Area:
Cell Biology, Bioinformatics Biology
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Ryan S. Gray is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2012 — 2014 |
Gray, Ryan Scott |
F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
Elucidating the Cellular and Molecular Mechanisms of Late-Onset Scoliosis
DESCRIPTION (provided by applicant): Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity, which affects 2-3% of school age children and often necessitates medical intervention such as bracing or surgery. Despite a significant burden to children, parents and health care systems; the etiology of AIS is poorly understood. In part, this is due to a lack of genetically tractable animal models of scoliosis. For this reason, I will investigate cellular and molecular mechanisms of the formation and progression of axial curvatures in a novel dominant insertional zebrafish mutant, druk. Interestingly, druk displays possible corollaries to human AIS such as progressive curvature of the axial column without malformation of vertebrae beginning at larval stages. I have determined that two genes, mon1a and mstr1rb, immediately flanking the druk insertion exhibit transcriptional upregulation in druk mutant fish. I hypothesize that druk produces a molecular gain-of-function of one or both flanking genes. I will directly test if overexpression of these genes is sufficient to generate axil curvatures in larval fish. Multiple mechanisms have been proposed for AIS including loss of myotendenous connections along the axial column as well as generalized loss of bone mineral density (BMD). X-ray microtomography (¿-CT) analysis of adult druk fish showed a significant decrease in BMD of the axial column. I hypothesize that abnormal bone metabolism may precede the progression of druk induced axial curvature. To test this, I will ask if the activity o osteoclasts, osteoblasts or the abnormal development of myotendinous junctions along the axial column contributes to the druk mutant phenotype. This proposal aims to define the cellular and molecular mechanisms of the origin and progression of genetically tractable axial column curvatures in a larval zebrafish, akin to characteristics of AIS in humans. These results may provide genetic evidence of a scoliosis locus that will assist early detection in humans. Finally, the druk mutant will enhance our understanding of the etiology of scoliosis and possibly serve as a model for the development of novel pharmacological therapies to combat AIS in humans. PUBLIC HEALTH RELEVANCE: Adolescent idiopathic scoliosis (AIS) is characterized by the appearance of mild to severe curvature of the axial spinal column without malformations of individual vertebrae. I will characterize a novel dominant zebrafish mutant as a model of AIS, by defining the genetic, cellular and tissue level mechanisms of scoliosis progression. These experiments will provide fundamental insights into the molecular, cellular and tissue level defects leading to the progression of scoliosis in a highly tractable genetic model organism and, ultimately, also serve as a model for better understanding of scoliosis progression in humans.
|
0.948 |
2017 — 2021 |
Gray, Ryan Scott |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Towards a Mechanistic Undestanding of Adolscent Idiopathic Scoliosis @ University of Texas, Austin
Project Summary: Here we seek to understand the cellular and molecular causes of a common pediatric musculoskeletal disease, adolescent idiopathic scoliosis (AIS). Human population studies of AIS are beginning to uncover important risk loci for this disease, but there has been limited progress in understanding the etiology of AIS. In part, this is due to a lack of good, genetically tractable animal models of scoliotic diseases. We will focus our efforts on the functional analysis of a few explicit animal models of AIS which we generated in both mouse and zebrafish model systems. At the same time, we will advance gene discovery in this field, by applying modern genetic approaches to characterize novel mutations that cause AIS-like spine deformity in an existing collection of zebrafish mutants we generated. The project will test the following hypotheses: First, that late-onset scoliosis in our Gpr126 mouse model is a consequence of embryonic defects of the intervertebral discs. Second, that functional analysis of Gpr126 signaling in cartilage and the intervertebral disc will provide a mechanistic understanding of the pathophysiology of AIS in humans, as well as, help to emphasize new genes and pathways that contribute to AIS. Third, that our plan for gene discovery in the zebrafish model and functional analysis of AIS-like scoliosis in zebrafish and mouse models will provide a synergistic framework for more mechanistic understanding of the causes of AIS in humans. These hypotheses will be tested under three Specific Aims: I. Determine when and where Gpr126 is required for AIS. Loss of Gpr126 function in a common progenitor cell of cartilage and bone tissues models AIS in the mouse. Using conditional genetic approaches in the mouse, we will refine how the loss of Gpr126 in these tissues contribute to the onset and progression of scoliosis and we will define the temporal window for Gpr126 function in spine development. II. What is the molecular function of Gpr126 in the intervertebral disc and cartilage? Here we will investigate the mechanism by which Gpr126 controls the maturation and deposition of the cartialge extracellular matrix and the development of the interverterbal disc and how this relates to onset of scoliosis in the mouse. III. Characterization of the molecular genetics and etiologies of spine deformity. To identify genes and pathways important for normal spine development, we utilized a forward genetics approach to isolate a collection of adult-viable spine deformity mutant zebrafish. We will apply massively parallel sequencing to identify novel spine deformity disease genes in these existing mutant lines. In order to gain a mechanistic understanding of scoliosis we will: a) undertake functional analysis of two of these novel mutant zebrafish lines, affecting extracellular matrix modifying genes; and b) investigate the etiology of scoliosis in an explicit zebrafish model of a well-known human AIS risk locus. The results are excepted to reveal previously unknown mechanisms and pathways essential for normal spine development.
|
1 |