Year |
Citation |
Score |
2023 |
Oladipupo OE, Prescott MC, Blevins ER, Gray JL, Cameron CG, Qu F, Ward NA, Pierce AL, Collinson ER, Hall JF, Park S, Kim Y, McFarland SA, Fedin I, Papish ET. Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity. International Journal of Molecular Sciences. 24. PMID 36983054 DOI: 10.3390/ijms24065980 |
0.809 |
|
2022 |
Sun Y, Das S, Brown SR, Blevins ER, Qu F, Ward NA, Gregory SA, Boudreaux CM, Kim Y, Papish ET. Ruthenium pincer complexes for light activated toxicity: Lipophilic groups enhance toxicity. Journal of Inorganic Biochemistry. 240: 112110. PMID 36596265 DOI: 10.1016/j.jinorgbio.2022.112110 |
0.801 |
|
2022 |
Papish ET, Oladipupo OE. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Current Opinion in Chemical Biology. 68: 102143. PMID 35483128 DOI: 10.1016/j.cbpa.2022.102143 |
0.366 |
|
2021 |
Oladipupo O, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, ... ... Papish ET, et al. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochemistry and Photobiology. PMID 34411308 DOI: 10.1111/php.13508 |
0.788 |
|
2021 |
Qu F, Lamb RW, Cameron CG, Park S, Oladipupo O, Gray JL, Xu Y, Cole HD, Bonizzoni M, Kim Y, McFarland SA, Webster CE, Papish ET. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorganic Chemistry. PMID 33534562 DOI: 10.1021/acs.inorgchem.0c02027 |
0.752 |
|
2020 |
Yao W, Das S, DeLucia NA, Qu F, Boudreaux CM, Vannucci AK, Papish ET. Determining the Catalyst Properties That Lead to High Activity and Selectivity for Catalytic Hydrodeoxygenation with Ruthenium Pincer Complexes Organometallics. 39: 662-669. DOI: 10.1021/Acs.Organomet.9B00816 |
0.779 |
|
2020 |
Das S, Nugegoda D, Qu F, Boudreaux CM, Burrow PE, Figgins MT, Lamb RW, Webster CE, Delcamp JH, Papish ET. Structure Function Relationships in Ruthenium Carbon Dioxide Reduction Catalysts with CNC Pincers Containing Donor Groups European Journal of Inorganic Chemistry. 2020: 2709-2717. DOI: 10.1002/Ejic.202000444 |
0.691 |
|
2020 |
Shirley H, Figgins MT, Boudreaux CM, Liyanage NP, Lamb RW, Webster CE, Papish ET, Delcamp JH. Impact of the Dissolved Anion on the Electrocatalytic Reduction of CO 2 to CO with Ruthenium CNC Pincer Complexes Chemcatchem. DOI: 10.1002/Cctc.202000742 |
0.489 |
|
2019 |
Park S, Gray JL, Altman SD, Hairston AR, Beswick BT, Kim Y, Papish ET. Cellular uptake of protic ruthenium complexes is influenced by pH dependent passive diffusion and energy dependent efflux. Journal of Inorganic Biochemistry. 203: 110922. PMID 31775072 DOI: 10.1016/J.Jinorgbio.2019.110922 |
0.602 |
|
2019 |
Das S, Rodrigues RR, Lamb RW, Qu F, Reinheimer E, Boudreaux CM, Webster CE, Delcamp JH, Papish ET. Highly Active Ruthenium CNC Pincer Photocatalysts for Visible-Light-Driven Carbon Dioxide Reduction. Inorganic Chemistry. PMID 31185538 DOI: 10.1021/Acs.Inorgchem.9B00791 |
0.788 |
|
2018 |
Qu F, Martinez K, Arcidiacono AM, Park S, Zeller M, Schmehl RH, Paul JJ, Kim Y, Papish ET. Sterically demanding methoxy and methyl groups in ruthenium complexes lead to enhanced quantum yields for blue light triggered photodissociation. Dalton Transactions (Cambridge, England : 2003). PMID 30285013 DOI: 10.1039/C8Dt03295E |
0.802 |
|
2018 |
Burks DB, Davis S, Lamb RW, Liu X, Rodrigues RR, Liyanage NP, Sun Y, Webster CE, Delcamp JH, Papish ET. Nickel(ii) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction. Chemical Communications (Cambridge, England). PMID 29560991 DOI: 10.1039/C7Cc09507D |
0.548 |
|
2018 |
Burks DB, Vasiliu M, Dixon DA, Papish ET. Thermodynamic Acidity Studies of 6,6'-dihydroxy-2,2'-bipyridine: A Combined Experimental and Computational Approach. The Journal of Physical Chemistry. A. PMID 29385345 DOI: 10.1021/Acs.Jpca.7B11441 |
0.42 |
|
2018 |
C. Lisic E, G. Rand V, Ngo L, Kent P, Rice J, Gerlach D, Papish ET, Jiang X. Cu(II) Propionyl-Thiazole Thiosemicarbazone Complexes: Crystal Structure, Inhibition of Human Topoisomerase IIα, and Activity against Breast Cancer Cells Open Journal of Medicinal Chemistry. 8: 30-46. DOI: 10.4236/OJMC.2018.82004 |
0.727 |
|
2017 |
Siek S, Burks DB, Gerlach DL, Liang G, Tesh JM, Thompson CR, Qu F, Shankwitz JE, Vasquez RM, Chambers N, Szulczewski GJ, Grotjahn DB, Webster CE, Papish ET. Iridium and Ruthenium Complexes of-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal. Organometallics. 36: 1091-1106. PMID 29540958 DOI: 10.1021/Acs.Organomet.6B00806 |
0.815 |
|
2017 |
Gerlach DL, Siek S, Burks DB, Tesh JM, Thompson CR, Vasquez RM, White NJ, Zeller M, Grotjahn DB, Papish ET. Ruthenium (II) and Iridium (III) Complexes of N-Heterocyclic Carbene and Pyridinol Derived Bidentate Chelates: Synthesis, Characterization, and Reactivity. Inorganica Chimica Acta. 466: 442-450. PMID 29217867 DOI: 10.1016/J.Ica.2017.06.063 |
0.83 |
|
2017 |
Boudreaux CM, Liyanage NP, Shirley H, Siek S, Gerlach DL, Qu F, Delcamp JH, Papish ET. Ruthenium(ii) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction. Chemical Communications (Cambridge, England). PMID 28956560 DOI: 10.1039/C7Cc05706G |
0.804 |
|
2017 |
Qu F, Park S, Martinez K, Gray JL, Thowfeik FS, Lundeen JA, Kuhn AE, Charboneau DJ, Gerlach DL, Lockart MM, Law JA, Jernigan KL, Chambers N, Zeller M, Piro NA, ... ... Papish ET, et al. Ruthenium Complexes are pH-Activated Metallo Prodrugs (pHAMPs) with Light-Triggered Selective Toxicity Toward Cancer Cells. Inorganic Chemistry. PMID 28636344 DOI: 10.1021/Acs.Inorgchem.7B01065 |
0.793 |
|
2017 |
Gray JL, Gerlach DL, Papish ET. Crystal structure of (perchlorato-κO)(1,4,7,10-tetra-aza-cyclo-dodecane-κ(4)N)copper(II) perchlorate. Acta Crystallographica. Section E, Crystallographic Communications. 73: 31-34. PMID 28083129 DOI: 10.1107/S2056989016019563 |
0.767 |
|
2017 |
Siek S, Dixon NA, Papish ET. Electrochemical reduction of Ttz copper(II) complexes in the presence and absence of protons: Processes relevant to enzymatic nitrite reduction (TtzR,R′= tris(3-R, 5-R′-1, 2, 4-triazolyl)borate) Inorganica Chimica Acta. 459: 80-86. DOI: 10.1016/J.Ica.2017.01.021 |
0.817 |
|
2016 |
Meany JE, Gerlach DL, Papish ET, Woski SA. Crystal structure of 4'-bromo-2',5'-dimeth-oxy-2,5-dioxo-[1,1'-biphen-yl]-3,4-dicarbo-nitrile [BrHBQ(CN)2] benzene hemisolvate. Acta Crystallographica. Section E, Crystallographic Communications. 72: 600-3. PMID 27375897 DOI: 10.1107/S2056989016005120 |
0.718 |
|
2016 |
Meany JE, Gerlach DL, Papish ET, Woski SA. Crystal structure of 4'-bromo-2',5;-dimethoxy-2,5- dioxo-[1,1'-biphenyl]-3,4-dicarbonitrile [BrHBQ(CN)2] benzene hemisolvate Acta Crystallographica Section E: Crystallographic Communications. 72: 600-603. DOI: 10.1107/S2056989016005120 |
0.695 |
|
2015 |
Gerlach DL, Nieto I, Herbst-Gervasoni CJ, Ferrence GM, Zeller M, Papish ET. Crystal structures of bis- and hexakis[(6,6'-di-hydroxy-bipyridine)copper(II)] nitrate coordination complexes. Acta Crystallographica. Section E, Crystallographic Communications. 71: 1447-53. PMID 26870402 DOI: 10.1107/S205698901502037X |
0.798 |
|
2015 |
Serpas L, Baum RR, McGhee A, Nieto I, Jernigan KL, Zeller M, Ferrence GM, Tierney DL, Papish ET. "Scorpionate-like" complexes that are held together by hydrogen bonds: Crystallographic and spectroscopic studies of (3-NH(t-butyl)-5-methyl-pyrazole)nMX2 (M=Zn, Ni, Co, Mn; n =3, 4; X=Cl, Br) Polyhedron. DOI: 10.1016/J.Poly.2015.10.003 |
0.805 |
|
2015 |
Siek S, Dixon NA, Kumar M, Kraus JS, Wells KR, Rowe BW, Kelley SP, Zeller M, Yap GPA, Papish ET. Synthesis of Biomimetic Zinc Complexes for CO2 Activation and the Influence of Steric Changes in the Ttz Ligands [Ttz = Tris(triazolyl)borate] European Journal of Inorganic Chemistry. DOI: 10.1002/Ejic.201500819 |
0.817 |
|
2014 |
Gerlach DL, Bhagan S, Cruce AA, Burks DB, Nieto I, Truong HT, Kelley SP, Herbst-Gervasoni CJ, Jernigan KL, Bowman MK, Pan S, Zeller M, Papish ET. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis. Inorganic Chemistry. 53: 12689-98. PMID 25427106 DOI: 10.1021/Ic501018A |
0.785 |
|
2014 |
Hufziger KT, Thowfeik FS, Charboneau DJ, Nieto I, Dougherty WG, Kassel WS, Dudley TJ, Merino EJ, Papish ET, Paul JJ. Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release. Journal of Inorganic Biochemistry. 130: 103-11. PMID 24184694 DOI: 10.1016/J.Jinorgbio.2013.10.008 |
0.835 |
|
2014 |
Papish ET, Dixon NA, Kumar M. Biomimetic chemistry with tris(triazolyl)borate ligands: Unique structures and reactivity via interactions with the remote nitrogens Structure and Bonding. 160: 115-150. DOI: 10.1007/430-2012-86 |
0.788 |
|
2014 |
Marelius DC, Bhagan S, Charboneau DJ, Schroeder KM, Kamdar JM, McGettigan AR, Freeman BJ, Moore CE, Rheingold AL, Cooksy AL, Smith DK, Paul JJ, Papish ET, Grotjahn DB. How do proximal hydroxy or methoxy groups on the bidentate ligand affect [(2,2;6,2-terpyridine)Ru(N,N)X] water-oxidation catalysts? synthesis, characterization, and reactivity at acidic and near-neutral pH European Journal of Inorganic Chemistry. 676-689. DOI: 10.1002/Ejic.201300826 |
0.818 |
|
2013 |
Dixon NA, McQuarters AB, Kraus JS, Soffer JB, Lehnert N, Schweitzer-Stenner R, Papish ET. Dramatic tuning of ligand donor properties in (Ttz)CuCO through remote binding of H+ (Ttz = hydrotris(triazolyl)borate). Chemical Communications (Cambridge, England). 49: 5571-3. PMID 23675583 DOI: 10.1039/C3Cc00036B |
0.821 |
|
2013 |
DePasquale J, Nieto I, Reuther LE, Herbst-Gervasoni CJ, Paul JJ, Mochalin V, Zeller M, Thomas CM, Addison AW, Papish ET. Iridium dihydroxybipyridine complexes show that ligand deprotonation dramatically speeds rates of catalytic water oxidation. Inorganic Chemistry. 52: 9175-83. PMID 23387353 DOI: 10.1021/Ic302448D |
0.811 |
|
2013 |
Kumar M, Depasquale J, White NJ, Zeller M, Papish ET. Ruthenium complexes of triazole-based scorpionate ligands transfer hydrogen to substrates under base-free conditions Organometallics. 32: 2135-2144. DOI: 10.1021/Om301260J |
0.78 |
|
2013 |
Depasquale J, Kumar M, Zeller M, Papish ET. Variations on an NHC theme: Which features enhance catalytic transfer hydrogenation with ruthenium complexes? Organometallics. 32: 966-979. DOI: 10.1021/Om300547F |
0.81 |
|
2013 |
DePasquale J, White NJ, Ennis EJ, Zeller M, Foley JP, Papish ET. Synthesis of chiral N-heterocyclic carbene (NHC) ligand precursors and formation of ruthenium(II) complexes for transfer hydrogenation catalysts Polyhedron. 58: 162-170. DOI: 10.1016/J.Poly.2012.10.010 |
0.751 |
|
2013 |
Kumar M, Depasquale J, Zeller M, Papish ET. A bulky bis N-heterocyclic carbene complex of iron with coordination number of six: [CpFe(CO)(CH2(ImtBu)2)]I (where ImtBu = 3-tert-butyl-1H-imidazol-1-yl-2(3H)-ylidene) Inorganic Chemistry Communications. 32: 55-58. DOI: 10.1016/J.Inoche.2013.03.023 |
0.787 |
|
2012 |
Kumar M, Dixon NA, Merkle AC, Zeller M, Lehnert N, Papish ET. Hydrotris(triazolyl)borate complexes as functional models for Cu nitrite reductase: the electronic influence of distal nitrogens. Inorganic Chemistry. 51: 7004-6. PMID 22671968 DOI: 10.1021/Ic300160C |
0.832 |
|
2012 |
Oseback SN, Shim SW, Kumar M, Greer SM, Gardner SR, Lemar KM, DeGregory PR, Papish ET, Tierney DL, Zeller M, Yap GP. Crowded bis ligand complexes of Ttz(Ph,Me) with first row transition metals rearrange due to ligand field effects: structural and electronic characterization (Ttz(Ph,Me) = tris(3-phenyl-5-methyl-1,2,4-triazolyl)borate). Dalton Transactions (Cambridge, England : 2003). 41: 2774-87. PMID 22249493 DOI: 10.1039/C2Dt12029A |
0.592 |
|
2011 |
Kumar M, Papish ET, Zeller M, Hunter AD. Zinc complexes of Ttz(R,Me) with O and S donors reveal differences between Tp and Ttz ligands: acid stability and binding to H or an additional metal (Ttz(R,Me) = tris(3-R-5-methyl-1,2,4-triazolyl)borate; R = Ph, tBu). Dalton Transactions (Cambridge, England : 2003). 40: 7517-33. PMID 21706096 DOI: 10.1039/C1Dt10429B |
0.582 |
|
2011 |
Nieto I, Livings MS, Sacci JB, Reuther LE, Zeller M, Papish ET. Transfer hydrogenation in water via a ruthenium catalyst with OH groups near the metal center on a bipy scaffold Organometallics. 30: 6339-6342. DOI: 10.1021/Om200638P |
0.833 |
|
2010 |
Kumar M, Papish ET, Zeller M. Ethyl[tris(3-tert-butyl-5-methylpyrazol-1-yl)hydridoborato]zinc(II). Acta Crystallographica. Section C, Crystal Structure Communications. 66: m197-200. PMID 20679703 DOI: 10.1107/S0108270110024674 |
0.559 |
|
2010 |
Kumar M, Papish ET, Zeller M, Hunter AD. New alkylzinc complexes with bulky tris(triazolyl)borate ligands: surprising water stability and reactivity. Dalton Transactions (Cambridge, England : 2003). 59-61. PMID 20023932 DOI: 10.1039/B918328K |
0.607 |
|
2010 |
Bongiovanni JL, Rowe BW, Fadden PT, Taylor MT, Wells KR, Kumar M, Papish ET, Yap GPA, Zeller M. Synthesis, structural studies and solubility properties of zinc(II), nickel(II) and copper(II) complexes of bulky tris(triazolyl)borate ligands Inorganica Chimica Acta. 363: 2163-2170. DOI: 10.1016/J.Ica.2010.03.010 |
0.649 |
|
2008 |
Gardner SR, Papish ET, Monillas WH, Yap GP. Tris(triazolyl)borate ligands of intermediate steric bulk for the synthesis of biomimetic structures with hydrogen bonding and solubility in hydrophilic solvents. Journal of Inorganic Biochemistry. 102: 2179-83. PMID 18848725 DOI: 10.1016/J.Jinorgbio.2008.08.010 |
0.454 |
|
2008 |
Papish ET, Donahue TM, Wells KR, Yap GP. How are tris(triazolyl)borate ligands electronically different from tris(pyrazolyl)borate ligands? A study of (Ttz(tBu,Me))CuCO [Ttz(tBu,Me) = tris(3-t-butyl-5-methyl-1,2,4-triazolyl)borate]. Dalton Transactions (Cambridge, England : 2003). 2923-5. PMID 18493626 DOI: 10.1039/B804951C |
0.432 |
|
2007 |
Jernigan FE, Sieracki NA, Taylor MT, Jenkins AS, Engel SE, Rowe BW, Jové FA, Yap GP, Papish ET, Ferrence GM. Sterically bulky tris(triazolyl)borate ligands as water-soluble analogues of tris(pyrazolyl)borate. Inorganic Chemistry. 46: 360-2. PMID 17279808 DOI: 10.1021/Ic061828A |
0.506 |
|
2006 |
Papish ET, Taylor MT, Jernigan FE, Rodig MJ, Shawhan RR, Yap GP, Jové FA. Synthesis of zinc, copper, nickel, cobalt, and iron complexes using tris(pyrazolyl)methane sulfonate ligands: a structural model for N,N,O binding in metalloenzymes. Inorganic Chemistry. 45: 2242-50. PMID 16499390 DOI: 10.1021/Ic051579A |
0.504 |
|
2006 |
Jernigan FE, Jové FA, Papish ET, Yap GPA. Bis[tris(3-isopropylpyrazolyl)methanesulfonato]-manganese(II) dichloromethane disolvate Acta Crystallographica Section E: Structure Reports Online. 62: m3172-m3173. DOI: 10.1107/S1600536806044606 |
0.437 |
|
2006 |
Tang L, Papish ET, Abramo GP, Norton JR, Baik M, Friesner RA, Rappé A. Kinetics and Thermodynamics of H• Transfer from (η5-C5R5)Cr(CO)3H (R = Ph, Me, H) to Methyl Methacrylate and Styrene [J. Am. Chem.Soc.2003,125, 10093−10102]. Journal of the American Chemical Society. 128: 11314-11314. DOI: 10.1021/Ja069969Z |
0.683 |
|
2003 |
Tang L, Papish ET, Abramo GP, Norton JR, Baik MH, Friesner RA, Rappé A. Kinetics and thermodynamics of H. transfer from (eta5-C5R5)Cr(CO)3H (R = Ph, Me, H) to methyl methacrylate and styrene. Journal of the American Chemical Society. 125: 10093-102. PMID 12914473 DOI: 10.1021/Ja034927L |
0.69 |
|
2000 |
Papish ET, Rix FC, Spetseris N, Norton JR, Williams RD. Protonation of CpW(CO)2(PMe3)H: Is the metal or the hydride the kinetic site? Journal of the American Chemical Society. 122: 12235-12242. DOI: 10.1021/ja002395s |
0.484 |
|
Show low-probability matches. |