rothery RA, Weiner JH, Cecchini G. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain. The Journal of Biological Chemistry. 281: 11357-65. PMID 16484232 DOI: 10.1074/Jbc.M512544200  0.88
2006 Blanford CF, Armstrong FA. The pyrolytic graphite surface as an enzyme substrate: Microscopic and spectroscopic studies Journal of Solid State Electrochemistry. 10: 826-832. DOI: 10.1007/S10008-006-0183-2  0.88
2005 Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA. Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. Journal of the American Chemical Society. 127: 18179-89. PMID 16366571 DOI: 10.1021/Ja055160V  0.88
2005 Vincent KA, Cracknell JA, Lenz O, Zebger I, Friedrich B, Armstrong FA. Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proceedings of the National Academy of Sciences of the United States of America. 102: 16951-4. PMID 16260746 DOI: 10.1073/pnas.0504499102  0.88
2005 Vincent KA, Cracknell JA, Parkin A, Armstrong FA. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Dalton Transactions (Cambridge, England : 2003). 3397-403. PMID 16234917 DOI: 10.1039/b508520a  0.88
2005 Armstrong FA, Albracht SP. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 363: 937-54; discussion 1. PMID 15991402 DOI: 10.1098/Rsta.2004.1528  0.44
2005 Hudson JM, Heffron K, Kotlyar V, Sher Y, Maklashina E, Cecchini G, Armstrong FA. Electron transfer and catalytic control by the iron-sulfur clusters in a respiratory enzyme, E. coli fumarate reductase. Journal of the American Chemical Society. 127: 6977-89. PMID 15884941 DOI: 10.1021/ja043404q  0.88
2005 Lamle SE, Albracht SP, Armstrong FA. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide. Journal of the American Chemical Society. 127: 6595-604. PMID 15869280 DOI: 10.1021/Ja0424934  0.68
2005 Vincent KA, Armstrong FA. Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorganic Chemistry. 44: 798-809. PMID 15859247  0.88
2004 Lamle SE, Albracht SP, Armstrong FA. Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. Journal of the American Chemical Society. 126: 14899-909. PMID 15535717 DOI: 10.1021/Ja047939V  0.68
2004 Hoke KR, Cobb N, Armstrong FA, Hille R. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Biochemistry. 43: 1667-74. PMID 14769044 DOI: 10.1021/Bi0357154  0.88
2004 Armstrong FA, Barlow NL, Burn PL, Hoke KR, Jeuken LJ, Shenton C, Webster GR. Fast, long-range electron-transfer reactions of a "blue" copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. Chemical Communications (Cambridge, England). 316-7. PMID 14740055 DOI: 10.1039/b312936e  0.48
2004 Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry. 43: 799-807. PMID 14730985 DOI: 10.1021/Bi035869J  0.88
2003 Vincent KA, Tilley GJ, Quammie NC, Streeter I, Burgess BK, Cheesman MR, Armstrong FA. Instantaneous, stoichiometric generation of powerfully reducing states of protein active sites using Eu(II) and polyaminocarboxylate ligands. Chemical Communications (Cambridge, England). 2590-1. PMID 14594295  0.88
2003 Camba R, Jung YS, Hunsicker-Wang LM, Burgess BK, Stout CD, Hirst J, Armstrong FA. Mechanisms of redox-coupled proton transfer in proteins: role of the proximal proline in reactions of the [3Fe-4S] cluster in Azotobacter vinelandii ferredoxin I. Biochemistry. 42: 10589-99. PMID 12962482 DOI: 10.1021/bi035021v  0.44
2003 Léger C, Elliott SJ, Hoke KR, Jeuken LJ, Jones AK, Armstrong FA. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry. 42: 8653-62. PMID 12873124 DOI: 10.1021/Bi034789C  0.88
2003 Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SP, Armstrong FA. Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase. Journal of the American Chemical Society. 125: 8505-14. PMID 12848556 DOI: 10.1021/Ja035296Y  0.88
2003 Baymann F, Barlow NL, Aubert C, Schoepp-Cothenet B, Leroy G, Armstrong FA. Voltammetry of a "protein on a rope". Febs Letters. 539: 91-4. PMID 12650932  0.48
2003 Lamle SE, Vincent KA, Halliwell LM, Albracht SPJ, Armstrong FA. Hydrogenase on an electrode: A remarkable heterogeneous catalyst Journal of the Chemical Society. Dalton Transactions. 4152-4157. DOI: 10.1039/B306234C  0.88
2002 Léger C, Jones AK, Roseboom W, Albracht SP, Armstrong FA. Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase. Biochemistry. 41: 15736-46. PMID 12501202 DOI: 10.1021/Bi026586E  0.88
2002 Elliott SJ, McElhaney AE, Feng C, Enemark JH, Armstrong FA. A voltammetric study of interdomain electron transfer within sulfite oxidase. Journal of the American Chemical Society. 124: 11612-3. PMID 12296723 DOI: 10.1021/Ja027776F  0.32
2002 Elliott SJ, Léger C, Pershad HR, Hirst J, Heffron K, Ginet N, Blasco F, Rothery RA, Weiner JH, Armstrong FA. Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochimica Et Biophysica Acta. 1555: 54-9. PMID 12206891 DOI: 10.1016/S0005-2728(02)00254-2  0.44
2002 Jones AK, Sillery E, Albracht SP, Armstrong FA. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chemical Communications (Cambridge, England). 866-7. PMID 12123018 DOI: 10.1039/B201337A  0.88
2002 Jeuken LJ, Jones AK, Chapman SK, Cecchini G, Armstrong FA. Electron-transfer mechanisms through biological redox chains in multicenter enzymes. Journal of the American Chemical Society. 124: 5702-13. PMID 12010043 DOI: 10.1021/ja012638w  0.88
2002 Chen K, Bonagura CA, Tilley GJ, McEvoy JP, Jung YS, Armstrong FA, Stout CD, Burgess BK. Crystal structures of ferredoxin variants exhibiting large changes in [Fe-S] reduction potential. Nature Structural Biology. 9: 188-92. PMID 11875515 DOI: 10.1038/nsb751  0.44
2002 Jeuken LC, Camba R, Armstrong FA, Canters GW. The pH-dependent redox inactivation of amicyanin from Paracoccus versutus as studied by rapid protein-film voltammetry. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 7: 94-100. PMID 11862545 DOI: 10.1007/S007750100269  0.88
2002 Chen K, Jung YS, Bonagura CA, Tilley GJ, Prasad GS, Sridhar V, Armstrong FA, Stout CD, Burgess BK. Azotobacter vinelandii ferredoxin I: a sequence and structure comparison approach to alteration of [4Fe-4S]2+/+ reduction potential. The Journal of Biological Chemistry. 277: 5603-10. PMID 11704670 DOI: 10.1074/jbc.M108916200  0.44
2002 Léger C, Jones AK, Albracht SPJ, Armstrong FA. Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes Journal of Physical Chemistry B. 106: 13058-13063. DOI: 10.1021/Jp0265687  0.68
2001 Léger C, Heffron K, Pershad HR, Maklashina E, Luna-Chavez C, Cecchini G, Ackrell BA, Armstrong FA. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry. 40: 11234-45. PMID 11551223 DOI: 10.1021/bi010889b  0.88
2001 Heffron K, Léger C, Rothery RA, Weiner JH, Armstrong FA. Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry. 40: 3117-26. PMID 11258926 DOI: 10.1021/bi002452u  0.4
2000 Canters GW, Kolczak U, Armstrong F, Jeuken LJ, Camba R, Sola M. The effect of pH and ligand exchange on the redox properties of blue copper proteins. Faraday Discussions. 205-20; discussion 2. PMID 11197479 DOI: 10.1039/B003822I  0.88
2000 Armstrong FA, Camba R, Heering HA, Hirst J, Jeuken LJ, Jones AK, Léger C, McEvoy JP. Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Discussions. 191-203; discussion . PMID 11197478 DOI: 10.1039/b002290j  0.44
2000 Busch JL, Breton JL, Davy SL, James R, Moore GR, Armstrong FA, Thomson AJ. Ferredoxin III of Desulfovibrio africanus: sequencing of the native gene and characterization of a histidine-tagged form. The Biochemical Journal. 346: 375-84. PMID 10677356 DOI: 10.1042/Bj3460375  0.88
2000 Jones AK, Camba R, Reid GA, Chapman SK, Armstrong FA. Interruption and time-resolution of catalysis by a flavoenzyme using fast scan protein film voltammetry [4] Journal of the American Chemical Society. 122: 6494-6495. DOI: 10.1021/ja000848n  0.88
1999 Pershad HR, Duff JL, Heering HA, Duin EC, Albracht SP, Armstrong FA. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry. 38: 8992-9. PMID 10413472 DOI: 10.1021/Bi990108V  0.88
1999 Turner KL, Doherty MK, Heering HA, Armstrong FA, Reid GA, Chapman SK. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry. 38: 3302-9. PMID 10079073 DOI: 10.1021/bi9826308  0.88
1998 Hirst J, Armstrong FA. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: Characteristics of electron exchange Analytical Chemistry. 70: 5062-5071. PMID 9852788 DOI: 10.1021/ac980557l  0.88
1998 Gao-Sheridan HS, Kemper MA, Khayat R, Tilley GJ, Armstrong FA, Sridhar V, Prasad GS, Stout CD, Burgess BK. A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe-4S]0 to [4Fe-4S]2+ conversion in vitro but not in vivo. The Journal of Biological Chemistry. 273: 33692-701. PMID 9837955 DOI: 10.1074/jbc.273.50.33692  0.88
1998 Kemper MA, Gao-Sheridan HS, Shen B, Duff JL, Tilley GJ, Armstrong FA, Burgess BK. Delta T 14/Delta D 15 Azotobacter vinelandii ferredoxin I: creation of a new CysXXCysXXCys motif that ligates a [4Fe-4S] cluster. Biochemistry. 37: 12829-37. PMID 9737860 DOI: 10.1021/bi9810499  0.44
1997 Kemper MA, Stout CD, Lloyd SJ, Prasad GS, Fawcett SE, Armstrong FA, Shen B, Burgess BK, Lloyd SE, Fawcett S. Y13C Azotobacter vinelandii ferredoxin I. A designed [Fe-S] ligand motif contains a cysteine persulfide. The Journal of Biological Chemistry. 272: 15620-7. PMID 9188450 DOI: 10.1074/jbc.272.25.15620  0.44
1997 Busch JL, Breton JL, Bartlett BM, Armstrong FA, James R, Thomson AJ. [3Fe-4S] <--> [4Fe-4S] cluster interconversion in Desulfovibrio africanus ferredoxin III: properties of an Asp14 --> Cys mutant. The Biochemical Journal. 323: 95-102. PMID 9173907 DOI: 10.1042/bj3230095  0.88
1996 Van Dyke BR, Saltman P, Armstrong FA. Control of myoglobin electron-transfer rates by the distal (nonbound) histidine residue Journal of the American Chemical Society. 118: 3490-3492. DOI: 10.1021/ja954181u  0.88
1994 Shen B, Jollie DR, Stout CD, Diller TC, Armstrong FA, Gorst CM, La Mar GN, Stephens PJ, Burgess BK. Azotobacter vinelandii ferredoxin I. Alteration of individual surface charges and the [4FE-4S]2+/+ cluster reduction potential. The Journal of Biological Chemistry. 269: 8564-75. PMID 8132582 DOI: 10.2210/Pdb1Frh/Pdb  0.88
1993 Shen B, Martin LL, Butt JN, Armstrong FA, Stout CD, Jensen GM, Stephens PJ, La Mar GN, Gorst CM, Burgess BK. Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe-4S] cluster. The Journal of Biological Chemistry. 268: 25928-39. PMID 8245026  0.88
1993 Armstrong FA, Bond AM, Büchi FN, Hamnett A, Hill HA, Lannon AM, Lettington OC, Zoski CG. Electrocatalytic reduction of hydrogen peroxide at a stationary pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a description based on a microelectrode array model for adsorbed enzyme molecules. The Analyst. 118: 973-8. PMID 8214607 DOI: 10.1039/An9931800973  0.36
1985 Armstrong FA, Allen H, Hill O, Walton NJ. Reactions of electron-transfer proteins at electrodes Quarterly Reviews of Biophysics. 18: 261-322. PMID 3024201 DOI: 10.1017/S0033583500000366  0.88
1983 Armstrong F, Shaw RW, Beinert H. Cytochrome c oxidase. Time dependence of optical and EPR spectral changes related to the 'oxygen-pulsed' form. Biochimica Et Biophysica Acta. 722: 61-71. PMID 6297568 DOI: 10.1016/0005-2728(83)90157-3  0.52
1982 Armstrong FA, Hill HAO, Walton NJ. Direct electrochemical oxidation of Clostridium pasteurianum ferredoxin. Identification of facile electron-transfer processes relevant to cluster degradation Febs Letters. 150: 214-218. DOI: 10.1016/0014-5793(82)81337-9  0.88
1982 Armstrong FA, Hill HAO, Walton NJ. Direct electrochemical reduction of ferredoxin promoted by Mg2+ Febs Letters. 145: 241-244. DOI: 10.1016/0014-5793(82)80175-0  0.88
1979 Butler J, Henderson RA, Armstrong FA, Sykes AG. Mechanism of formation, spectrum and reactivity of half-reduced eight-iron Clostridium pasteurianum ferredoxin in pulse-radiolysis studies and the non-co-operativity of the four-iron clusters. The Biochemical Journal. 183: 471-4. PMID 534509  0.32
Show low-probability matches.