Year |
Citation |
Score |
2024 |
Mishra B, Alam A, Chakraborty A, Kumbhakar B, Ghosh S, Pachfule P, Thomas A. Covalent Organic Frameworks for Photocatalysis. Advanced Materials (Deerfield Beach, Fla.). e2413118. PMID 39654345 DOI: 10.1002/adma.202413118 |
0.512 |
|
2023 |
Yan R, Mishra B, Traxler M, Roeser J, Chaoui N, Kumbhakar B, Schmidt J, Li S, Thomas A, Pachfule P. A Thiazole-linked Covalent Organic Framework for Lithium-Sulphur Batteries. Angewandte Chemie (International Ed. in English). e202302276. PMID 37193648 DOI: 10.1002/anie.202302276 |
0.514 |
|
2023 |
Zhao X, Li Q, Pachfule P, Wang Z, Liu S, Wu W, Wu M, Thomas A. Construction of Covalent Organic Framework Nanofiber Membranes for Efficient Adsorption of Antibiotics. Small (Weinheim An Der Bergstrasse, Germany). e2301200. PMID 36942696 DOI: 10.1002/smll.202301200 |
0.495 |
|
2022 |
Traxler M, Gisbertz S, Pachfule P, Schmidt J, Roeser J, Reischauer S, Rabeah J, Pieber B, Thomas A. Acridine Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic C-N Cross-Coupling. Angewandte Chemie (International Ed. in English). PMID 35188714 DOI: 10.1002/anie.202117738 |
0.52 |
|
2022 |
Li C, Ju W, Vijay S, Timoshenko J, Mou K, Cullen DA, Yang J, Wang X, Pachfule P, Brückner S, Jeon HS, Haase FT, Tsang SC, Rettenmaier C, Chan K, et al. Covalent Organic Framework (COF) derived Ni-N-C Catalysts for Electrochemical CO2 Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie (International Ed. in English). PMID 35102658 DOI: 10.1002/anie.202114707 |
0.519 |
|
2021 |
Li S, Zhao Z, Ma T, Pachfule P, Thomas A. Superstructures of Organic-Polyoxometalate Co-crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie (International Ed. in English). PMID 34709716 DOI: 10.1002/anie.202112298 |
0.557 |
|
2021 |
Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews. PMID 33881422 DOI: 10.1039/d0cs01569e |
0.504 |
|
2020 |
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran CV, Borgmans S, Rogge SMJ, Leus K, Stevens CV, Martens JA, Van Speybroeck V, Breynaert E, Thomas A, et al. Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic HO Generation. Journal of the American Chemical Society. PMID 33185433 DOI: 10.1021/jacs.0c09684 |
0.498 |
|
2020 |
Li C, Yang J, Pachfule P, Li S, Ye MY, Schmidt J, Thomas A. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nature Communications. 11: 4712. PMID 32948768 DOI: 10.1038/S41467-020-18427-3 |
0.561 |
|
2020 |
Acharjya A, Longworth-Dunbar L, Roeser J, Pachfule P, Thomas A. Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society. PMID 32678594 DOI: 10.1021/Jacs.0C04570 |
0.555 |
|
2020 |
König M, Rigo M, Chaoui N, Ngoc TT, Epping JD, Schmidt J, Pachfule P, Ye MY, Trunk M, Teichert J, Drieß M, Thomas A. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room-Temperature Gas Phase Catalysis. Angewandte Chemie (International Ed. in English). PMID 32614513 DOI: 10.1002/Anie.202004092 |
0.541 |
|
2020 |
Faghani A, Gholami MF, Trunk M, Müller J, Pachfule P, Vogl S, Donskyi I, Nickl P, Shao J, Huang MRS, Unger WES, Arenal R, Koch CT, Paulus B, Rabe JP, et al. Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society. PMID 32597176 DOI: 10.1021/Jacs.0C02399 |
0.545 |
|
2019 |
Pachfule P, Acharjya A, Roeser J, Sivasankaran RP, Ye MY, Brückner A, Schmidt J, Thomas A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chemical Science. 10: 8316-8322. PMID 31762969 DOI: 10.1039/C9Sc02601K |
0.524 |
|
2019 |
Acharjya A, Pachfule P, Roeser J, Schmitt FJ, Thomas A. Vinylene-Linked Covalent Organic Frameworks by Base-Catalyzed Aldol Condensation. Angewandte Chemie (International Ed. in English). PMID 31340082 DOI: 10.1002/Anie.201905886 |
0.558 |
|
2019 |
Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society. PMID 30916950 DOI: 10.1021/Jacs.9B01226 |
0.586 |
|
2019 |
Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Tian G, Schmidt J, Thomas A. Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst Chemistry of Materials. 31: 3274-3280. DOI: 10.1021/Acs.Chemmater.9B00204 |
0.596 |
|
2019 |
Li S, Cheng C, Sagaltchik A, Pachfule P, Zhao C, Thomas A. Hydrogen Evolution Reaction Catalysts: Metal-Organic Precursor-Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media (Adv. Funct. Mater. 3/2019) Advanced Functional Materials. 29: 1970013. DOI: 10.1002/Adfm.201970013 |
0.587 |
|
2018 |
Zhao X, Pachfule P, Li S, Simke JRJ, Schmidt J, Thomas A. Bifunctional Electrocatalysts for Overall Water Splitting from a Fe/Ni-based Bimetallic Metal Organic Framework/Dicyandiamide Composite. Angewandte Chemie (International Ed. in English). PMID 29714400 DOI: 10.1002/Anie.201803136 |
0.591 |
|
2018 |
Karak S, Kumar S, Pachfule P, Banerjee R. Porosity Prediction through Hydrogen Bonding in Covalent Organic Frameworks. Journal of the American Chemical Society. PMID 29597346 DOI: 10.1021/Jacs.7B13558 |
0.625 |
|
2018 |
Banerjee R, Halder A, Karak S, Addicoat M, Bera S, Chakraborty A, H Kunjattu S, Pachfule P, Heine T. Ultra-stable Imine-based Covalent Organic Frameworks for Sulfuric acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie (International Ed. in English). PMID 29573097 DOI: 10.1002/Anie.201802220 |
0.761 |
|
2018 |
Zhu Q, Pachfule P, Strubel P, Li Z, Zou R, Liu Z, Kaskel S, Xu Q. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage Energy Storage Materials. 13: 72-79. DOI: 10.1016/J.Ensm.2017.12.027 |
0.47 |
|
2018 |
Song F, Zhu Q, Yang X, Zhan W, Pachfule P, Tsumori N, Xu Q. Hydrogen Generation: Metal-Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid (Adv. Energy Mater. 1/2018) Advanced Energy Materials. 8: 1770139. DOI: 10.1002/Aenm.201870006 |
0.487 |
|
2018 |
Li S, Cheng C, Sagaltchik A, Pachfule P, Zhao C, Thomas A. Metal-Organic Precursor-Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media Advanced Functional Materials. 29: 1807419. DOI: 10.1002/Adfm.201807419 |
0.593 |
|
2017 |
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomaecker R, Thomas A, Schmidt J. Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society. PMID 29287143 DOI: 10.1021/Jacs.7B11255 |
0.586 |
|
2017 |
Bhadra M, Sasmal HS, Basu A, Midya SP, Kandambeth S, Pachfule P, Balaraman E, Banerjee R. Predesigned Metal Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. Acs Applied Materials & Interfaces. PMID 28368103 DOI: 10.1021/Acsami.7B02355 |
0.543 |
|
2017 |
Karak S, Kandambeth S, Biswal BP, Sasmal HS, Kumar S, Pachfule P, Banerjee R. Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society. PMID 28106987 DOI: 10.1021/Jacs.6B08815 |
0.612 |
|
2017 |
Pachfule P, Yang X, Zhu Q, Tsumori N, Uchida T, Xu Q. From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon Journal of Materials Chemistry A. 5: 4835-4841. DOI: 10.1039/C6Ta10748F |
0.431 |
|
2017 |
Song F, Zhu Q, Yang X, Zhan W, Pachfule P, Tsumori N, Xu Q. Metal-Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid Advanced Energy Materials. 8: 1701416. DOI: 10.1002/Aenm.201701416 |
0.459 |
|
2016 |
Pachfule P, Shinde D, Majumder M, Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nature Chemistry. 8: 718-24. PMID 27325100 DOI: 10.1038/Nchem.2515 |
0.494 |
|
2016 |
Pachfule P, Garai B, Banerjee R. Functionalization and Isoreticulation in a Series of Metal-Organic Frameworks Derived from Pyridinecarboxylates. Inorganic Chemistry. PMID 27164435 DOI: 10.1021/Acs.Inorgchem.6B00758 |
0.593 |
|
2016 |
Yang X, Pachfule P, Chen Y, Tsumori N, Xu Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chemical Communications (Cambridge, England). PMID 26907192 DOI: 10.1039/C5Cc10311H |
0.44 |
|
2016 |
Huang Y, Pachfule P, Sun J, Xu Q. From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach Journal of Materials Chemistry A. 4: 4273-4279. DOI: 10.1039/C5Ta10170K |
0.44 |
|
2016 |
Roy S, Pachfule P, Xu Q. Inside Cover: High Catalytic Performance of MIL-101-Immobilized NiRu Alloy Nanoparticles towards the Hydrolytic Dehydrogenation of Ammonia Borane (Eur. J. Inorg. Chem. 27/2016) European Journal of Inorganic Chemistry. 2016: 4530. DOI: 10.1002/Ejic.201670273 |
0.366 |
|
2016 |
Roy S, Pachfule P, Xu Q. High Catalytic Performance of MIL-101-Immobilized NiRu Alloy Nanoparticles towards the Hydrolytic Dehydrogenation of Ammonia Borane European Journal of Inorganic Chemistry. 2016: 4353-4357. DOI: 10.1002/Ejic.201600180 |
0.362 |
|
2015 |
Pal TK, De D, Neogi S, Pachfule P, Senthilkumar S, Xu Q, Bharadwaj PK. Significant Gas Adsorption and Catalytic Performance by a Robust Cu(II) -MOF Derived through Single-Crystal to Single-Crystal Transmetalation of a Thermally Less-Stable Zn(II) -MOF. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 26586229 DOI: 10.1002/Chem.201503163 |
0.483 |
|
2015 |
Aijaz A, Sun JK, Pachfule P, Uchida T, Xu Q. From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chemical Communications (Cambridge, England). PMID 26244173 DOI: 10.1039/C5Cc04230E |
0.513 |
|
2015 |
Pachfule P, Kandmabeth S, Mallick A, Banerjee R. Hollow tubular porous covalent organic framework (COF) nanostructures. Chemical Communications (Cambridge, England). 51: 11717-20. PMID 26104390 DOI: 10.1039/C5Cc04130A |
0.541 |
|
2015 |
Shinde DB, Kandambeth S, Pachfule P, Kumar RR, Banerjee R. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chemical Communications (Cambridge, England). 51: 310-3. PMID 25408225 DOI: 10.1039/C4Cc07104B |
0.529 |
|
2014 |
Venkatesh V, Pachfule P, Banerjee R, Verma S. Evolution of an adenine-copper cluster to a highly porous cuboidal framework: solution-phase ripening and gas-adsorption properties. Chemistry (Weinheim An Der Bergstrasse, Germany). 20: 12262-8. PMID 25112608 DOI: 10.1002/Chem.201403115 |
0.534 |
|
2014 |
Pachfule P, Kandambeth S, Díaz Díaz D, Banerjee R. Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications (Cambridge, England). 50: 3169-72. PMID 24519675 DOI: 10.1039/C3Cc49176E |
0.522 |
|
2014 |
Pachfule P, Panda MK, Kandambeth S, Shivaprasad SM, Díaz DD, Banerjee R. Multifunctional and robust covalent organic framework–nanoparticle hybrids J. Mater. Chem. A. 2: 7944-7952. DOI: 10.1039/C4Ta00284A |
0.461 |
|
2014 |
Bhattacharya B, Maity DK, Pachfule P, Colacio E, Ghoshal D. Syntheses, X-ray structures, catalytic activity and magnetic properties of two new coordination polymers of Co(II) and Ni(II) based on benzenedicarboxylate and linear N,N'-donor Schiff base linkers Inorganic Chemistry Frontiers. 1: 414-425. DOI: 10.1039/C4Qi00032C |
0.378 |
|
2014 |
Singh UP, Narang S, Pachfule P, Banerjee R. Variation of CO2 adsorption in isostructural Cd(ii)/Co(ii) based MOFs by anion modulation Crystengcomm. 16: 5012. DOI: 10.1039/C4Ce00058G |
0.546 |
|
2014 |
Dey R, Bhattacharya B, Pachfule P, Banerjee R, Ghoshal D. Flexible dicarboxylate based pillar-layer metal organic frameworks: Differences in structure and porosity by tuning the pyridyl based N,N′ linkers Crystengcomm. 16: 2305-2316. DOI: 10.1039/C3Ce42028K |
0.581 |
|
2013 |
Ganguly S, Pachfule P, Bala S, Goswami A, Bhattacharya S, Mondal R. Azide-functionalized lanthanide-based metal-organic frameworks showing selective CO2 gas adsorption and postsynthetic cavity expansion. Inorganic Chemistry. 52: 3588-90. PMID 23514234 DOI: 10.1021/Ic302823R |
0.369 |
|
2013 |
Pachfule P, Dhavale VM, Kandambeth S, Kurungot S, Banerjee R. Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen. Chemistry (Weinheim An Der Bergstrasse, Germany). 19: 974-80. PMID 23203910 DOI: 10.1002/Chem.201202940 |
0.56 |
|
2013 |
Goswami A, Bala S, Pachfule P, Mondal R. Comprehensive study on mutual interplay of multiple v-shaped ligands on the helical nature of a series of coordination polymers and their properties Crystal Growth and Design. 13: 5487-5498. DOI: 10.1021/Cg401469F |
0.354 |
|
2013 |
Aiyappa HB, Pachfule P, Banerjee R, Kurungot S. Porous Carbons from Nonporous MOFs: Influence of Ligand Characteristics on Intrinsic Properties of End Carbon Crystal Growth & Design. 13: 4195-4199. DOI: 10.1021/Cg401122U |
0.555 |
|
2013 |
Bhattacharya B, Dey R, Pachfule P, Banerjee R, Ghoshal D. Four 3D Cd(II)-based metal organic hybrids with different N,N′-donor spacers: Syntheses, characterizations, and selective gas adsorption properties Crystal Growth and Design. 13: 731-739. DOI: 10.1021/Cg3014464 |
0.545 |
|
2012 |
Pachfule P, Biswal BP, Banerjee R. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chemistry (Weinheim An Der Bergstrasse, Germany). 18: 11399-408. PMID 22829466 DOI: 10.1002/Chem.201200957 |
0.528 |
|
2012 |
Pachfule P, Balan BK, Kurungot S, Banerjee R. One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chemical Communications (Cambridge, England). 48: 2009-11. PMID 22234328 DOI: 10.1039/C2Cc16877D |
0.56 |
|
2012 |
Pachfule P, Chen Y, Jiang J, Banerjee R. Fluorinated metal-organic frameworks: advantageous for higher H2 and CO2 adsorption or not? Chemistry (Weinheim An Der Bergstrasse, Germany). 18: 688-94. PMID 22162125 DOI: 10.1002/Chem.201102295 |
0.566 |
|
2012 |
Das R, Pachfule P, Banerjee R, Poddar P. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale. 4: 591-9. PMID 22143166 DOI: 10.1039/C1Nr10944H |
0.561 |
|
2012 |
Bhunia MK, Das SK, Pachfule P, Banerjee R, Bhaumik A. Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C-C coupling reactions. Dalton Transactions (Cambridge, England : 2003). 41: 1304-11. PMID 22134215 DOI: 10.1039/C1Dt11350J |
0.543 |
|
2012 |
Yadav PK, Kumari N, Pachfule P, Banerjee R, Mishra L. Metal [Zn(II), Cd(II)], 1,10-phenanthroline containing coordination polymers constructed on the skeleton of polycarboxylates: Synthesis, characterization, microstructural, and CO 2 gas adsorption studies Crystal Growth and Design. 12: 5311-5319. DOI: 10.1021/Cg301277Q |
0.563 |
|
2012 |
Pachfule P, Banerjee R. Correction to Porous Nitrogen Rich Cadmium-Tetrazolate Based Metal Organic Framework (MOF) for H2 and CO2 Uptake Crystal Growth & Design. 12: 4292-4292. DOI: 10.1021/Cg300827E |
0.579 |
|
2011 |
Panda T, Pachfule P, Banerjee R. Template induced structural isomerism and enhancement of porosity in manganese(II) based metal-organic frameworks (Mn-MOFs). Chemical Communications (Cambridge, England). 47: 7674-6. PMID 21660334 DOI: 10.1039/C1Cc12278A |
0.769 |
|
2011 |
Pachfule P, Das R, Poddar P, Banerjee R. Structural, magnetic, and gas adsorption study of a series of partially fluorinated metal-organic frameworks (HF-MOFs). Inorganic Chemistry. 50: 3855-65. PMID 21438552 DOI: 10.1021/Ic1017246 |
0.568 |
|
2011 |
Mallick A, Saha S, Pachfule P, Roy S, Banerjee R. Structure and gas sorption behavior of a new three dimensional porous magnesium formate. Inorganic Chemistry. 50: 1392-401. PMID 21192733 DOI: 10.1021/Ic102057P |
0.541 |
|
2011 |
Panda T, Pachfule P, Chen Y, Jiang J, Banerjee R. Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chemical Communications (Cambridge, England). 47: 2011-3. PMID 21180716 DOI: 10.1039/C0Cc04169F |
0.736 |
|
2011 |
Panda T, Pachfule P, Banerjee R. Zeolitic tetrazolate framework (ZTF) with high-capacity storage of carbon dioxide Acta Crystallographica Section a Foundations of Crystallography. 67: C392-C392. DOI: 10.1107/S0108767311090143 |
0.723 |
|
2011 |
Pachfule P, Chen Y, Jiang J, Banerjee R. Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs) Journal of Materials Chemistry. 21: 17737. DOI: 10.1039/C1Jm13762J |
0.55 |
|
2011 |
Kawade VA, Kumbhar AS, Erxleben A, Pachfule P, Banerjee R. Hydrogen bond directed honeycomb-like porous network structure of tris(bipyridyl-glycoluril)cobalt(III) chloride Crystengcomm. 13: 5289-5291. DOI: 10.1039/C1Ce05376K |
0.524 |
|
2011 |
Biswal M, Dhas VV, Mate VR, Banerjee A, Pachfule P, Agrawal KL, Ogale SB, Rode CV. Selectivity Tailoring in Liquid Phase Oxidation Over MWNT-Mn3O4 Nanocomposite Catalysts The Journal of Physical Chemistry C. 115: 15440-15448. DOI: 10.1021/Jp203318N |
0.305 |
|
2011 |
Pachfule P, Chen Y, Sahoo SC, Jiang J, Banerjee R. Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks Chemistry of Materials. 23: 2908-2916. DOI: 10.1021/Cm2004352 |
0.535 |
|
2011 |
Pachfule P, Banerjee R. Porous Nitrogen Rich Cadmium-Tetrazolate Based Metal Organic Framework (MOF) for H2and CO2Uptake Crystal Growth & Design. 11: 5176-5181. DOI: 10.1021/Cg201054F |
0.548 |
|
2011 |
Pachfule P, Das R, Poddar P, Banerjee R. Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link Crystal Growth & Design. 11: 1215-1222. DOI: 10.1021/Cg101414X |
0.569 |
|
2011 |
Dey C, Das R, Pachfule P, Poddar P, Banerjee R. Structural and Selective Gas Adsorption Studies of Polyoxometalate and Tris(ethylenediamine) Cobalt(III) Based Ionic Crystals Crystal Growth & Design. 11: 139-146. DOI: 10.1021/Cg101201B |
0.522 |
|
2010 |
Mallick A, Saha S, Pachfule P, Roy S, Banerjee R. Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites Journal of Materials Chemistry. 20: 9073. DOI: 10.1039/C0Jm01125H |
0.571 |
|
2010 |
Pachfule P, Panda T, Dey C, Banerjee R. Structural diversity in a series of metal–organic frameworks (MOFs) composed of divalent transition metals, 4,4′-bipyridine and a flexible carboxylic acid Crystengcomm. 12: 2381. DOI: 10.1039/C000723D |
0.76 |
|
2010 |
Pachfule P, Dey C, Panda T, Banerjee R. Synthesis and structural comparisons of five new fluorinated metal organic frameworks (F-MOFs) Crystengcomm. 12: 1600. DOI: 10.1039/B917483D |
0.737 |
|
2010 |
Pachfule P, Dey C, Panda T, Vanka K, Banerjee R. Structural diversity in partially fluorinated metal organic frameworks (F-MOFs) composed of divalent transition metals, 1,10-phenanthroline, and fluorinated carboxylic acid Crystal Growth and Design. 10: 1364-1372. DOI: 10.1021/Cg9013812 |
0.752 |
|
2010 |
Pachfule P, Das R, Poddar P, Banerjee R. Structural, Magnetic, and Gas Adsorption Study of a Two-Dimensional Tetrazole-Pyrimidine Based Metal−Organic Framework Crystal Growth & Design. 10: 2475-2478. DOI: 10.1021/Cg1003726 |
0.55 |
|
Show low-probability matches. |