Year |
Citation |
Score |
2002 |
Drozdov AN, Tucker SC. Response to “Comment on ‘Self-diffusion near the liquid–vapor critical point’ ” [J. Chem. Phys. 116, 6379 (2002)] Journal of Chemical Physics. 116: 6381-6382. DOI: 10.1063/1.1458929 |
0.37 |
|
2001 |
Drozdov AN, Tucker SC. Self-diffusion near the liquid-vapor critical point Journal of Chemical Physics. 114: 4912-4917. DOI: 10.1063/1.1349095 |
0.382 |
|
2001 |
Drozdov AN, Tucker SC. Stochastic dynamics in near-critical supercritical fluids Journal of Physical Chemistry B. 105: 6675-6683. DOI: 10.1021/Jp010354S |
0.419 |
|
2000 |
Drozdov AN, Tucker SC. Rayleigh-Ritz calculation of the activation rate in the spatial diffusion regime Journal of Chemical Physics. 113: 258-265. DOI: 10.1063/1.481792 |
0.304 |
|
2000 |
Goodyear G, Maddox MW, Tucker SC. Correlation between local and long-range structure in compressible supercritical fluids Journal of Chemical Physics. 112: 10327-10339. DOI: 10.1063/1.481670 |
0.67 |
|
2000 |
Drozdov AN, Tucker SC. Does variational transition state theory provide an upper bound to the rate in dissipative systems Journal of Chemical Physics. 112: 5251-5253. DOI: 10.1063/1.481095 |
0.317 |
|
2000 |
Maddox MW, Goodyear aG, Tucker SC. Effect of Critical Slowing Down on Local-Density Dynamics Journal of Physical Chemistry B. 104: 6266-6270. DOI: 10.1021/Jp0003813 |
0.453 |
|
2000 |
Goodyear G, Maddox MW, Tucker SC. Correlation between local and long-range structure in compressible supercritical Lennard-jones fluids: State-point dependence Journal of Physical Chemistry B. 104: 6258-6265. DOI: 10.1021/Jp000380A |
0.688 |
|
2000 |
Maddox MW, Goodyear aG, Tucker SC. Origins of Atom-Centered Local Density Enhancements in Compressible Supercritical Fluids Journal of Physical Chemistry B. 104: 6248-6257. DOI: 10.1021/Jp000379B |
0.459 |
|
2000 |
Goodyear G, Maddox MW, Tucker SC. Domain-based characterization of density inhomogeneities in compressible supercritical fluids Journal of Physical Chemistry B. 104: 6240-6247. DOI: 10.1021/Jp000378J |
0.666 |
|
1999 |
Tucker SC. Solvent Density Inhomogeneities in Supercritical Fluids. Chemical Reviews. 99: 391-418. PMID 11848986 DOI: 10.1021/cr9700437 |
0.334 |
|
1999 |
Goodyear G, Tucker SC. Glass-like behavior in supercritical fluids: The effect of critical slowing down on solute dynamics Journal of Chemical Physics. 111: 9673-9677. DOI: 10.1063/1.480299 |
0.671 |
|
1999 |
Goodyear G, Tucker SC. What causes the vibrational lifetime plateau in supercritical fluids? Journal of Chemical Physics. 110: 3643-3646. DOI: 10.1063/1.478253 |
0.678 |
|
1996 |
Reese SK, Tucker SC. Solvent–solute reaction path curvature effects on energy transfer corrections to the solute reaction rate Journal of Chemical Physics. 105: 2263-2279. DOI: 10.1063/1.472095 |
0.362 |
|
1996 |
Martinez HL, Ravi R, Tucker SC. Characterization of solvent clusters in a supercritical Lennard‐Jones fluid Journal of Chemical Physics. 104: 1067-1080. DOI: 10.1063/1.470762 |
0.412 |
|
1996 |
and HL, Tucker SC. A Continuum Solvation Model Including Electrostriction: Application to the Anisole Hydrolysis Reaction in Supercritical Water The Journal of Physical Chemistry. 100: 11165-11174. DOI: 10.1021/Jp952359T |
0.368 |
|
1995 |
Reese SK, Tucker SC, Schenter GK. The reactive flux method in the energy diffusion regime. II. Importance of the solvent’s spectral profile Journal of Chemical Physics. 102: 104-118. DOI: 10.1063/1.469381 |
0.361 |
|
1994 |
Tucker SC. The reactive flux method in the energy diffusion regime. I. Effect of slow vibrational energy relaxation Journal of Chemical Physics. 101: 2006-2015. DOI: 10.1063/1.467710 |
0.377 |
|
1993 |
Tucker SC. Do details of the solvent's spectral profile affect solute reaction rates ? The Journal of Physical Chemistry. 97: 1596-1609. DOI: 10.1021/J100110A022 |
0.342 |
|
1991 |
Zhao XG, Tucker SC, Truhlar DG. Solvent and secondary kinetic isotope effects for the microhydrated SN2 reaction of Cl-(H2O)n with CH3Cl Journal of the American Chemical Society. 113: 826-832. DOI: 10.1021/Ja00003A015 |
0.447 |
|
1990 |
Tucker SC, Truhlar DG. Effect of nonequilibrium solvation on chemical reaction rates. Variational transition-state-theory studies of the microsolvated reaction Cl-(H2O)n + CH3Cl Journal of the American Chemical Society. 112: 3347-3361. DOI: 10.1021/Ja00165A014 |
0.397 |
|
1990 |
Tucker SC, Truhlar DG. A six-body potential energy surface for the SN2 reaction Cl-(g) + CH3Cl(g) and a variational transition-state-theory calculation of the rate constant Journal of the American Chemical Society. 112: 3338-3347. DOI: 10.1021/Ja00165A013 |
0.466 |
|
1989 |
Schwenke DW, Tucker SC, Steckler R, Brown FB, Lynch GC, Truhlar DG, Garrett BC. Global potential‐energy surfaces for H2Cl The Journal of Chemical Physics. 90: 3110-3120. DOI: 10.1063/1.455914 |
0.586 |
|
1989 |
Tucker SC, Truhlar DG. Ab initio calculations of the transition-state geometry and vibrational frequencies of the SN2 reaction of chloride with chloromethane The Journal of Physical Chemistry. 93: 8138-8142. DOI: 10.1021/J100362A004 |
0.442 |
|
1989 |
Tucker SC, Truhlar DG. Generalized born fragment charge model for solvation effects as a function of reaction coordinate Chemical Physics Letters. 157: 164-170. DOI: 10.1016/0009-2614(89)87227-6 |
0.446 |
|
1988 |
Tucker SC, Truhlar DG. L2golden rule method to calculate partial widths for the decay of resonance states The Journal of Chemical Physics. 88: 3667-3677. DOI: 10.1063/1.453866 |
0.41 |
|
1987 |
Tucker SC, Truhlar DG. Completely L2Golden Rule method for resonance energies and widths The Journal of Chemical Physics. 86: 6251-6257. DOI: 10.1063/1.452462 |
0.418 |
|
1985 |
Brown FB, Tucker SC, Truhlar DG. Semiclassical reaction‐path methods applied to calculate the tunneling splitting in ammonia The Journal of Chemical Physics. 83: 4451-4455. DOI: 10.1063/1.449064 |
0.44 |
|
1985 |
Tucker SC, Truhlar DG, Garrett BC, Isaacson AD. Variational transition state theory with least‐action tunneling calculations for the kinetic isotope effects in the Cl+H2 reaction: Tests of extended‐LEPS, information‐theoretic, and diatomics‐in‐molecules potential energy surfaces The Journal of Chemical Physics. 82: 4102-4119. DOI: 10.1063/1.448851 |
0.589 |
|
Show low-probability matches. |