Year |
Citation |
Score |
2020 |
Han S, Kim Y, Karanjikar M, San KY, Bennett GN. Genetic sensor-regulators functional in Clostridia. Journal of Industrial Microbiology & Biotechnology. PMID 32851482 DOI: 10.1007/S10295-020-02303-6 |
0.319 |
|
2020 |
Zhu F, Wang C, San KY, Bennett GN. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions. Journal of Industrial Microbiology & Biotechnology. PMID 31989325 DOI: 10.1007/S10295-020-02259-7 |
0.465 |
|
2020 |
LaTurner ZW, Bennett GN, San K, Stadler LB. Single cell protein production from food waste using purple non-sulfur bacteria shows economically viable protein products have higher environmental impacts Journal of Cleaner Production. 276: 123114. DOI: 10.1016/J.Jclepro.2020.123114 |
0.313 |
|
2020 |
Larnaudie V, Bule M, San K, Vadlani PV, Mosby J, Elangovan S, Karanjikar M, Spatari S. Life cycle environmental and cost evaluation of renewable diesel production Fuel. 279: 118429. DOI: 10.1016/J.Fuel.2020.118429 |
0.415 |
|
2020 |
Zhu F, San K, Bennett GN. Metabolic engineering of Escherichia coli for malate production with a temperature sensitive malate dehydrogenase Biochemical Engineering Journal. 164: 107762. DOI: 10.1016/J.Bej.2020.107762 |
0.443 |
|
2019 |
Zhu F, San KY, Bennett GN. Improved succinate production from galactose-rich feedstocks by engineered Escherichia coli under anaerobic conditions. Biotechnology and Bioengineering. PMID 31868221 DOI: 10.1002/Bit.27254 |
0.461 |
|
2019 |
He Q, Bennett GN, San KY, Wu H. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of GPo1 With Native FadL in Engineered . Frontiers in Bioengineering and Biotechnology. 7: 273. PMID 31681749 DOI: 10.3389/Fbioe.2019.00273 |
0.339 |
|
2018 |
Qi F, Thakker C, Zhu F, Pena M, San KY, Bennett GN. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability. Journal of Industrial Microbiology & Biotechnology. PMID 30141107 DOI: 10.1007/S10295-018-2068-7 |
0.445 |
|
2018 |
Zhu F, Wang Y, San KY, Bennett GN. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnology and Bioengineering. PMID 29508908 DOI: 10.1002/Bit.26584 |
0.444 |
|
2017 |
Martinez I, Gao H, Bennett GN, San KY. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli. Journal of Industrial Microbiology & Biotechnology. PMID 29196893 DOI: 10.1007/S10295-017-1991-3 |
0.474 |
|
2017 |
Li W, Wu H, Li M, San KY. Effect of NADPH availability on free fatty acid production in E. coli. Biotechnology and Bioengineering. PMID 28976546 DOI: 10.1002/Bit.26464 |
0.402 |
|
2017 |
Lee JE, Vadlani PV, Guragain YN, San KY, Min DH. Production of free fatty acids from switchgrass using recombinant Escherichia coli. Biotechnology Progress. PMID 28960895 DOI: 10.1002/Btpr.2569 |
0.432 |
|
2016 |
Sun J, Ma L, San KY, Peebles CA. Still stable after 11 years: A Catharanthus roseus hairy root line maintains inducible expression of anthranilate synthase. Biotechnology Progress. PMID 27813337 DOI: 10.1002/Btpr.2403 |
0.744 |
|
2016 |
Bennett GN, San KY. Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. Journal of Industrial Microbiology & Biotechnology. PMID 27800562 DOI: 10.1007/S10295-016-1851-6 |
0.453 |
|
2016 |
Bule M, Luo Y, Bennett G, Karanjikar M, Rooney W, San K. Direct bioconversion of sorghum extract sugars to free fatty acids using metabolically engineered Escherichia coli strains: Value addition to the sorghum bioenergy crop Biomass and Bioenergy. 93: 217-226. DOI: 10.1016/J.Biombioe.2016.07.020 |
0.434 |
|
2015 |
Wang D, Thakker C, Liu P, Bennett GN, San KY. Efficient production of free fatty acids from soybean meal carbohydrates. Biotechnology and Bioengineering. 112: 2324-33. PMID 25943383 DOI: 10.1002/Bit.25633 |
0.391 |
|
2015 |
Wang D, Wu H, Thakker C, Beyersdorf J, Bennett GN, San KY. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock. Biotechnology Progress. 31: 686-94. PMID 25919701 DOI: 10.1002/Btpr.2092 |
0.399 |
|
2015 |
Wu H, Bennett GN, San KY. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation. Biotechnology and Bioengineering. 112: 1720-6. PMID 25788153 DOI: 10.1002/Bit.25585 |
0.411 |
|
2015 |
Wu H, Lee J, Karanjikar M, San KY. Simultaneous utilization of glucose and mannose from woody hydrolysate for free fatty acid production by metabolically engineered Escherichia coli. Bioresource Technology. 185: 431-5. PMID 25782633 DOI: 10.1016/J.Biortech.2015.03.007 |
0.431 |
|
2015 |
Wu H, Tuli L, Bennett GN, San KY. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli. Metabolic Engineering. 28: 159-68. PMID 25596510 DOI: 10.1016/J.Ymben.2015.01.002 |
0.466 |
|
2015 |
Thakker C, Martínez I, Li W, San KY, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. Journal of Industrial Microbiology & Biotechnology. 42: 403-22. PMID 25502283 DOI: 10.1007/S10295-014-1560-Y |
0.471 |
|
2014 |
Wu H, Lee J, Karanjikar M, San KY. Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli. Bioresource Technology. 169: 119-25. PMID 25043344 DOI: 10.1016/J.Biortech.2014.06.092 |
0.43 |
|
2014 |
Wu H, San KY. Engineering Escherichia coli for odd straight medium chain free fatty acid production. Applied Microbiology and Biotechnology. 98: 8145-54. PMID 25030454 DOI: 10.1007/S00253-014-5882-5 |
0.377 |
|
2014 |
Wu H, Karanjikar M, San KY. Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metabolic Engineering. 25: 82-91. PMID 25014174 DOI: 10.1016/J.Ymben.2014.06.009 |
0.488 |
|
2014 |
Wu H, San KY. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnology and Bioengineering. 111: 2209-19. PMID 24889416 DOI: 10.1002/Bit.25296 |
0.444 |
|
2014 |
San K, Bennett GN. Metabolic engineering of biochemical pathways Access Science. DOI: 10.1036/1097-8542.Yb140809 |
0.423 |
|
2013 |
Wang Y, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. Journal of Industrial Microbiology & Biotechnology. 40: 1449-60. PMID 24048943 DOI: 10.1007/S10295-013-1335-X |
0.426 |
|
2013 |
Balzer GJ, Thakker C, Bennett GN, San KY. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metabolic Engineering. 20: 1-8. PMID 23876411 DOI: 10.1016/J.Ymben.2013.07.005 |
0.478 |
|
2013 |
Jan J, Martinez I, Wang Y, Bennett GN, San KY. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnology Progress. 29: 1124-30. PMID 23794523 DOI: 10.1002/Btpr.1765 |
0.5 |
|
2013 |
Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology. 24: 994-9. PMID 23611567 DOI: 10.1016/J.Copbio.2013.03.022 |
0.371 |
|
2013 |
Wang Y, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Applied Microbiology and Biotechnology. 97: 6883-93. PMID 23558585 DOI: 10.1007/S00253-013-4859-0 |
0.443 |
|
2013 |
Thakker C, San KY, Bennett GN. Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresource Technology. 130: 398-405. PMID 23313685 DOI: 10.1016/J.Biortech.2012.10.154 |
0.418 |
|
2012 |
Park J, Rodríguez-Moyá M, Li M, Pichersky E, San KY, Gonzalez R. Synthesis of methyl ketones by metabolically engineered Escherichia coli Journal of Industrial Microbiology and Biotechnology. 39: 1703-1712. PMID 22850984 DOI: 10.1007/S10295-012-1178-X |
0.309 |
|
2012 |
Li M, Zhang X, Agrawal A, San KY. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metabolic Engineering. 14: 380-7. PMID 22480945 DOI: 10.1016/J.Ymben.2012.03.007 |
0.388 |
|
2012 |
Zhang X, Agrawal A, San KY. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Biotechnology Progress. 28: 60-5. PMID 22038854 DOI: 10.1002/Btpr.716 |
0.398 |
|
2012 |
Thakker C, MartÃnez I, San KY, Bennett GN. Succinate production in Escherichia coli. Biotechnology Journal. 7: 213-24. PMID 21932253 DOI: 10.1002/Biot.201100061 |
0.473 |
|
2012 |
San KY, Stephanopoulos G. Studies on on-line bioreactor identification. IV. Utilization of pH measurements for product estimation. Biotechnology and Bioengineering. 26: 1209-18. PMID 18551638 DOI: 10.1002/Bit.260261009 |
0.377 |
|
2011 |
Zhang X, Li M, Agrawal A, San KY. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metabolic Engineering. 13: 713-22. PMID 22001432 DOI: 10.1016/J.Ymben.2011.09.007 |
0.371 |
|
2011 |
Zhu J, Sánchez A, Bennett GN, San KY. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products. Metabolic Engineering. 13: 704-12. PMID 22001430 DOI: 10.1016/J.Ymben.2011.09.006 |
0.486 |
|
2011 |
Wang J, Zhu J, Bennett GN, San KY. Succinate production from sucrose by metabolic engineered Escherichia coli strains under aerobic conditions. Biotechnology Progress. 27: 1242-7. PMID 21735558 DOI: 10.1002/Btpr.661 |
0.442 |
|
2011 |
Thakker C, Zhu J, San KY, Bennett G. Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. Journal of Biotechnology. 155: 236-43. PMID 21718725 DOI: 10.1016/J.Jbiotec.2011.05.001 |
0.46 |
|
2011 |
MartÃnez I, Lee A, Bennett GN, San KY. Culture conditions' impact on succinate production by a high succinate producing Escherichia coli strain. Biotechnology Progress. 27: 1225-31. PMID 21681980 DOI: 10.1002/Btpr.641 |
0.41 |
|
2011 |
Chung IM, Kim EH, Li M, Peebles CA, Jung WS, Song HK, Ahn JK, San KY. Screening 64 cultivars Catharanthus roseus for the production of vindoline, catharanthine, and serpentine. Biotechnology Progress. 27: 937-43. PMID 21674816 DOI: 10.1002/Btpr.557 |
0.723 |
|
2011 |
Zhu J, Thakker C, San KY, Bennett G. Effect of culture operating conditions on succinate production in a multiphase fed-batch bioreactor using an engineered Escherichia coli strain. Applied Microbiology and Biotechnology. 92: 499-508. PMID 21667087 DOI: 10.1007/S00253-011-3314-3 |
0.494 |
|
2011 |
Li M, Peebles CA, Shanks JV, San KY. Effect of sodium nitroprusside on growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root cultures. Biotechnology Progress. 27: 625-30. PMID 21567990 DOI: 10.1002/Btpr.605 |
0.718 |
|
2011 |
Wang J, Zhu J, Bennett GN, San KY. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains. Metabolic Engineering. 13: 328-35. PMID 21440082 DOI: 10.1016/J.Ymben.2011.03.004 |
0.474 |
|
2011 |
Peebles CA, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY. The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metabolic Engineering. 13: 234-40. PMID 21144909 DOI: 10.1016/J.Ymben.2010.11.005 |
0.814 |
|
2010 |
MartÃnez I, Bennett GN, San KY. Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metabolic Engineering. 12: 499-509. PMID 20883813 DOI: 10.1016/J.Ymben.2010.09.002 |
0.52 |
|
2009 |
Dittrich CR, Bennett GN, San KY. Metabolic engineering of the anaerobic central metabolic pathway in Escherichia coli for the simultaneous anaerobic production of isoamyl acetate and succinic acid. Biotechnology Progress. 25: 1304-9. PMID 19774663 DOI: 10.1002/Btpr.222 |
0.531 |
|
2009 |
Nikel PI, Zhu J, San KY, Méndez BS, Bennett GN. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Journal of Bacteriology. 191: 5538-48. PMID 19561129 DOI: 10.1128/Jb.00174-09 |
0.473 |
|
2009 |
Binder BY, Peebles CA, Shanks JV, San KY. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology Progress. 25: 861-5. PMID 19479674 DOI: 10.1002/Btpr.97 |
0.723 |
|
2009 |
Peebles CA, Shanks JV, San KY. The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions. Biotechnology and Bioengineering. 103: 1248-54. PMID 19437555 DOI: 10.1002/Bit.22350 |
0.768 |
|
2009 |
Chung IM, Ahmad A, Ali M, Lee OK, Kim MY, Kim JH, Yoon DY, Peebles CA, San KY. Flavonoid glucosides from the hairy roots of Catharanthus roseus. Journal of Natural Products. 72: 613-20. PMID 19271765 DOI: 10.1021/np800378q |
0.662 |
|
2009 |
Peebles CA, Sander GW, Li M, Shanks JV, San KY. Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnology and Bioengineering. 102: 1521-5. PMID 19031426 DOI: 10.1002/Bit.22173 |
0.736 |
|
2009 |
Peebles CA, Hughes EH, Shanks JV, San KY. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metabolic Engineering. 11: 76-86. PMID 18955153 DOI: 10.1016/J.Ymben.2008.09.002 |
0.788 |
|
2009 |
Nikel P, Zhu J, San K, Galvagno M, Méndez B, Bennett G. Metabolic flux analysis of Escherichia coli ArcA and CreB mutants reveals shared control of carbon catabolism under microaerobic conditions of growth New Biotechnology. 25: S327. DOI: 10.1016/j.nbt.2009.06.791 |
0.301 |
|
2009 |
Bennett GN, San KY. Engineering E. coli central metabolism for enhanced primary metabolite production Systems Biology and Biotechnology of Escherichia Coli. 351-376. DOI: 10.1007/978-1-4020-9394-4_17 |
0.407 |
|
2008 |
MartÃnez I, Zhu J, Lin H, Bennett GN, San KY. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metabolic Engineering. 10: 352-9. PMID 18852061 DOI: 10.1016/J.Ymben.2008.09.001 |
0.506 |
|
2008 |
Wong MS, Wu S, Causey TB, Bennett GN, San KY. Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metabolic Engineering. 10: 97-108. PMID 18164227 DOI: 10.1016/J.Ymben.2007.10.003 |
0.468 |
|
2008 |
Wong MS, Causey TB, Mantzaris N, Bennett GN, San KY. Engineering poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer composition in E. coli. Biotechnology and Bioengineering. 99: 919-28. PMID 17787008 DOI: 10.1002/Bit.21641 |
0.421 |
|
2007 |
Peebles CA, Gibson SI, Shanks JV, San KY. Long-term maintenance of a transgenic Catharanthus roseus hairy root line. Biotechnology Progress. 23: 1517-8. PMID 17900137 DOI: 10.1021/Bp0702166 |
0.727 |
|
2007 |
Peebles CA, Gibson SI, Shanks JV, San KY. Characterization of an ethanol-inducible promoter system in Catharanthus roseus hairy roots. Biotechnology Progress. 23: 1258-60. PMID 17715939 DOI: 10.1021/Bp070154J |
0.728 |
|
2007 |
Park YC, San KY, Bennett GN. Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Applied Microbiology and Biotechnology. 76: 349-56. PMID 17516063 DOI: 10.1007/S00253-007-0998-5 |
0.301 |
|
2007 |
Chung IM, Hong SB, Peebles CA, Kim JA, San KY. Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots. Biotechnology Progress. 23: 327-32. PMID 17256967 DOI: 10.1021/bp060258e |
0.739 |
|
2007 |
Zhu J, Shalel-Levanon S, Bennett G, San KY. The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain. Biotechnology and Bioengineering. 97: 138-43. PMID 17013945 DOI: 10.1002/Bit.21219 |
0.45 |
|
2007 |
Chung I, Ali M, Yang Y, Peebles CAM, Chun S, Lee S, San K, Ahmad A. Identification of new compounds from Catharanthus roseus hairy root cultures Bulletin of the Korean Chemical Society. 28: 1294-1298. DOI: 10.5012/Bkcs.2007.28.8.1294 |
0.335 |
|
2006 |
Zhu J, Shalel-Levanon S, Bennett G, San KY. Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metabolic Engineering. 8: 619-27. PMID 16962353 DOI: 10.1016/J.Ymben.2006.07.002 |
0.47 |
|
2006 |
Peercy BE, Cox SJ, Shalel-Levanon S, San KY, Bennett G. A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. Journal of Theoretical Biology. 242: 547-63. PMID 16750836 DOI: 10.1016/J.Jtbi.2006.04.006 |
0.414 |
|
2006 |
Singh R, Yang YT, Lu B, Bennett GN, San KY. Expression of the pfl gene and resulting metabolite flux distribution in nuo and ackA-pta E. coli mutant strains. Biotechnology Progress. 22: 898-902. PMID 16739977 DOI: 10.1021/Bp050326H |
0.479 |
|
2006 |
Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnology Progress. 22: 420-5. PMID 16599556 DOI: 10.1021/Bp050375U |
0.501 |
|
2006 |
Lin H, Castro NM, Bennett GN, San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Applied Microbiology and Biotechnology. 71: 870-4. PMID 16496143 DOI: 10.1007/S00253-005-0230-4 |
0.5 |
|
2006 |
Sánchez AM, Bennett GN, San KY. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metabolic Engineering. 8: 209-26. PMID 16434224 DOI: 10.1016/J.Ymben.2005.11.004 |
0.513 |
|
2006 |
Cox SJ, Shalel Levanon S, Sanchez A, Lin H, Peercy B, Bennett GN, San KY. Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metabolic Engineering. 8: 46-57. PMID 16263313 DOI: 10.1016/J.Ymben.2005.09.006 |
0.347 |
|
2006 |
Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI. Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnology and Bioengineering. 93: 386-90. PMID 16261632 DOI: 10.1002/Bit.20699 |
0.718 |
|
2006 |
Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnology and Bioengineering. 93: 534-40. PMID 16240438 DOI: 10.1002/Bit.20739 |
0.728 |
|
2006 |
Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. Journal of Biotechnology. 122: 28-38. PMID 16188339 DOI: 10.1016/J.Jbiotec.2005.08.008 |
0.754 |
|
2006 |
San K, Bennett GN. Expression Systems for DNA Processes Reviews in Cell Biology and Molecular Medicine. 271-278. DOI: 10.1002/3527600906.Mcb.200300074 |
0.341 |
|
2005 |
Yun NR, San KY, Bennett GN. Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli Journal of Applied Microbiology. 99: 1404-1412. PMID 16313413 DOI: 10.1111/j.1365-2672.2005.02724.x |
0.435 |
|
2005 |
Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY. Transient effects of overexpressing anthranilate synthase alpha and beta subunits in Catharanthus roseus hairy roots. Biotechnology Progress. 21: 1572-6. PMID 16209565 DOI: 10.1021/Bp050210L |
0.736 |
|
2005 |
Vadali RV, Fu Y, Bennett GN, San KY. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnology Progress. 21: 1558-61. PMID 16209562 DOI: 10.1021/Bp050124L |
0.829 |
|
2005 |
Cox SJ, Shalel Levanon S, Bennett GN, San KY. Genetically constrained metabolic flux analysis. Metabolic Engineering. 7: 445-56. PMID 16143552 DOI: 10.1016/J.Ymben.2005.07.004 |
0.409 |
|
2005 |
Shalel-Levanon S, San KY, Bennett GN. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metabolic Engineering. 7: 364-74. PMID 16140031 DOI: 10.1016/J.Ymben.2005.07.001 |
0.422 |
|
2005 |
Lin H, Bennett GN, San KY. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metabolic Engineering. 7: 337-52. PMID 16099188 DOI: 10.1016/J.Ymben.2005.06.002 |
0.41 |
|
2005 |
Dittrich CR, Bennett GN, San KY. Characterization of the acetate-producing pathways in Escherichia coli. Biotechnology Progress. 21: 1062-7. PMID 16080684 DOI: 10.1021/Bp050073S |
0.525 |
|
2005 |
Shalel-Levanon S, San KY, Bennett GN. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnology and Bioengineering. 92: 147-59. PMID 15988767 DOI: 10.1002/Bit.20583 |
0.435 |
|
2005 |
Sánchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Journal of Biotechnology. 117: 395-405. PMID 15925720 DOI: 10.1016/J.Jbiotec.2005.02.006 |
0.523 |
|
2005 |
Sánchez AM, Bennett GN, San KY. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metabolic Engineering. 7: 229-39. PMID 15885621 DOI: 10.1016/J.Ymben.2005.03.001 |
0.535 |
|
2005 |
Lin H, Bennett GN, San KY. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnology and Bioengineering. 90: 775-9. PMID 15803467 DOI: 10.1002/Bit.20458 |
0.467 |
|
2005 |
Dittrich CR, Vadali RV, Bennett GN, San KY. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress. 21: 627-31. PMID 15801810 DOI: 10.1021/Bp049730R |
0.833 |
|
2005 |
Sánchez AM, Bennett GN, San KY. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnology Progress. 21: 358-65. PMID 15801771 DOI: 10.1021/Bp049676E |
0.469 |
|
2005 |
Lin H, Bennett GN, San KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metabolic Engineering. 7: 116-27. PMID 15781420 DOI: 10.1016/J.Ymben.2004.10.003 |
0.476 |
|
2005 |
Lin H, Bennett GN, San KY. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. Journal of Industrial Microbiology & Biotechnology. 32: 87-93. PMID 15770511 DOI: 10.1007/S10295-005-0206-5 |
0.507 |
|
2005 |
Levanon SS, San KY, Bennett GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnology and Bioengineering. 89: 556-64. PMID 15669087 DOI: 10.1002/Bit.20381 |
0.455 |
|
2005 |
Lin H, San KY, Bennett GN. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Applied Microbiology and Biotechnology. 67: 515-23. PMID 15565333 DOI: 10.1007/S00253-004-1789-X |
0.513 |
|
2005 |
Lin H, Bennett GN, San KY. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnology and Bioengineering. 89: 148-56. PMID 15543598 DOI: 10.1002/Bit.20298 |
0.519 |
|
2005 |
Peebles CA, Morales DJ, San KY. Metabolic engineering of Artemisia annua hairy roots Aiche Annual Meeting, Conference Proceedings. 8980. |
0.757 |
|
2005 |
Zhu J, Levanon SS, Bennett G, San KY. Effect of oxygen on the E. coli global redox sensing/regulation networks and metabolic flux distribution based on C-13 labeling experiments Aiche Annual Meeting, Conference Proceedings. 8330. |
0.327 |
|
2005 |
Peebles CA, Gibson SI, Shanks JV, San KY. Characterization of the ecdysone agonist-inducible promoter and the ethanol inducible promoter in Catharanthus roseus hairy roots Aiche Annual Meeting, Conference Proceedings. 8114. |
0.758 |
|
2005 |
Peacock R, Zhu J, Shanks JV, Gonzalez R, San KY. Development of a mechanistic model for sugar-utilization regulatory systems Aiche Annual Meeting, Conference Proceedings. 10380. |
0.338 |
|
2004 |
Vadali RV, Bennett GN, San KY. Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Metabolic Engineering. 6: 294-9. PMID 15491859 DOI: 10.1016/J.Ymben.2004.02.006 |
0.833 |
|
2004 |
Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Engineering. 6: 268-76. PMID 15491856 DOI: 10.1016/J.Ymben.2004.03.002 |
0.713 |
|
2004 |
Lin H, Vadali RV, Bennett GN, San KY. Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnology Progress. 20: 1599-604. PMID 15458351 DOI: 10.1021/Bp049843A |
0.837 |
|
2004 |
Vadali RV, Bennett GN, San KY. Enhanced isoamyl acetate production upon manipulation of the acetyl-CoA node in Escherichia coli. Biotechnology Progress. 20: 692-7. PMID 15176870 DOI: 10.1021/Bp034326Y |
0.838 |
|
2004 |
Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnology and Bioengineering. 86: 718-27. PMID 15137084 DOI: 10.1002/Bit.20081 |
0.702 |
|
2004 |
Vadali RV, Bennett GN, San KY. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metabolic Engineering. 6: 133-9. PMID 15113566 DOI: 10.1016/J.Ymben.2004.02.001 |
0.825 |
|
2004 |
Berríos-Rivera SJ, Sánchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Applied Microbiology and Biotechnology. 65: 426-32. PMID 15069588 DOI: 10.1007/S00253-004-1609-3 |
0.815 |
|
2004 |
Vadali RV, Horton CE, Rudolph FB, Bennett GN, San KY. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Applied Microbiology and Biotechnology. 63: 698-704. PMID 14586577 DOI: 10.1007/S00253-003-1452-Y |
0.824 |
|
2003 |
Hong SB, Hughes EH, Shanks JV, San KY, Gibson SI. Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnology Progress. 19: 1105-8. PMID 12790690 DOI: 10.1021/Bp034031K |
0.706 |
|
2003 |
Berríos-Rivera SJ, San KY, Bennett GN. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Journal of Industrial Microbiology & Biotechnology. 30: 34-40. PMID 12545384 DOI: 10.1007/S10295-002-0006-0 |
0.803 |
|
2002 |
Berríos-Rivera SJ, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metabolic Engineering. 4: 238-47. PMID 12616693 DOI: 10.1006/mben.2002.0229 |
0.832 |
|
2002 |
Berríos-Rivera SJ, Bennett GN, San KY. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metabolic Engineering. 4: 230-7. PMID 12616692 DOI: 10.1006/Mben.2002.0228 |
0.826 |
|
2002 |
Berríos-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metabolic Engineering. 4: 217-29. PMID 12616691 DOI: 10.1006/Mben.2002.0227 |
0.829 |
|
2002 |
Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI. Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnology Progress. 18: 1183-6. PMID 12467449 DOI: 10.1021/Bp025603O |
0.661 |
|
2002 |
San KY, Bennett GN, Berríos-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metabolic Engineering. 4: 182-92. PMID 12009797 DOI: 10.1006/Mben.2001.0220 |
0.804 |
|
2001 |
Yang YT, Bennett GN, San KY. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli Metabolic Engineering. 3: 115-123. PMID 11289788 DOI: 10.1006/Mben.2000.0166 |
0.505 |
|
2001 |
Bennett GN, San KY. Microbial formation, biotechnological production and applications of 1,2-propanediol Applied Microbiology and Biotechnology. 55: 1-9. PMID 11234947 DOI: 10.1007/s002530000476 |
0.423 |
|
2000 |
Berríos-Rivera SJ, Yang YT, Bennett GN, San KY. Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli. Metabolic Engineering. 2: 149-54. PMID 10935730 DOI: 10.1006/Mben.1999.0141 |
0.398 |
|
2000 |
Yang YT, Peredelchuk M, Bennett GN, San KY. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli Biotechnology and Bioengineering. 69: 150-159. PMID 10861394 DOI: 10.1002/(Sici)1097-0290(20000720)69:2<150::Aid-Bit4>3.0.Co;2-N |
0.445 |
|
1999 |
Yang YT, San KY, Bennett GN. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion Metabolic Engineering. 1: 141-152. PMID 10935927 DOI: 10.1006/Mben.1998.0111 |
0.489 |
|
1999 |
Yang YT, Aristidou AA, San KY, Bennett GN. Metabolic Flux Analysis ofEscherichia coliDeficient in the Acetate Production Pathway and Expressing theBacillus subtilisAcetolactate Synthase Metabolic Engineering. 1: 26-34. PMID 10935752 DOI: 10.1006/Mben.1998.0103 |
0.529 |
|
1999 |
Yang YT, Bennett GN, San KY. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli Biotechnology and Bioengineering. 65: 291-297. PMID 10486127 DOI: 10.1002/(Sici)1097-0290(19991105)65:3<291::Aid-Bit6>3.0.Co;2-F |
0.478 |
|
1999 |
Aristidou AA, San KY, Bennett GN. Metabolic flux analysis of Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch and continuous cultures Biotechnology and Bioengineering. 63: 737-749. PMID 10397831 DOI: 10.1002/(SICI)1097-0290(19990620)63:6<737::AID-BIT12>3.0.CO;2-9 |
0.404 |
|
1999 |
Aristidou AA, San KY, Bennett GN. Improvement of biomass yield and recombinant gene expression in escherichia coli by using fructose as the primary carbon source Biotechnology Progress. 15: 140-145. PMID 9933525 DOI: 10.1021/Bp980115V |
0.405 |
|
1998 |
Yang YT, Bennett GN, San KY. Genetic and metabolic engineering Electronic Journal of Biotechnology. 1: 49-60. DOI: 10.4067/S0717-34581998000300003 |
0.376 |
|
1996 |
Chou CH, Bennett GN, San KY. Genetic manipulation of stationary-phase genes to enhance recombinant protein production in Escherichia coli Biotechnology and Bioengineering. 50: 636-642. DOI: 10.1002/(Sici)1097-0290(19960620)50:6<636::Aid-Bit4>3.0.Co;2-L |
0.416 |
|
1995 |
Chou C, Aristidou AA, Meng S, Bennett GN, San K. Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins in Escherichia coli. Biotechnology and Bioengineering. 47: 186-192. PMID 18623392 DOI: 10.1002/Bit.260470210 |
0.38 |
|
1995 |
Aristidou AA, San KY, Bennett GN. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction Biotechnology Progress. 11: 475-478. PMID 7654314 DOI: 10.1021/BP00034A019 |
0.388 |
|
1994 |
San KY, Bennett GN, Aristidou AA, Chou CH. Strategies in high-level expression of recombinant protein in Escherichia coli Annals of the New York Academy of Sciences. 721: 257-267. PMID 8010676 DOI: 10.1111/j.1749-6632.1994.tb47399.x |
0.362 |
|
1994 |
Chou CH, Bennett GN, San KY. Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture Biotechnology Progress. 10: 644-647. PMID 7765699 DOI: 10.1021/Bp00030A009 |
0.408 |
|
1994 |
Chou CH, Bennett GN, San KY. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in Escherichia coli dense cultures Biotechnology and Bioengineering. 44: 952-960. DOI: 10.1002/Bit.260440811 |
0.44 |
|
1994 |
Aristos A, San KY, Bennett GN. Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene Biotechnology and Bioengineering. 44: 944-951. DOI: 10.1002/Bit.260440810 |
0.508 |
|
1993 |
Aristidou AA, Yu P, San KY. Effects of glycine supplement on protein production and release in recombinant Escherichia coli Biotechnology Letters. 15: 331-336. DOI: 10.1007/Bf00128271 |
0.344 |
|
1992 |
Tolentino GJ, Meng SY, Bennett GN, San KY. A pH-regulated promoter for the expression of recombinant proteins in Escherichia coli Biotechnology Letters. 14: 157-162. DOI: 10.1007/Bf01023351 |
0.319 |
|
1991 |
Weber AE, Yu P, San KY. The effect of the partition locus on plasmid stability and expression of a prolonged chemostat culture Journal of Biotechnology. 18: 141-152. PMID 1367100 DOI: 10.1016/0168-1656(91)90242-N |
0.352 |
|
1990 |
Weber AE, San KY. Population dynamics of a recombinant culture in a chemostat under prolonged cultivation Biotechnology and Bioengineering. 36: 727-736. DOI: 10.1002/Bit.260360711 |
0.321 |
|
1989 |
Weber AE, San K. Dynamics of plasmid maintenance in a CSTR upon square‐wave perturbations in the dilution rate Biotechnology and Bioengineering. 34: 1104-1113. PMID 18588205 DOI: 10.1002/Bit.260340812 |
0.317 |
|
1989 |
Niranjan SC, San KY. Analysis of a framework using material balances in metabolic pathways to elucidate cellular metabolism. Biotechnology and Bioengineering. 34: 496-501. PMID 18588130 DOI: 10.1002/Bit.260340409 |
0.381 |
|
1988 |
Tolentino GJ, San KY. Plasmid maintenance and gene expression of a recombinant culture under aerobic and anaerobic conditions Biotechnology Letters. 10: 373-376. DOI: 10.1007/Bf01087431 |
0.376 |
|
1988 |
Weber AE, San KY. Enhanced plasmid maintenance in a CSTR upon square-wave oscillations in the dilution rate Biotechnology Letters. 10: 531-536. DOI: 10.1007/Bf01027124 |
0.335 |
|
1987 |
Weber AE, San KY. Persistence and expression of the plasmid pBR322 in Escherichia coli K12 cultured in complex medium Biotechnology Letters. 9: 757-760. DOI: 10.1007/Bf01028279 |
0.349 |
|
Show low-probability matches. |