Year |
Citation |
Score |
2024 |
Mistry JR, McQueen E, Nudelman F, Sprick RS, Wright IA. Non-conventional bulk heterojunction nanoparticle photocatalysts for sacrificial hydrogen evolution from water. Journal of Materials Chemistry. A. 12: 23411-23415. PMID 39219707 DOI: 10.1039/d4ta03584d |
0.465 |
|
2024 |
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. Materials Horizons. PMID 38895815 DOI: 10.1039/d4mh00482e |
0.484 |
|
2024 |
Yang Y, Zwijnenburg MA, Gardner AM, Adamczyk S, Yang J, Sun Y, Jiang Q, Cowan AJ, Sprick RS, Liu LN, Cooper AI. Conjugated Polymer/Recombinant Biohybrid Systems for Photobiocatalytic Hydrogen Production. Acs Nano. PMID 38739725 DOI: 10.1021/acsnano.3c10668 |
0.614 |
|
2023 |
Yang Y, Liu LN, Tian H, Cooper AI, Sprick RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. Energy & Environmental Science. 16: 4305-4319. PMID 38013927 DOI: 10.1039/d3ee01265d |
0.429 |
|
2022 |
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. Nanomaterials (Basel, Switzerland). 12. PMID 36500922 DOI: 10.3390/nano12234299 |
0.488 |
|
2022 |
Hillman SAJ, Sprick RS, Pearce D, Woods DJ, Sit WY, Shi X, Cooper AI, Durrant JR, Nelson J. Why Do Sulfone-Containing Polymer Photocatalysts Work So Well for Sacrificial Hydrogen Evolution from Water? Journal of the American Chemical Society. PMID 36251010 DOI: 10.1021/jacs.2c07103 |
0.623 |
|
2022 |
Liu L, Kochman MA, Zhao W, Zwijnenburg MA, Sprick RS. Linear conjugated polymer photocatalysts with various linker units for photocatalytic hydrogen evolution from water. Chemical Communications (Cambridge, England). 58: 10639-10642. PMID 36052533 DOI: 10.1039/d2cc03810b |
0.522 |
|
2022 |
Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L, Zhu M, Chong SY, Yang H, Liu L, Bai Y, Yu M, Xu Y, Zhu XW, Zhu Q, ... ... Sprick RS, et al. Reconstructed covalent organic frameworks. Nature. 604: 72-79. PMID 35388196 DOI: 10.1038/s41586-022-04443-4 |
0.499 |
|
2022 |
Bai Y, Li C, Liu L, Yamaguchi Y, Bahri M, Yang H, Gardner A, Zwijnenburg MA, Browning ND, Cowan AJ, Kudo A, Cooper AI, Sprick RS. Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with iridium. Angewandte Chemie (International Ed. in English). PMID 35377540 DOI: 10.1002/anie.202201299 |
0.593 |
|
2021 |
Piercy VL, Saeed KH, Prentice AW, Neri G, Li C, Gardner AM, Bai Y, Sprick RS, Sazanovich IV, Cooper AI, Rosseinsky MJ, Zwijnenburg MA, Cowan AJ. Time-Resolved Raman Spectroscopy of Polaron Formation in a Polymer Photocatalyst. The Journal of Physical Chemistry Letters. 12: 10899-10905. PMID 34730969 DOI: 10.1021/acs.jpclett.1c03073 |
0.544 |
|
2021 |
Zbiri M, Aitchison CM, Sprick RS, Cooper AI, Guilbert AAY. Probing Dynamics of Water Mass Transfer in Organic Porous Photocatalyst Water-Splitting Materials by Neutron Spectroscopy. Chemistry of Materials : a Publication of the American Chemical Society. 33: 1363-1372. PMID 33840892 DOI: 10.1021/acs.chemmater.0c04425 |
0.435 |
|
2021 |
Guilbert AAY, Bai Y, Aitchison CM, Sprick RS, Zbiri M. Impact of Chemical Structure on the Dynamics of Mass Transfer of Water in Conjugated Microporous Polymers: A Neutron Spectroscopy Study. Acs Applied Polymer Materials. 3: 765-776. PMID 33615231 DOI: 10.1021/acsapm.0c01070 |
0.328 |
|
2021 |
Aitchison CM, Sprick RS. Conjugated nanomaterials for solar fuel production. Nanoscale. 13: 634-646. PMID 33393561 DOI: 10.1039/d0nr07533g |
0.396 |
|
2020 |
Sprick RS, Little MA, Cooper AI. Organic heterojunctions for direct solar fuel generation. Communications Chemistry. 3: 40. PMID 36703391 DOI: 10.1038/s42004-020-0288-z |
0.582 |
|
2020 |
Sachs M, Cha H, Kosco J, Aitchison CM, Francàs L, Corby S, Chiang CL, Wilson AA, Godin R, Fahey-Williams A, Cooper AI, Sprick RS, McCulloch I, Durrant JR. Correction to "Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution". Journal of the American Chemical Society. PMID 33353301 DOI: 10.1021/jacs.0c12455 |
0.508 |
|
2020 |
Yang H, Amari H, Liu L, Zhao C, Gao H, He A, Browning ND, Little MA, Sprick RS, Cooper AI. Nano-assemblies of a soluble conjugated organic polymer and an inorganic semiconductor for sacrificial photocatalytic hydrogen production from water. Nanoscale. PMID 33319898 DOI: 10.1039/d0nr05801g |
0.608 |
|
2020 |
Li T, Jiang Q, Huang J, Aitchison CM, Huang F, Yang M, Dykes GF, He HL, Wang Q, Sprick RS, Cooper AI, Liu LN. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature Communications. 11: 5448. PMID 33116131 DOI: 10.1038/s41467-020-19280-0 |
0.421 |
|
2020 |
Gao H, Tian B, Yang H, Neale AR, Little MA, Sprick RS, Hardwick LJ, Cooper AI. Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium-Ion Cells. Chemsuschem. PMID 32725860 DOI: 10.1002/Cssc.202001389 |
0.449 |
|
2020 |
Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, Li X, Alston BM, Li B, Clowes R, Rankin N, Harris B, Sprick RS, Cooper AI. A mobile robotic chemist. Nature. 583: 237-241. PMID 32641813 DOI: 10.1038/S41586-020-2442-2 |
0.373 |
|
2020 |
Sprick RS, Chen Z, Cowan AJ, Bai Y, Aitchison CM, Fang Y, Zwijnenburg MA, Cooper AI, Wang X. Water oxidation with cobalt-loaded linear conjugated polymer photocatalysts. Angewandte Chemie (International Ed. in English). PMID 32596879 DOI: 10.1002/Anie.202008000 |
0.574 |
|
2020 |
Yang H, Li X, Sprick RS, Cooper AI. Conjugated polymer donor-molecular acceptor nanohybrids for photocatalytic hydrogen evolution. Chemical Communications (Cambridge, England). PMID 32428055 DOI: 10.1039/D0Cc00740D |
0.623 |
|
2020 |
Fu Z, Wang X, Gardner AM, Wang X, Chong SY, Neri G, Cowan AJ, Liu L, Li X, Vogel A, Clowes R, Bilton M, Chen L, Sprick RS, Cooper AI. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science. 11: 543-550. PMID 32206271 DOI: 10.1039/C9Sc03800K |
0.488 |
|
2019 |
Meier CB, Clowes R, Berardo E, Jelfs KE, Zwijnenburg MA, Sprick RS, Cooper AI. Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water. Chemistry of Materials : a Publication of the American Chemical Society. 31: 8830-8838. PMID 32063679 DOI: 10.1021/Acs.Chemmater.9B02825 |
0.492 |
|
2019 |
Aitchison CM, Andrei V, Antón-García D, Apfel UP, Badiani V, Beller M, Bocarsly AB, Bonnet S, Brueggeller P, Caputo CA, Cassiola F, Clausing ST, Cooper AI, Creissen CE, de la Peña O'Shea VA, ... ... Sprick RS, et al. Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions. PMID 31236549 DOI: 10.1039/C9Fd90024A |
0.341 |
|
2019 |
Bai Y, Wilbraham L, Slater BJ, Zwijnenburg MA, Sprick RS, Cooper AI. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory. Journal of the American Chemical Society. PMID 31074272 DOI: 10.1021/Jacs.9B03591 |
0.595 |
|
2019 |
Vogel A, Forster M, Wilbraham L, Smith CL, Cowan AJ, Zwijnenburg MA, Sprick RS, Cooper AI. Photocatalytically active ladder polymers. Faraday Discussions. PMID 30972395 DOI: 10.1039/C8Fd00197A |
0.624 |
|
2018 |
Sachs M, Sprick RS, Pearce D, Hillman SAJ, Monti A, Guilbert AAY, Brownbill NJ, Dimitrov S, Shi X, Blanc F, Zwijnenburg MA, Nelson J, Durrant JR, Cooper AI. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications. 9: 4968. PMID 30470759 DOI: 10.1038/S41467-018-07420-6 |
0.63 |
|
2018 |
Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu WH, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS, Cooper AI. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry. PMID 30275507 DOI: 10.1038/S41557-018-0141-5 |
0.561 |
|
2018 |
Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI. Corrigendum: Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie (International Ed. in English). 57: 2520. PMID 29485756 DOI: 10.1002/Anie.201800571 |
0.601 |
|
2016 |
Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI. Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie (Weinheim An Der Bergstrasse, Germany). 128: 1824-1828. PMID 27478279 DOI: 10.1002/ange.201510542 |
0.575 |
|
2016 |
Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AI. Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chemical Communications (Cambridge, England). PMID 27443392 DOI: 10.1039/C6Cc03536A |
0.625 |
|
2015 |
Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI. Visible Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie (International Ed. in English). PMID 26696450 DOI: 10.1002/Anie.201510542 |
0.575 |
|
2015 |
Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. Journal of the American Chemical Society. 137: 3265-70. PMID 25643993 DOI: 10.1021/Ja511552K |
0.63 |
|
Show low-probability matches. |