Year |
Citation |
Score |
2014 |
Guo H, Shah M, Spilker RL. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine. 228: 225-36. PMID 24496915 DOI: 10.1177/0954411914522782 |
0.804 |
|
2014 |
Guo H, Spilker RL. An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues. Computer Methods in Biomechanics and Biomedical Engineering. 17: 1206-16. PMID 23181617 DOI: 10.1080/10255842.2012.739166 |
0.804 |
|
2013 |
Guo H, Maher SA, Spilker RL. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method. Medical Engineering & Physics. 35: 1313-20. PMID 23498852 DOI: 10.1016/J.Medengphy.2013.02.003 |
0.766 |
|
2013 |
Leucht P, Monica SD, Temiyasathit S, Lenton K, Manu A, Longaker MT, Jacobs CR, Spilker RL, Guo H, Brunski JB, Helms JA. Primary cilia act as mechanosensors during bone healing around an implant. Medical Engineering & Physics. 35: 392-402. PMID 22784673 DOI: 10.1016/J.Medengphy.2012.06.005 |
0.64 |
|
2013 |
Guo H, Suzanne AM, Spilker RL. A 3D biphasic finite element model of the human knee joint for the study of tibiofemoral contact and fluid pressurization Asme 2013 Summer Bioengineering Conference, Sbc 2013. 1. DOI: 10.1115/SBC2013-14178 |
0.756 |
|
2012 |
Guo H, Nickel JC, Iwasaki LR, Spilker RL. An augmented Lagrangian method for sliding contact of soft tissue. Journal of Biomechanical Engineering. 134: 084503. PMID 22938363 DOI: 10.1115/1.4007177 |
0.792 |
|
2011 |
Guo H, Spilker RL. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method. Journal of Biomechanical Engineering. 133: 111001. PMID 22168733 DOI: 10.1115/1.4005378 |
0.821 |
|
2011 |
Galie PA, Spilker RL, Stegemann JP. A linear, biphasic model incorporating a brinkman term to describe the mechanics of cell-seeded collagen hydrogels. Annals of Biomedical Engineering. 39: 2767-79. PMID 21822739 DOI: 10.1007/S10439-011-0371-9 |
0.359 |
|
2011 |
Shah M, Spilker R, Koff MF, Lipman J. Patient specific three dimensional knee model 2011 Ieee 37th Annual Northeast Bioengineering Conference, Nebec 2011. DOI: 10.1109/NEBC.2011.5778652 |
0.34 |
|
2009 |
Galie P, Spilker RL. A two-dimensional computational model of lymph transport across primary lymphatic valves. Journal of Biomechanical Engineering. 131: 111004. PMID 20353255 DOI: 10.1115/1.3212108 |
0.39 |
|
2009 |
Butler DL, Goldstein SA, Guldberg RE, Guo XE, Kamm R, Laurencin CT, McIntire LV, Mow VC, Nerem RM, Sah RL, Soslowsky LJ, Spilker RL, Tranquillo RT. The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Engineering. Part B, Reviews. 15: 477-84. PMID 19583462 DOI: 10.1089/Ten.Teb.2009.0340 |
0.345 |
|
2009 |
Spilker RL, Nickel JC, Iwasaki LR. A biphasic finite element model of in vitro plowing tests of the temporomandibular joint disc. Annals of Biomedical Engineering. 37: 1152-64. PMID 19350392 DOI: 10.1007/S10439-009-9685-2 |
0.537 |
|
2007 |
Yang T, Spilker RL. A study of preconditioned Krylov subspace methods with reordering for linear systems from a biphasic v-p finite element formulation. Computer Methods in Biomechanics and Biomedical Engineering. 10: 13-24. PMID 18651268 DOI: 10.1080/10255840601086416 |
0.702 |
|
2007 |
Yang T, Spilker RL. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. Journal of Biomechanical Engineering. 129: 457-71. PMID 17536914 DOI: 10.1115/1.2737056 |
0.773 |
|
2006 |
Un K, Spilker RL. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. Journal of Biomechanical Engineering. 128: 934-42. PMID 17154696 DOI: 10.1115/1.2354203 |
0.759 |
|
2006 |
Un K, Spilker RL. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact: Part 1--Derivation of contact boundary conditions. Journal of Biomechanical Engineering. 128: 124-30. PMID 16532625 DOI: 10.1115/1.2133769 |
0.754 |
|
2004 |
Donzelli PS, Gallo LM, Spilker RL, Palla S. Biphasic finite element simulation of the TMJ disc from in vivo kinematic and geometric measurements. Journal of Biomechanics. 37: 1787-91. PMID 15388322 DOI: 10.1016/J.Jbiomech.2004.01.029 |
0.54 |
|
2001 |
Dunbar WL, Un K, Donzelli PS, Spilker RL. An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method. Journal of Biomechanical Engineering. 123: 333-40. PMID 11563758 DOI: 10.1115/1.1384876 |
0.647 |
|
2000 |
Chan B, Donzelli PS, Spilker RL. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces. Annals of Biomedical Engineering. 28: 589-97. PMID 10983705 DOI: 10.1114/1.1305529 |
0.605 |
|
1999 |
Donzelli PS, Spilker RL, Ateshian GA, Mow VC. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. Journal of Biomechanics. 32: 1037-47. PMID 10476842 DOI: 10.1016/S0021-9290(99)00106-2 |
0.443 |
|
1998 |
Almeida ES, Spilker RL. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples. Computer Methods in Biomechanics and Biomedical Engineering. 1: 151-170. PMID 11264802 DOI: 10.1080/01495739708936700 |
0.667 |
|
1998 |
Almeida ES, Spilker RL. Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues Computer Methods in Applied Mechanics and Engineering. 151: 513-538. DOI: 10.1016/S0045-7825(97)82246-3 |
0.662 |
|
1998 |
Donzelli PS, Spilker RL. A contact finite element formulation for biological soft hydrated tissues Computer Methods in Applied Mechanics and Engineering. 153: 63-79. DOI: 10.1016/S0045-7825(97)00065-0 |
0.636 |
|
1997 |
Almeida ES, Spilker RL. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations. Computer Methods in Biomechanics and Biomedical Engineering. 1: 25-46. PMID 11264795 DOI: 10.1080/01495739708936693 |
0.675 |
|
1994 |
Suh JK, Spilker RL. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation. Journal of Biomechanical Engineering. 116: 1-9. PMID 8189703 DOI: 10.1115/1.2895700 |
0.576 |
|
1993 |
Mow VC, Ateshian GA, Spilker RL. Biomechanics of diarthrodial joints: a review of twenty years of progress. Journal of Biomechanical Engineering. 115: 460-7. PMID 8302026 DOI: 10.1115/1.2895525 |
0.521 |
|
1993 |
Vermilyea ME, Spilker RL. Hybrid and mixed-penalty finite elements for 3-D analysis of soft hydrated tissue International Journal For Numerical Methods in Engineering. 36: 4223-4243. DOI: 10.1002/Nme.1620362408 |
0.623 |
|
1992 |
Spilker RL, Suh JK, Mow VC. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage. Journal of Biomechanical Engineering. 114: 191-201. PMID 1602762 DOI: 10.1115/1.2891371 |
0.532 |
|
1992 |
Spilker RL, Donzelli PS, Mow VC. A transversely isotropic biphasic finite element model of the meniscus. Journal of Biomechanics. 25: 1027-45. PMID 1517263 DOI: 10.1016/0021-9290(92)90038-3 |
0.457 |
|
1992 |
Spilker RL, Almeida ESD, Donzelli PS. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Critical Reviews in Biomedical Engineering. 20: 279-313. DOI: 10.1201/9781003068136-13 |
0.638 |
|
1992 |
Donzelli PS, Spilker RL, Baehmann PL, Niu Q, Shephard MS. Automated adaptive analysis of the biphasic equations for soft tissue mechanics using a posteriori error indicators International Journal For Numerical Methods in Engineering. 34: 1015-1033. DOI: 10.1002/Nme.1620340322 |
0.618 |
|
1992 |
Vermilyea ME, Spilker RL. A hybrid finite element formulation of the linear biphasic equations for hydrated soft tissue International Journal For Numerical Methods in Engineering. 33: 567-593. DOI: 10.1002/Nme.1620330307 |
0.565 |
|
1991 |
Suh JK, Spilker RL, Holmes MH. Penalty finite element analysis for non-linear mechanics of biphasic hydrated soft tissue under large deformation International Journal For Numerical Methods in Engineering. 32: 1411-1439. DOI: 10.1002/Nme.1620320704 |
0.577 |
|
1990 |
Spilker RL, Suh JK, Mow VC. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. Journal of Biomechanical Engineering. 112: 138-46. PMID 2345443 DOI: 10.1115/1.2891164 |
0.625 |
|
1990 |
Spilker RL, Suh JK. Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissues Computers and Structures. 35: 425-439. DOI: 10.1016/0045-7949(90)90067-C |
0.563 |
|
1990 |
Spilker RL, Maxian TA. A mixed-penalty finite element formulation of the linear biphasic theory for soft tissues International Journal For Numerical Methods in Engineering. 30: 1063-1082. DOI: 10.1002/Nme.1620300508 |
0.546 |
|
1986 |
Spilker RL, Jakobs DM, Schultz AB. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus. Journal of Biomechanical Engineering. 108: 1-11. PMID 3959546 DOI: 10.1115/1.3138575 |
0.437 |
|
1986 |
Spilker RL, Engelmann BE. Hybrid-stress isoparametric elements for moderately thick and thin multilayer plates Computer Methods in Applied Mechanics and Engineering. 56: 339-361. DOI: 10.1016/0045-7825(86)90046-0 |
0.56 |
|
1986 |
Spilker RL, Jakobs DM. Hybrid stress reduced-Mindlin elements for thin multilayer plates International Journal For Numerical Methods in Engineering. 23: 555-578. DOI: 10.1002/Nme.1620230404 |
0.503 |
|
1984 |
Spilker RL, Daugirda DM, Schultz AB. Mechanical response of a simple finite element model of the intervertebral disc under complex loading. Journal of Biomechanics. 17: 103-12. PMID 6725290 DOI: 10.1016/0021-9290(84)90128-3 |
0.458 |
|
1984 |
Singh SP, Spilker RL. Elasto-plastic analysis of axisymmetric structures subject to arbitrary loads by hybrid-stress finite elements Computers and Structures. 19: 447-465. DOI: 10.1016/0045-7949(84)90052-X |
0.526 |
|
1984 |
Spilker RL. An invariant eight-node hybrid-stress element for thin and thick multilayer laminated plates International Journal For Numerical Methods in Engineering. 20: 573-582. DOI: 10.1002/Nme.1620200315 |
0.528 |
|
1983 |
Spilker RL. HYBRID-STRESS REDUCED MINDLIN ISOPARAMETRIC ELEMENTS FOR THE ANALYSIS OF THIN PLATES. Journal of Structural Mechanics. 11: 49-66. DOI: 10.1080/03601218308907431 |
0.375 |
|
1982 |
Spilker R, Daugirda D. A simplified intervertebral disc finite-element model with a fiber-composite annulus Journal of Biomechanics. 15: 343. DOI: 10.1016/0021-9290(82)90212-3 |
0.343 |
|
1982 |
Spilker RL. Invariant 8-node hybrid-stress elements for thin and moderately thick plates International Journal For Numerical Methods in Engineering. 18: 1153-1178. DOI: 10.1002/Nme.1620180805 |
0.41 |
|
1982 |
Spilker RL. Hybrid-stress eight-node elements for thin and thick multilayer laminated plates International Journal For Numerical Methods in Engineering. 18: 801-828. DOI: 10.1002/Nme.1620180602 |
0.494 |
|
1982 |
Spilker RL, Singh SP. Three-dimensional hybrid-stress isoparametric quadratic displacement elements International Journal For Numerical Methods in Engineering. 18: 445-465. DOI: 10.1002/Nme.1620180310 |
0.496 |
|
1981 |
Spilker RL, Munir NI. Elastic-plastic analysis of plates by the hybrid-stress model and initial-stress approach International Journal For Numerical Methods in Engineering. 17: 1791-1810. DOI: 10.1002/Nme.1620171205 |
0.464 |
|
1981 |
Spilker RL, Maskeri SM, Kania E. Plane isoparametric hybrid-stress elements: Invariance and optimal sampling International Journal For Numerical Methods in Engineering. 17: 1469-1496. DOI: 10.1002/Nme.1620171004 |
0.538 |
|
1981 |
Spilker RL, Daugirda DM. Analysis of axisymmetric structures under arbitrary loading using the hybrid-stress model International Journal For Numerical Methods in Engineering. 17: 801-828. DOI: 10.1002/Nme.1620170602 |
0.314 |
|
1981 |
Spilker RL. Improved hybrid-stress axisymmetric elements includng behaviour for nearly incompressible materials International Journal For Numerical Methods in Engineering. 17: 483-501. DOI: 10.1002/Nme.1620170402 |
0.548 |
|
1981 |
Spilker RL. High order three-dimensional hybrid-stress elements for thick-plate analysis International Journal For Numerical Methods in Engineering. 17: 53-69. DOI: 10.1002/Nme.1620170105 |
0.584 |
|
1980 |
Spilker RL. Mechanical behavior of a simple model of an intervertebral disk under compressive loading. Journal of Biomechanics. 13: 895-901. PMID 7462264 DOI: 10.1016/0021-9290(80)90178-5 |
0.408 |
|
1980 |
Spilker RL, Munir NI. A hybrid-stress quadratic serendipity displacement mindlin plate bending element Computers and Structures. 12: 11-21. DOI: 10.1016/0045-7949(80)90090-5 |
0.519 |
|
1980 |
Spilker RL, Munir NI. Comparison of hybrid-stress element through-thickness distributions corresponding to a high-order plate theory Computers and Structures. 11: 579-586. DOI: 10.1016/0045-7949(80)90064-4 |
0.529 |
|
1980 |
Spilker RL. A hybrid-stress finite-element formulation for thick multilayer laminates Computers and Structures. 11: 507-514. DOI: 10.1016/0045-7949(80)90057-7 |
0.52 |
|
1980 |
Spilker RL. A traction-free-edge hybrid-stress element for the analysis of edge effects in cross-ply laminates Computers & Structures. 12: 167-179. DOI: 10.1016/0045-7949(80)90002-4 |
0.459 |
|
1980 |
Spilker RL, Munir NI. A Serendipity cubic-displacement hybrid-stress element for thin and moderately thick plates International Journal For Numerical Methods in Engineering. 15: 1261-1278. DOI: 10.1002/Nme.1620150811 |
0.518 |
|
1980 |
Spilker RL, Munir NI. The hybrid-stress model for thin plates International Journal For Numerical Methods in Engineering. 15: 1239-1260. DOI: 10.1002/Nme.1620150810 |
0.48 |
|
1979 |
Spilker RL, Pian THH. Hybrid-stress models for elastic-plastic analysis by the initial-stress approach International Journal For Numerical Methods in Engineering. 14: 359-378. DOI: 10.1002/Nme.1620140305 |
0.451 |
|
1978 |
Spilker RL, Pian THH. A study of axisymmetric solid of revolution elements based on the assumed-stress hybrid model Computers and Structures. 9: 273-279. DOI: 10.1016/0045-7949(78)90110-4 |
0.573 |
|
1977 |
Spilker R, Chou S, Orringer O. Alternate Hybrid-Stress Elements for Analysis of Multilayer Composite Plates Journal of Composite Materials. 11: 51-70. DOI: 10.1177/002199837701100107 |
0.327 |
|
Show low-probability matches. |