Year |
Citation |
Score |
2014 |
Zheng M, Chiang YL, Lee HL, Kong LR, Hsu ST, Hwang IS, Rothfield LI, Shih YL. Self-assembly of MinE on the membrane underlies formation of the MinE ring to sustain function of the Escherichia coli Min system. The Journal of Biological Chemistry. 289: 21252-66. PMID 24914211 DOI: 10.1074/Jbc.M114.571976 |
0.379 |
|
2009 |
Vats P, Yu J, Rothfield L. The dynamic nature of the bacterial cytoskeleton Cellular and Molecular Life Sciences : Cmls. 66: 3353-3362. PMID 19641848 DOI: 10.1007/S00018-009-0092-5 |
0.332 |
|
2009 |
Vats P, Shih YL, Rothfield L. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli Molecular Microbiology. 72: 170-182. PMID 19220747 DOI: 10.1111/J.1365-2958.2009.06632.X |
0.399 |
|
2008 |
Taghbalout A, Rothfield L. New insights into the cellular organization of the RNA processing and degradation machinery of Escherichia coli Molecular Microbiology. 70: 780-782. PMID 18990179 DOI: 10.1111/J.1365-2958.2008.06457.X |
0.351 |
|
2008 |
Taghbalout A, Rothfield L. RNaseE and RNA helicase B play central roles in the cytoskeletal organization of the RNA degradosome Journal of Biological Chemistry. 283: 13850-13855. PMID 18337249 DOI: 10.1074/Jbc.M709118200 |
0.315 |
|
2007 |
Osborn MJ, Rothfield L. Cell shape determination in Escherichia coli. Current Opinion in Microbiology. 10: 606-10. PMID 17981077 DOI: 10.1016/J.Mib.2007.09.004 |
0.585 |
|
2007 |
Vats P, Rothfield L. Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle Proceedings of the National Academy of Sciences of the United States of America. 104: 17795-17800. PMID 17978175 DOI: 10.1073/Pnas.0708739104 |
0.434 |
|
2007 |
Taghbalout A, Rothfield L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton Proceedings of the National Academy of Sciences of the United States of America. 104: 1667-1672. PMID 17242352 DOI: 10.1073/Pnas.0610491104 |
0.35 |
|
2006 |
Shih YL, Rothfield L. The bacterial cytoskeleton Microbiology and Molecular Biology Reviews. 70: 729-754. PMID 16959967 DOI: 10.1128/Mmbr.00017-06 |
0.418 |
|
2006 |
Taghbalout A, Ma L, Rothfield L. Role of MinD-membrane association in min protein interactions Journal of Bacteriology. 188: 2993-3001. PMID 16585760 DOI: 10.1128/Jb.188.8.2993-3001.2006 |
0.382 |
|
2005 |
Rothfield L, Taghbalout A, Shih YL. Spatial control of bacterial division-site placement Nature Reviews Microbiology. 3: 959-968. PMID 16322744 DOI: 10.1038/Nrmicro1290 |
0.461 |
|
2005 |
Shih YL, Kawagishi I, Rothfield L. The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation Molecular Microbiology. 58: 917-928. PMID 16262780 DOI: 10.1111/J.1365-2958.2005.04841.X |
0.349 |
|
2005 |
Drew DA, Osborn MJ, Rothfield LI. A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement. Proceedings of the National Academy of Sciences of the United States of America. 102: 6114-8. PMID 15840714 DOI: 10.1073/Pnas.0502037102 |
0.565 |
|
2004 |
Ma L, King GF, Rothfield L. Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection Molecular Microbiology. 54: 99-108. PMID 15458408 DOI: 10.1111/J.1365-2958.2004.04265.X |
0.385 |
|
2003 |
Ma LY, King G, Rothfield L. Mapping the MinE site involved in interaction with the MinD division site selection protein of Escherichia coli Journal of Bacteriology. 185: 4948-4955. PMID 12897015 DOI: 10.1128/Jb.185.16.4948-4955.2003 |
0.352 |
|
2003 |
Shih YL, Le T, Rothfield L. Division site selection in Escherichia coli involves dynamic redistribution of min proteins within coiled structures that extend between the two cell poles Proceedings of the National Academy of Sciences of the United States of America. 100: 7865-7870. PMID 12766229 DOI: 10.1073/Pnas.1232225100 |
0.454 |
|
2003 |
Rothfield L. New insights into the developmental history of the bacterial cell division site Journal of Bacteriology. 185: 1125-1127. PMID 12562780 DOI: 10.1128/Jb.185.4.1125-1127.2003 |
0.432 |
|
2002 |
Szeto TH, Rowland SL, Rothfield LI, King GF. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts Proceedings of the National Academy of Sciences of the United States of America. 99: 15693-15698. PMID 12424340 DOI: 10.1073/Pnas.232590599 |
0.684 |
|
2002 |
Shih YL, Fu X, King GF, Le T, Rothfield L. Division site placement in E.coli: Mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains Embo Journal. 21: 3347-3357. PMID 12093736 DOI: 10.1093/Emboj/Cdf323 |
0.42 |
|
2001 |
Rothfield LI, Shih YL, King G. Polar explorers: Membrane proteins that determine division site placement Cell. 106: 13-16. PMID 11461697 DOI: 10.1016/S0092-8674(01)00432-9 |
0.373 |
|
2001 |
Fu X, Shih YL, Zhang Y, Rothfield LI. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle Proceedings of the National Academy of Sciences of the United States of America. 98: 980-985. PMID 11158581 DOI: 10.1073/Pnas.98.3.980 |
0.437 |
|
2000 |
King GF, Shih YL, Maciejewski MW, Bains NPS, Pan B, Rowland SL, Mullen GP, Rothfield LI. Structural basis for the topological specificity function of MinE Nature Structural Biology. 7: 1013-1017. PMID 11062554 DOI: 10.1038/80917 |
0.69 |
|
2000 |
Justice SS, García-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery Molecular Microbiology. 37: 410-423. PMID 10931335 DOI: 10.1046/J.1365-2958.2000.02007.X |
0.653 |
|
2000 |
Rowland SL, Fu X, Sayed MA, Zhang Y, Cook WR, Rothfield LI. Membrane redistribution of the Escherichia coli MinD protein induced by MinE Journal of Bacteriology. 182: 613-619. PMID 10633093 DOI: 10.1128/Jb.182.3.613-619.2000 |
0.718 |
|
1999 |
King GF, Pan B, Maciejewski MW, Rowland SL, Rothfield LI, Mullen GP. Letter to the editor: Backbone and side-chain 1H, 15N, and 13C assignments for the topological specificity domain of the MinE cell division protein [2] Journal of Biomolecular Nmr. 13: 395-396. PMID 10353200 DOI: 10.1023/A:1008386622578 |
0.665 |
|
1999 |
King GF, Rowland SL, Pan B, Mackay JP, Mullen GP, Rothfield LI. The dimerization and topological specificity functions of MinE reside in a structurally autonomous C-terminal domain Molecular Microbiology. 31: 1161-1169. PMID 10096083 DOI: 10.1046/J.1365-2958.1999.01256.X |
0.671 |
|
1999 |
Cook WR, Rothfield LI. Nucleoid-independent identification of cell division sites in Escherichia coli Journal of Bacteriology. 181: 1900-1905. PMID 10074085 DOI: 10.1128/Jb.181.6.1900-1905.1999 |
0.426 |
|
1998 |
Ishidate K, Ursinus A, Höltje JV, Rothfield L. Analysis of the length distribution of murein glycan strands in ftsZ and ftsI mutants of E. coli Fems Microbiology Letters. 168: 71-75. PMID 9812365 DOI: 10.1111/J.1574-6968.1998.Tb13257.X |
0.374 |
|
1998 |
Zhang Y, Rowland S, King G, Braswell E, Rothfield L. The relationship between hetero-oligomer formation and function of the topological specificity domain of the Escherichia coli MinE protein Molecular Microbiology. 30: 265-273. PMID 9791172 DOI: 10.1046/J.1365-2958.1998.01059.X |
0.702 |
|
1998 |
Shakibai N, Ishidate K, Reshetnyak E, Gunji S, Kohiyama M, Rothfield L. High-affinity binding of hemimethylated oriC by Escherichia coli membranes is mediated by a multiprotein system that includes SeqA and a newly identified factor, SeqB Proceedings of the National Academy of Sciences of the United States of America. 95: 11117-11121. PMID 9736699 DOI: 10.1073/Pnas.95.19.11117 |
0.359 |
|
1998 |
Sen M, Rothfield LI. Stability of the Escherichia coli division inhibitor protein MinC requires determinants in the carboxy-terminal region of the protein Journal of Bacteriology. 180: 175-177. PMID 9422610 DOI: 10.1128/Jb.180.1.175-177.1998 |
0.356 |
|
1997 |
Rothfield LI, Justice SS. Bacterial cell division: The cycle of the ring Cell. 88: 581-584. PMID 9054497 DOI: 10.1016/S0092-8674(00)81899-1 |
0.641 |
|
1996 |
ROTHFIELD L, HORECKER BL. THE ROLE OF CELL-WALL LIPID IN THE BIOSYNTHESIS OF BACTERIAL LIPOPOLYSACCHARIDE. Proceedings of the National Academy of Sciences of the United States of America. 52: 939-46. PMID 14224398 DOI: 10.1073/Pnas.52.4.939 |
0.563 |
|
1996 |
García-Lara J, Shang LH, Rothfield LI. An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli Journal of Bacteriology. 178: 2742-2748. PMID 8631660 DOI: 10.1128/Jb.178.10.2742-2748.1996 |
0.314 |
|
1996 |
Rothfield LI, Zhao CR. How do bacteria decide where to divide? Cell. 84: 183-186. PMID 8565062 DOI: 10.1016/S0092-8674(00)80971-X |
0.346 |
|
1995 |
Zhao CR, De Boer PAJ, Rothfield LI. Proper placement of the Escherichia coli division site requires two functions that are associated with different domains of the MinE protein Proceedings of the National Academy of Sciences of the United States of America. 92: 4313-4317. PMID 7753804 DOI: 10.1073/Pnas.92.10.4313 |
0.416 |
|
1994 |
Cook WR, Rothfield LI. Development of the cell-division site in FtsA filaments Molecular Microbiology. 14: 497-503. PMID 7885232 DOI: 10.1111/J.1365-2958.1994.Tb02184.X |
0.391 |
|
1994 |
Cook WR, Rothfield LI. Early stages in development of the Escherichia coli cell-division site Molecular Microbiology. 14: 485-495. PMID 7885231 DOI: 10.1111/J.1365-2958.1994.Tb02183.X |
0.45 |
|
1992 |
De Boer PAJ, Crossley RE, Rothfield LI. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli Journal of Bacteriology. 174: 63-70. PMID 1729224 DOI: 10.1128/Jb.174.1.63-70.1992 |
0.425 |
|
1992 |
De Boer P, Crossley R, Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase Nature. 359: 254-256. PMID 1528268 DOI: 10.1038/359254A0 |
0.437 |
|
1992 |
Leduc M, Ishidate K, Shakibai N, Rothfield L. Interactions of Escherichia coli membrane lipoproteins with the murein sacculus Journal of Bacteriology. 174: 7982-7988. PMID 1459946 DOI: 10.1128/Jb.174.24.7982-7988.1992 |
0.411 |
|
1992 |
Chakraborti A, Gunji S, Shakibai N, Cubeddu J, Rothfield L. Characterization of the Escherichia coli membrane domain responsible for binding oriC DNA Journal of Bacteriology. 174: 7202-7206. PMID 1429444 DOI: 10.1128/Jb.174.22.7202-7206.1992 |
0.385 |
|
1991 |
Wang X, De Boer PAJ, Rothfield LI. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli Embo Journal. 10: 3363-3372. PMID 1915297 DOI: 10.1002/J.1460-2075.1991.Tb04900.X |
0.343 |
|
1991 |
De Boer PAJ, Crossley RE, Hand AR, Rothfield LI. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site Embo Journal. 10: 4371-4380. PMID 1836760 DOI: 10.1002/J.1460-2075.1991.Tb05015.X |
0.485 |
|
1991 |
Rothfield LI, Cook WR, De Boer PA. Biogenesis of the Escherichia coli cell division system Cold Spring Harbor Symposia On Quantitative Biology. 56: 751-756. PMID 1819522 DOI: 10.1101/Sqb.1991.056.01.084 |
0.42 |
|
1990 |
Joseleau-Petit D, Kepes F, Peutat L, D'Ari R, Rothfield LI. Biosynthesis of a membrane adhesion zone fraction throughout the cell cycle of Escherichia coli Journal of Bacteriology. 172: 6573-6575. PMID 2228974 DOI: 10.1128/Jb.172.11.6573-6575.1990 |
0.419 |
|
1990 |
De Boer PAJ, Crossley RE, Rothfield LI. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems Proceedings of the National Academy of Sciences of the United States of America. 87: 1129-1133. PMID 2137246 DOI: 10.1073/Pnas.87.3.1129 |
0.349 |
|
1990 |
de Boer PA, Cook WR, Rothfield LI. Bacterial cell division. Annual Review of Genetics. 24: 249-74. PMID 2088169 DOI: 10.1146/Annurev.Genet.33.1.423 |
0.443 |
|
1989 |
Foley M, Brass JM, Birmingham J, Cook WR, Garland PB, Higgins CF, Rothfield LI. Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Molecular Microbiology. 3: 1329-1336. PMID 2693893 DOI: 10.1111/J.1365-2958.1989.Tb00114.X |
0.424 |
|
1989 |
Cook WR, De Boer PAJ, Rothfield LI. Differentiation of the bacterial cell division site International Review of Cytology. 118: 1-31. PMID 2691424 DOI: 10.1016/S0074-7696(08)60871-2 |
0.41 |
|
1989 |
Leduc M, Joseleau-Petit D, Rothfield LI. Interactions of membrane lipoproteins with the murein sacculus of Escherichia coli as shown by chemical crosslinking studies of intact cells Fems Microbiology Letters. 60: 11-14. PMID 2676704 DOI: 10.1111/J.1574-6968.1989.Tb03410.X |
0.387 |
|
1989 |
de Boer PAJ, Crossley RE, Rothfield LI. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli Cell. 56: 641-649. PMID 2645057 DOI: 10.1016/0092-8674(89)90586-2 |
0.375 |
|
1988 |
De Boer PAJ, Crossley RE, Rothfield LI. Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli Journal of Bacteriology. 170: 2106-2112. PMID 2834323 DOI: 10.1128/Jb.170.5.2106-2112.1988 |
0.352 |
|
1987 |
Cook WR, Kepes F, Joseleau-Petit D, MacAlister TJ, Rothfield LI. Proposed mechanism for generation and localization of new cell division sites during the division cycle of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 84: 7144-7148. PMID 3313388 DOI: 10.1073/Pnas.84.20.7144 |
0.425 |
|
1987 |
MacAlister TJ, Cook WR, Weigand R, Rothfield LI. Membrane-murein attachment at the leading edge of the division septum: A second membrane-murein structure associated with morphogenesis of the gram-negative bacterial division septum Journal of Bacteriology. 169: 3945-3951. PMID 3305476 DOI: 10.1128/Jb.169.9.3945-3951.1987 |
0.427 |
|
1986 |
Cook WR, MacAlister TJ, Rothfield LI. Compartmentalization of the periplasmic space at division sites in gram-negative bacteria Journal of Bacteriology. 168: 1430-1438. PMID 3536880 DOI: 10.1128/Jb.168.3.1430-1438.1986 |
0.407 |
|
1986 |
Chakraborti AS, Ishidate K, Cook WR, Zrike J, Rothfield LI. Accumulation of a murein-membrane attachment site fraction when cell division is blocked in lkyD and cha mutants of Salmonella typhimurium and Escherichia coli Journal of Bacteriology. 168: 1422-1429. PMID 3536879 DOI: 10.1128/Jb.168.3.1422-1429.1986 |
0.432 |
|
1983 |
Macalister TJ, Macdonald B, Rothfield LI. The periseptal annulus: An organelle associated with cell division in Gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America. 80: 1372-6. PMID 16593288 DOI: 10.1073/Pnas.80.5.1372 |
0.476 |
|
1982 |
Creeger ES, Rothfield LI. Cloning genes for bacterial glycosyltransferases. Methods in Enzymology. 83: 326-31. PMID 6212748 DOI: 10.1016/0076-6879(82)83028-0 |
0.313 |
|
1980 |
Fung JC, MacAlister TJ, Weigand RA, Rothfield LI. Morphogenesis of the bacterial division septum: identification of potential sites of division in lkyD mutants of Salmonella typhimurium Journal of Bacteriology. 143: 1019-1024. PMID 7009540 DOI: 10.1128/Jb.143.2.1019-1024.1980 |
0.455 |
|
1976 |
Weigand RA, Vinci KD, Rothfield LI. Morphogenesis of the bacterial division septum: A new class of septation defective mutants Proceedings of the National Academy of Sciences of the United States of America. 73: 1882-1886. PMID 778849 DOI: 10.1073/Pnas.73.6.1882 |
0.376 |
|
1974 |
Rothfield L, Hinckley A. [41] Reconstitution of lipopolysaccharide-phospholipid-transferase enzyme complexes of bacterial cell envelopes Methods in Enzymology. 32: 449-459. DOI: 10.1016/0076-6879(74)32044-7 |
0.359 |
|
1972 |
Moldow C, Robertson J, Rothfield L. Purification of bacterial membrane proteins - The use of guanidinium thiocyanate and urea The Journal of Membrane Biology. 10: 137-152. PMID 4592401 DOI: 10.1007/Bf01867850 |
0.382 |
|
1972 |
Lopes J, Gottfried S, Rothfield L. Leakage of periplasmic enzymes by mutants of Escherichia coli and Salmonella typhimurium: isolation of "periplasmic leaky" mutants Journal of Bacteriology. 109: 520-525. PMID 4333606 DOI: 10.1128/Jb.109.2.520-525.1972 |
0.345 |
|
1971 |
Rothfield L, Romeo D. Role of lipids in the biosynthesis of the bacterial cell envelope Bacteriological Reviews. 35: 14-38. PMID 4929657 DOI: 10.1128/Mmbr.35.1.14-38.1971 |
0.39 |
|
1970 |
Romeo D, Hinckley A, Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme Journal of Molecular Biology. 53: 491-501. PMID 4924009 DOI: 10.1016/0022-2836(70)90079-3 |
0.306 |
|
1970 |
Romeo D, Girard A, Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid Journal of Molecular Biology. 53: 475-488,IN15,489-490. PMID 4924008 DOI: 10.1016/0022-2836(70)90078-1 |
0.305 |
|
1969 |
Rothfield L, Weiser M, Endo A. Dissociation and reassociation of bacterial membrane components. The Journal of General Physiology. 54: 27-37. PMID 19873646 DOI: 10.1085/Jgp.54.1.27 |
0.425 |
|
1969 |
Rothfield L, Pearlman-Kothencz M. Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria Journal of Molecular Biology. 44: 477-492. PMID 4899474 DOI: 10.1016/0022-2836(69)90374-X |
0.4 |
|
1967 |
Rothfield L, Horne RW. Reassociation of purified lipopolysaccharide and phospholipid of the bacterial cell envelope: electron microscopic and monolayer studies Journal of Bacteriology. 93: 1705-1721. PMID 5337850 DOI: 10.1128/Jb.93.5.1705-1721.1967 |
0.381 |
|
1966 |
Osborn MJ, Rothfield LI. [81] Formation of lipopolysaccharide in mutant strains of Salmonella typhimurium Methods in Enzymology. 8: 456-466. DOI: 10.1016/0076-6879(66)08085-6 |
0.461 |
|
1965 |
Rothfield L, Takeshita M. The role of cell envelope phospholipid in the enzymatic synthesis of bacterial lipopolysaccharide: binding of transferase enzymes to a lipopolysaccharide-lipid complex. Biochemical and Biophysical Research Communications. 20: 521-527. PMID 5860170 DOI: 10.1016/0006-291X(65)90611-X |
0.377 |
|
1965 |
Weiner IM, Higuchi T, Rothfield L, Saltmarsh-Andrew M, Osborn MJ, Horecker BL. Biosynthesis of bacterial lipopolysaccharide. V. Lipid-linked intermediates in the biosynthesis of the O-antigen groups of Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America. 54: 228-35. PMID 5323018 DOI: 10.1073/Pnas.54.1.228 |
0.652 |
|
1964 |
OSBORN MJ, ROSEN SM, ROTHFIELD L, ZELEZNICK LD, HORECKER BL. LIPOPOLYSACCHARIDE OF THE GRAM-NEGATIVE CELL WALL. Science (New York, N.Y.). 145: 783-9. PMID 14163315 DOI: 10.1126/Science.145.3634.783 |
0.664 |
|
1962 |
Osborn MJ, Rosen SM, Rothfield L, Horecker BL. Galactose Incorporation into Cell-Wall Lipopolysaccharide in Mutant Strain of Salmonella typhimurium. Science (New York, N.Y.). 136: 328. PMID 17745929 DOI: 10.1126/Science.136.3513.328-B |
0.644 |
|
1962 |
OSBORN MJ, ROSEN SM, ROTHFIELD L, HORECKER BL. Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella. Proceedings of the National Academy of Sciences of the United States of America. 48: 1831-8. PMID 13940483 DOI: 10.1073/Pnas.48.10.1831 |
0.673 |
|
Show low-probability matches. |