Vladimir A. Volkov, Ph.D.
Affiliations: | 2022- | School of Biological and Behavioural Sciences | Queen Mary University of London, London, England, United Kingdom |
Area:
microtubules, kinetochoresWebsite:
https://www.qmul.ac.uk/sbbs/staff/vladimir-volkov.htmlGoogle:
"Vladimir Volkov"Parents
Sign in to add mentorFazly Ataullakhanov | grad student | 2005-2011 | Russian Academy of Sciences |
Marileen Dogterom | post-doc | 2016-2020 | Delft University of Technology (Physics Tree) |
Andrea Musacchio | post-doc | 2016-2022 | Max-Planck Institute for Molecular Physiology |
Anna Akhmanova | post-doc | 2020-2022 | Utrecht |
J. Richard McIntosh | research scientist | 2007-2010 | CU Boulder |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Iyer SS, Chen F, Ogunmolu FE, et al. (2025) Centriolar cap proteins CP110 and CPAP control slow elongation of microtubule plus ends. The Journal of Cell Biology. 224 |
Volkov VA, Akhmanova A. (2023) Phase separation on microtubules: from droplet formation to cellular function? Trends in Cell Biology |
Polley S, Müschenborn H, Terbeck M, et al. (2023) Stable kinetochore-microtubule attachment requires loop-dependent Ndc80-Ndc80 binding. The Embo Journal. e112504 |
Maan R, Reese L, Volkov VA, et al. (2023) Author Correction: Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends. Nature Cell Biology |
van den Berg CM, Volkov VA, Schnorrenberg S, et al. (2023) CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side. The Journal of Cell Biology. 222 |
Maan R, Reese L, Volkov VA, et al. (2022) Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends. Nature Cell Biology |
Schwietert F, Volkov VA, Huis In 't Veld PJ, et al. (2022) Strain stiffening of Ndc80 complexes attached to microtubule plus ends. Biophysical Journal. 121: 4048-4062 |
Maleki AN, Veld PJHI', Akhmanova A, et al. (2022) Estimation of microtubule-generated forces using a DNA origami nanospring. Journal of Cell Science |
Alkemade C, Wierenga H, Volkov VA, et al. (2022) Cross-linkers at growing microtubule ends generate forces that drive actin transport. Proceedings of the National Academy of Sciences of the United States of America. 119: e2112799119 |
Volkov VA. (2021) Microtubules pull the strings: disordered sequences as efficient couplers of microtubule-generated force. Essays in Biochemistry. 64: 371-382 |