Year |
Citation |
Score |
2023 |
Zhu L, Scafaro AP, Vierling E, Ball MC, Posch BC, Stock F, Atkin OK. Heat tolerance of a tropical-subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry. The New Phytologist. PMID 37932881 DOI: 10.1111/nph.19356 |
0.342 |
|
2023 |
Waters ER, Bezanilla M, Vierling E. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages. Plant & Cell Physiology. PMID 37859594 DOI: 10.1093/pcp/pcad122 |
0.339 |
|
2022 |
Kim M, Swenson J, McLoughlin F, Vierling E. Mutation of the polyadenylation complex subunit CstF77 reveals that mRNA 3' end formation and HSP101 levels are critical for a robust heat stress response. The Plant Cell. PMID 36472129 DOI: 10.1093/plcell/koac351 |
0.568 |
|
2021 |
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. The New Phytologist. PMID 34482561 DOI: 10.1111/nph.17717 |
0.49 |
|
2021 |
Liu T, Arsenault J, Vierling E, Kim M. Mitochondrial ATP Synthase Subunit d, a Component of the Peripheral Stalk, is Essential for Growth and Heat Stress Tolerance in Arabidopsis thaliana. The Plant Journal : For Cell and Molecular Biology. PMID 33974298 DOI: 10.1111/tpj.15317 |
0.479 |
|
2020 |
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. The New Phytologist. PMID 32297991 DOI: 10.1111/Nph.16536 |
0.498 |
|
2019 |
McLoughlin F, Kim M, Marshall RS, Vierstra RD, Vierling E. HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. Plant Physiology. PMID 31113833 DOI: 10.1104/Pp.19.00263 |
0.673 |
|
2019 |
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, ... ... Vierling E, et al. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress & Chaperones. PMID 30758704 DOI: 10.1007/S12192-019-00979-Z |
0.518 |
|
2018 |
Wang X, Hou L, Lu Y, Wu B, Gong X, Liu M, Wang J, Sun Q, Vierling E, Xu S. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. Journal of Experimental Botany. 69: 5531-5545. PMID 30476278 DOI: 10.1093/Jxb/Ery303 |
0.507 |
|
2018 |
Santhanagopalan I, Degiacomi MT, Shepherd DA, Hochberg GK, Benesch JL, Vierling E. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. The Journal of Biological Chemistry. PMID 30348902 DOI: 10.1074/Jbc.Ra118.005421 |
0.499 |
|
2018 |
Marklund EG, Zhang Y, Basha E, Benesch JLP, Vierling E. Correction to: Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress & Chaperones. PMID 29721819 DOI: 10.1007/S12192-018-0901-6 |
0.5 |
|
2018 |
Guerra D, Truebridge I, Eyles SJ, Treffon P, Vierling E. Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein. Methods in Molecular Biology (Clifton, N.J.). 1747: 143-160. PMID 29600457 DOI: 10.1007/978-1-4939-7695-9_12 |
0.402 |
|
2018 |
Marklund EG, Zhang Y, Basha E, Benesch JLP, Vierling E. Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress & Chaperones. PMID 29476342 DOI: 10.1007/S12192-018-0884-3 |
0.584 |
|
2018 |
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science (New York, N.Y.). 359: 930-935. PMID 29472485 DOI: 10.1126/Science.Aam7229 |
0.565 |
|
2017 |
Kim M, McLoughlin F, Basha E, Vierling E. Assessing Plant Tolerance to Acute Heat Stress. Bio-Protocol. 7: e2405. PMID 34541136 DOI: 10.21769/BioProtoc.2405 |
0.423 |
|
2017 |
Zhang L, Liu X, Gaikwad K, Kou X, Wang F, Tian X, Xin M, Ni Z, Sun Q, Peng H, Vierling E. Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in Arabidopsis thaliana. The Plant Cell. PMID 28808135 DOI: 10.1105/Tpc.16.00808 |
0.423 |
|
2017 |
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJ, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, ... ... Vierling E, et al. The growing world of small heat shock proteins: from structure to functions. Cell Stress & Chaperones. PMID 28364346 DOI: 10.1007/S12192-017-0787-8 |
0.523 |
|
2016 |
McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E. Class I and II small heat-shock proteins protect protein translation factors during heat stress. Plant Physiology. PMID 27474115 DOI: 10.1104/Pp.16.00536 |
0.603 |
|
2016 |
Guerra D, Ballard K, Truebridge I, Vierling E. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry. PMID 27064847 DOI: 10.1021/Acs.Biochem.5B01373 |
0.386 |
|
2015 |
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology. 427: 1537-48. PMID 25681016 DOI: 10.1016/J.Jmb.2015.02.002 |
0.574 |
|
2014 |
Patel S, Vierling E, Tama F. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins. Biophysical Journal. 106: 2644-55. PMID 24940782 DOI: 10.1016/J.Bpj.2014.04.048 |
0.527 |
|
2013 |
Xu S, Guerra D, Lee U, Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Frontiers in Plant Science. 4: 430. PMID 24204370 DOI: 10.3389/Fpls.2013.00430 |
0.363 |
|
2013 |
Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. Journal of Molecular Biology. 425: 1683-96. PMID 23416558 DOI: 10.1016/J.Jmb.2013.02.011 |
0.604 |
|
2012 |
Kim M, Lee U, Small I, des Francs-Small CC, Vierling E. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. The Plant Cell. 24: 3349-65. PMID 22942382 DOI: 10.1105/Tpc.112.101006 |
0.611 |
|
2012 |
Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H, Basha E, Jaya N, Vierling E, Benesch JL. Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chemistry & Biology. 19: 599-607. PMID 22633411 DOI: 10.1016/J.Chembiol.2012.04.007 |
0.792 |
|
2012 |
Basha E, O'Neill H, Vierling E. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends in Biochemical Sciences. 37: 106-17. PMID 22177323 DOI: 10.1016/J.Tibs.2011.11.005 |
0.573 |
|
2010 |
Benesch JL, Aquilina JA, Baldwin AJ, Rekas A, Stengel F, Lindner RA, Basha E, Devlin GL, Horwitz J, Vierling E, Carver JA, Robinson CV. The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chemistry & Biology. 17: 1008-17. PMID 20851350 DOI: 10.1016/J.Chembiol.2010.06.016 |
0.489 |
|
2010 |
Basha E, Jones C, Wysocki V, Vierling E. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol Journal of Biological Chemistry. 285: 11489-11497. PMID 20145254 DOI: 10.1074/Jbc.M109.074088 |
0.547 |
|
2010 |
Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proceedings of the National Academy of Sciences of the United States of America. 107: 2007-12. PMID 20133845 DOI: 10.1073/Pnas.0910126107 |
0.819 |
|
2009 |
Jaya N, Garcia V, Vierling E. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America. 106: 15604-9. PMID 19717454 DOI: 10.1073/Pnas.0902177106 |
0.787 |
|
2008 |
Cheng G, Basha E, Wysocki VH, Vierling E. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. The Journal of Biological Chemistry. 283: 26634-42. PMID 18621732 DOI: 10.1074/Jbc.M802946200 |
0.54 |
|
2008 |
Balogi Z, Cheregi O, Giese KC, Juhász K, Vierling E, Vass I, Vígh L, Horváth I. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803. The Journal of Biological Chemistry. 283: 22983-91. PMID 18574246 DOI: 10.1074/Jbc.M710400200 |
0.432 |
|
2008 |
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress & Chaperones. 13: 183-97. PMID 18369739 DOI: 10.1007/S12192-008-0032-6 |
0.464 |
|
2008 |
Painter AJ, Jaya N, Basha E, Vierling E, Robinson CV, Benesch JL. Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chemistry & Biology. 15: 246-53. PMID 18355724 DOI: 10.1016/J.Chembiol.2008.01.009 |
0.799 |
|
2008 |
Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. The Plant Cell. 20: 786-802. PMID 18326829 DOI: 10.1105/Tpc.107.052647 |
0.414 |
|
2008 |
Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E. Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Molecular Ecology. 17: 1614-26. PMID 18321256 DOI: 10.1111/J.1365-294X.2008.03690.X |
0.463 |
|
2008 |
Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature. Plant Physiology. 146: 748-61. PMID 18055584 DOI: 10.1104/Pp.107.112060 |
0.39 |
|
2008 |
Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal : For Cell and Molecular Biology. 53: 264-74. PMID 17999647 DOI: 10.1111/J.1365-313X.2007.03334.X |
0.421 |
|
2007 |
McLellan CA, Turbyville TJ, Wijeratne EM, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AA. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiology. 145: 174-82. PMID 17631526 DOI: 10.1104/Pp.107.101808 |
0.499 |
|
2007 |
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Current Opinion in Plant Biology. 10: 310-6. PMID 17482504 DOI: 10.1016/J.Pbi.2007.04.011 |
0.47 |
|
2007 |
Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell. 19: 182-95. PMID 17220197 DOI: 10.1105/Tpc.106.048165 |
0.441 |
|
2007 |
Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW. Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. The Plant Journal : For Cell and Molecular Biology. 49: 184-93. PMID 17156413 DOI: 10.1111/J.1365-313X.2006.02950.X |
0.56 |
|
2007 |
Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. The Plant Journal : For Cell and Molecular Biology. 49: 115-27. PMID 17144892 DOI: 10.1111/J.1365-313X.2006.02940.X |
0.553 |
|
2006 |
Basha E, Friedrich KL, Vierling E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. The Journal of Biological Chemistry. 281: 39943-52. PMID 17090542 DOI: 10.1074/Jbc.M607677200 |
0.796 |
|
2005 |
Giese KC, Basha E, Catague BY, Vierling E. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proceedings of the National Academy of Sciences of the United States of America. 102: 18896-901. PMID 16365319 DOI: 10.1073/Pnas.0506169103 |
0.459 |
|
2005 |
Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology. 138: 882-97. PMID 15923322 DOI: 10.1104/Pp.105.062257 |
0.441 |
|
2005 |
Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vígh L, Horváth I. "Heat shock lipid" in cyanobacteria during heat/light-acclimation. Archives of Biochemistry and Biophysics. 436: 346-54. PMID 15797247 DOI: 10.1016/J.Abb.2005.02.018 |
0.446 |
|
2005 |
Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. The Plant Cell. 17: 559-71. PMID 15659638 DOI: 10.1105/Tpc.104.027540 |
0.496 |
|
2004 |
Giese KC, Vierling E. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. The Journal of Biological Chemistry. 279: 32674-83. PMID 15152007 DOI: 10.1074/Jbc.M404455200 |
0.451 |
|
2004 |
Lum R, Tkach JM, Vierling E, Glover JR. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. The Journal of Biological Chemistry. 279: 29139-46. PMID 15128736 DOI: 10.1074/Jbc.M403777200 |
0.523 |
|
2004 |
Basha E, Lee GJ, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins from wheat. European Journal of Biochemistry / Febs. 271: 1426-36. PMID 15066169 DOI: 10.1111/J.1432-1033.2004.04033.X |
0.483 |
|
2004 |
Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. The Journal of Biological Chemistry. 279: 7566-75. PMID 14662763 DOI: 10.1074/Jbc.M310684200 |
0.627 |
|
2004 |
Friedrich KL, Giese KC, Buan NR, Vierling E. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. The Journal of Biological Chemistry. 279: 1080-9. PMID 14573605 DOI: 10.1074/Jbc.M311104200 |
0.81 |
|
2003 |
Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology. 50: 585-95. PMID 14617181 DOI: 10.1046/J.1365-2958.2003.03710.X |
0.525 |
|
2003 |
Wintrode PL, Friedrich KL, Vierling E, Smith JB, Smith DL. Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry. Biochemistry. 42: 10667-73. PMID 12962491 DOI: 10.1021/Bi034117M |
0.793 |
|
2003 |
Hong SW, Lee U, Vierling E. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology. 132: 757-67. PMID 12805605 DOI: 10.1104/Pp.102.017145 |
0.472 |
|
2003 |
Mogk A, Schlieker C, Friedrich KL, Schönfeld HJ, Vierling E, Bukau B. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. The Journal of Biological Chemistry. 278: 31033-42. PMID 12788951 DOI: 10.1074/Jbc.M303587200 |
0.83 |
|
2002 |
Tsvetkova NM, Horváth I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L. Small heat-shock proteins regulate membrane lipid polymorphism. Proceedings of the National Academy of Sciences of the United States of America. 99: 13504-9. PMID 12368478 DOI: 10.1073/Pnas.192468399 |
0.356 |
|
2002 |
Giese KC, Vierling E. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. The Journal of Biological Chemistry. 277: 46310-8. PMID 12297515 DOI: 10.1074/Jbc.M208926200 |
0.461 |
|
2002 |
Sobott F, Benesch JL, Vierling E, Robinson CV. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. The Journal of Biological Chemistry. 277: 38921-9. PMID 12138169 DOI: 10.1074/Jbc.M206060200 |
0.506 |
|
2002 |
Benesch J, Sobott F, Vierling E, Robinson CV. A nano-electrospray investigation into the subunit exchange of small heat shock proteins Proceedings 50th Asms Conference On Mass Spectrometry and Allied Topics. 437-438. |
0.4 |
|
2002 |
Wintrode PL, Smith JB, Basha E, Vierling E, Smith DL. Solution conformation and dynamics of a heat shock protein complex probed by hydrogen exchange/mass spectrometry Proceedings 50th Asms Conference On Mass Spectrometry and Allied Topics. 129-130. |
0.471 |
|
2001 |
Van Montfort R, Slingsby C, Vierling E. Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones Advances in Protein Chemistry. 59: 105-156. PMID 11868270 DOI: 10.1016/S0065-3233(01)59004-X |
0.463 |
|
2001 |
Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E. Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo Plant Physiology. 127: 1053-1064. PMID 11706186 DOI: 10.1104/Pp.010357 |
0.499 |
|
2001 |
van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural Biology. 8: 1025-30. PMID 11702068 DOI: 10.1038/Nsb722 |
0.811 |
|
2001 |
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins) Cell Stress and Chaperones. 6: 225-237. PMID 11599564 DOI: 10.1379/1466-1268(2001)006<0225:Tefoat>2.0.Co;2 |
0.476 |
|
2001 |
Hong SW, Vierling E. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress Plant Journal. 27: 25-35. PMID 11489180 DOI: 10.1046/J.1365-313X.2001.01066.X |
0.517 |
|
2001 |
Dong Yul Sung, Vierling E, Guy CL. Comprehensive expression profile analysis of the Arabidopsis hsp70 gene family Plant Physiology. 126: 789-800. PMID 11402207 DOI: 10.1104/Pp.126.2.789 |
0.424 |
|
2001 |
Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proceedings of the National Academy of Sciences of the United States of America. 98: 3098-103. PMID 11248038 DOI: 10.1073/Pnas.051619498 |
0.511 |
|
2000 |
Hong SW, Vierling E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress Proceedings of the National Academy of Sciences of the United States of America. 97: 4392-4397. PMID 10760305 DOI: 10.1073/Pnas.97.8.4392 |
0.437 |
|
2000 |
Queitsch C, Hong SW, Vierling E, Lindquist S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell. 12: 479-92. PMID 10760238 DOI: 10.1105/Tpc.12.4.479 |
0.517 |
|
2000 |
Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance Plant Physiology. 122: 1099-1108. PMID 10759505 DOI: 10.1104/Pp.122.4.1099 |
0.484 |
|
2000 |
Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein Plant Physiology. 122: 189-197. PMID 10631262 DOI: 10.1104/Pp.122.1.189 |
0.581 |
|
1999 |
Waters ER, Vierling E. Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein Proceedings of the National Academy of Sciences of the United States of America. 96: 14394-14399. PMID 10588716 DOI: 10.1073/Pnas.96.25.14394 |
0.478 |
|
1999 |
Härndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress & Chaperones. 4: 129-38. PMID 10547062 DOI: 10.1379/1466-1268(1999)004<0129:Tcshsp>2.3.Co;2 |
0.556 |
|
1999 |
Waters ER, Vierling E. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses Molecular Biology and Evolution. 16: 127-139. PMID 10331257 DOI: 10.1093/Oxfordjournals.Molbev.A026033 |
0.36 |
|
1999 |
Basha EM, Waters ER, Vierling E. Triticum aestivum cDNAs homologous to nuclear-encoded mitochondrion- localized small heat shock proteins Plant Science. 141: 93-103. DOI: 10.1016/S0168-9452(98)00219-2 |
0.503 |
|
1998 |
Lee GJ, Vierling E. Expression, purification and molecular chaperone activity of plant recombinant small heat shock proteins Methods in Enzymology. 290: 350-365. PMID 9534175 DOI: 10.1016/S0076-6879(98)90031-3 |
0.492 |
|
1998 |
Suzuki TC, Krawitz DC, Vierling E. The Chloroplast Small Heat-Shock Protein Oligomer Is Not Phosphorylated and Does Not Dissociate during Heat Stress in Vivo Plant Physiology. 116: 1151-1161. PMID 9501148 DOI: 10.1104/Pp.116.3.1151 |
0.584 |
|
1997 |
Helm KW, Lee GJ, Vierling E. Expression and native structure of cytosolic class II small heat-shock proteins Plant Physiology. 114: 1477-1485. PMID 9276957 DOI: 10.1104/Pp.114.4.1477 |
0.418 |
|
1997 |
Lee GJ, Roseman AM, Saibil HR, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state Embo Journal. 16: 659-671. PMID 9034347 DOI: 10.1093/Emboj/16.3.659 |
0.589 |
|
1997 |
Vierling E. The small heat shock proteins in plants are members of an ancient family of heat induced proteins Acta Physiologiae Plantarum. 19: 539-547. DOI: 10.1007/S11738-997-0051-4 |
0.529 |
|
1996 |
Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants Plant Molecular Biology. 32: 191-222. PMID 8980480 DOI: 10.1007/Bf00039383 |
0.559 |
|
1996 |
Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E. Synthesis of small heat-shock proteins is part of the developmentalprogram of late seed maturation Plant Physiology. 112: 747-757. PMID 8883386 DOI: 10.1104/Pp.112.2.747 |
0.422 |
|
1996 |
LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Molecular Biology. 30: 159-69. PMID 8616233 DOI: 10.1007/Bf00017810 |
0.444 |
|
1996 |
Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants Journal of Experimental Botany. 47: 325-338. DOI: 10.1093/Jxb/47.3.325 |
0.593 |
|
1995 |
DeRocher A, Vierling E. Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs Plant Molecular Biology. 27: 441-456. PMID 7894010 DOI: 10.1007/Bf00019312 |
0.473 |
|
1995 |
Helm KW, Schmeits J, Vierling E. An endomembrane-localized small heat-shock protein from Arabidopsis thaliana Plant Physiology. 107: 287-288. PMID 7870826 DOI: 10.1104/Pp.107.1.287 |
0.535 |
|
1995 |
Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea Journal of Biological Chemistry. 270: 10432-10438. PMID 7737977 DOI: 10.1074/Jbc.270.18.10432 |
0.553 |
|
1995 |
Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A, Soll J. Functional characterization of the higher plant chloroplast chaperonins Journal of Biological Chemistry. 270: 18158-18164. PMID 7629128 DOI: 10.1074/Jbc.270.30.18158 |
0.353 |
|
1994 |
Chen Q, Osteryoung K, Vierling E. A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in organelle Journal of Biological Chemistry. 269: 13216-13223. PMID 8175751 |
0.427 |
|
1994 |
Osteryoung KW, Vierling E. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants Journal of Biological Chemistry. 269: 28676-28682. PMID 7961818 |
0.461 |
|
1994 |
Schirmer EC, Lindquist S, Vierling E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast Plant Cell. 6: 1899-1909. PMID 7866032 DOI: 10.1105/Tpc.6.12.1899 |
0.549 |
|
1994 |
DeRocher AE, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation Plant Journal. 5: 93-102. DOI: 10.1046/J.1365-313X.1994.5010093.X |
0.441 |
|
1993 |
Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E. Localization of small heat shock proteins to the higher plant endomembrane system. Molecular and Cellular Biology. 13: 238-47. PMID 8417329 DOI: 10.1128/mcb.13.1.238-247.1993 |
0.552 |
|
1993 |
Osteryoung KW, Sundberg H, Vierling E. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected Mgg Molecular &Amp; General Genetics. 239: 323-333. PMID 8391109 DOI: 10.1007/Bf00276930 |
0.51 |
|
1993 |
Hernandez LD, Vierling E. Expression of low molecular weight heat-shock proteins under field conditions Plant Physiology. 101: 1209-1216. DOI: 10.1104/Pp.101.4.1209 |
0.457 |
|
1991 |
Derocher AE, Helm KW, Lauzon LM, Vierling E. Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. Plant Physiology. 96: 1038-47. PMID 16668295 DOI: 10.1104/Pp.96.4.1038 |
0.547 |
|
1991 |
Chen Q, Vierling E. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein Mgg Molecular &Amp; General Genetics. 226: 425-431. PMID 2038305 DOI: 10.1007/Bf00260655 |
0.58 |
|
1991 |
Vierling E. The roles of heat shock proteins in plants Annual Review of Plant Physiology and Plant Molecular Biology. 42: 579-620. |
0.413 |
|
1991 |
DeRocher AE, Helm KW, Lauzon LM, Vierling E. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery Plant Physiology. 96: 1038-1047. |
0.46 |
|
1990 |
Lauzon LM, Helm KW, Vierling E. A cDNA clone from Pisum sativum encoding a low molecular weight heat shock protein Nucleic Acids Research. 18: 4274. PMID 2377479 DOI: 10.1093/Nar/18.14.4274 |
0.479 |
|
1990 |
Chen Q, Lauzon LM, DeRocher AE, Vierling E. Accumulation, stability, and localization of a major chloroplast heat-shock protein Journal of Cell Biology. 110: 1873-1883. PMID 2351688 DOI: 10.1083/Jcb.110.6.1873 |
0.614 |
|
1990 |
Marshall JS, DeRocher AE, Keegstra K, Vierling E. Identification of heat shock protein hsp70 homologues in chloroplasts Proceedings of the National Academy of Sciences of the United States of America. 87: 374-378. PMID 2296591 DOI: 10.1073/Pnas.87.1.374 |
0.577 |
|
1990 |
Vierling E. MOLECULAR ANALYSIS OF HEAT STRESS PROTEINS IN HIGHER PLANTS Hortscience. 25: 1175e-1175. DOI: 10.21273/hortsci.25.9.1175e |
0.458 |
|
1990 |
Nieto-Sotelo J, Vierling E, Ho THD. Cloning, sequence analysis, and expression of a cDNA encoding a plastid-localized heat shock protein in maize Plant Physiology. 93: 1321-1328. DOI: 10.1104/Pp.93.4.1321 |
0.487 |
|
1989 |
Vierling E, Harris LM, Chen Q. The major low-molecular-weight heat shock protein in chloroplasts shows antigenic conservation among diverse higher plant species Molecular and Cellular Biology. 9: 461-468. PMID 2710111 DOI: 10.1128/Mcb.9.2.461 |
0.588 |
|
1988 |
Vierling E, Nagao RT, DeRocher AE, Harris LM. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. The Embo Journal. 7: 575-81. PMID 3396532 DOI: 10.1002/J.1460-2075.1988.Tb02849.X |
0.546 |
|
1988 |
Vierling E, Nagao RT, DeRocher AE, Harris LM. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. The Embo Journal. 7: 575-581. DOI: 10.1002/j.1460-2075.1988.tb02849.x |
0.461 |
|
1986 |
Vierling E, Mishkind ML, Schmidt GW, Key JL. Specific heat shock proteins are transported into chloroplasts Proceedings of the National Academy of Sciences of the United States of America. 83: 361-365. PMID 16593647 DOI: 10.1073/Pnas.83.2.361 |
0.533 |
|
1985 |
Vierling E, Key JL. Ribulose 1,5-Bisphosphate Carboxylase Synthesis during Heat Shock Plant Physiology. 78: 155-162. PMID 16664190 DOI: 10.1104/Pp.78.1.155 |
0.408 |
|
1983 |
Vaughn KC, Vierling E, Duke SO, Alberte RS. Immunocytochemical and Cytochemical Localization of Photosystems I and II. Plant Physiology. 73: 203-7. PMID 16663195 DOI: 10.1104/Pp.73.2.203 |
0.609 |
|
1983 |
Vierling E, Alberte RS. P700 Chlorophyll a-Protein : Purification, Characterization, and Antibody Preparation Plant Physiology. 72: 625-633. PMID 16663057 DOI: 10.1104/Pp.72.3.625 |
0.411 |
|
1983 |
Vierling E, Alberte RS. Regulation of synthesis of the photosystem I reaction center Journal of Cell Biology. 97: 1806-1814. PMID 6358234 DOI: 10.1083/Jcb.97.6.1806 |
0.609 |
|
1980 |
VIERLING E, ALBERTE RS. Functional organization and plasticity of the photosynthetic unit of the cyanobacterium Anacystis nidulans Physiologia Plantarum. 50: 93-98. DOI: 10.1111/J.1399-3054.1980.Tb04432.X |
0.56 |
|
Show low-probability matches. |